
Joint state and fault estimation for time-varyingnonlinear
systemswith randomly occurring faults and sensor

saturations ⋆

Jun Hu a,b, ZidongWang c, Huijun Gao d

aDepartment of Mathematics, Harbin University of Science and Technology, Harbin 150080, China
bSchool of Engineering, University of South Wales, Pontypridd CF37 1DL, UK

cDepartment of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
dResearch Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China

Abstract

This paper is concerned with the joint state and fault estimation problem for a class of uncertain time-varying nonlinear
stochastic systems with randomly occurring faults and sensor saturations. A random variable obeying the Bernoulli distribution
is used to characterize the phenomenon of the randomly occurring faults and the signum function is employed to describe
the sensor saturation due to physical limits on the measurement output. The aim of this paper is to design a locally optimal
time-varying estimator to simultaneously estimate both the system states and the fault signals such that, at each sampling
instant, the covariance of the estimation error has an upper bound that is subsequently minimized by properly designing the
estimator gain. The explicit form of the estimator gain is characterized in terms of the solutions to two difference equations. It
is shown that the developed estimation algorithm is of a recursive form that is suitable for online computations. In addition,
the performance analysis of the proposed estimation algorithm is conducted and a sufficient condition is given to verify the
exponential boundedness of the estimation error in the mean square sense. Finally, an illustrative example is provided to show
the usefulness of the developed estimation scheme.

Key words: Time-varying nonlinear systems; Fault estimation; Randomly occurring faults; Sensor saturations; Recursive
matrix difference equations.

1 Introduction

In modern large-scale industrial systems, the system s-
tates are not always available and the measurement out-
puts are often subject to stochastic noises due mainly
to physical constraints, costs for measuring and envi-
ronmental complexities [5, 12]. Therefore, the state es-
timation or filtering problem has long been one of the
foundational research problems in signal processing and
control areas that has received a great deal of research
attention [16, 29]. The past decades have witnessed the
rapid development of various estimation and filtering al-
gorithms that have been successfully applied in engineer-
ing practice such as signal processing, navigation and
control of vehicles, guidance and econometrics. Accord-
ing to the performance indices, the filtering algorithm-
s can be generally categorized into the main stream-
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s of Kalman filtering [4, 18], extended Kalman filtering
[26,30], particle filtering [32], set-valued filtering [6],H∞
filtering [31, 37], and non-Gaussian filtering [9]. To be
more specific, the celebrated Kalman filtering algorithm
has been proposed in [18] for linear stochastic systems
with Gaussian noises. Based on polynomial observation-
s, the mean-square filters have been designed in [1,2] for
nonlinear polynomial systems with, respectively, white
Poisson processes and Wiener processes. In [30], the ex-
tended Kalman filtering approach has been developed
for nonlinear dynamic gene regulatory networks to iden-
tify the model parameters and the actual value of gene
expression levels. The stochastic stability of the extend-
ed Kalman filter has been discussed in [26] for nonlinear
stochastic systems, and the corresponding results have
then been extended to the case where the measurement
outputs suffer from intermittent observations. Recently,
the H∞ filter has been constructed in [37] for a class of
discrete-time linear switched systems with the persistent
dwell-time switching signals.

On another research frontier, sensors may not always
be capable of providing signals with unlimited ampli-
tudes due to physical/technological restrictions. The
occurrence of the sensor saturations could impose se-
vere degradations on the system performance if not
handled properly [7, 31]. Consequently, the filtering
problems with sensor saturations have been gaining
some initial research attention and some preliminary
results have appeared in recent literature [25, 31]. The
main challenge with this topic is how to design a fil-
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tering algorithm by making full use of the available
information about the sensor saturations (e.g. types,
intensities and distributions) subject to specified per-
formance requirements (e.g. minimized variance and
guaranteed H∞ constraints). For example, in [7], the
fault detection filter has been designed for discrete-
time Markovian jump systems with sensor saturations,
incomplete knowledge of transition probabilities and
randomly varying nonlinearities. The state estima-
tion problem has been considered in [14] for a class of
time-invariant systems with distributed sensor delays
by using a linear matrix inequality (LMI) approach,
where the performance specification (i.e. variance) and
sensor saturations have not been considered. Recently,
an effective H∞ filtering algorithm has been developed
in [31] to address the phenomena of the randomly oc-
curring sensor saturations and missing measurements
in a unified framework. It is worth mentioning that,
so far, most reported results have been concerned with
time-invariant systems only and the corresponding filter
design issue for time-varying systems with variance con-
straints has not been paid adequate research attention
despite the fact that almost all real-world systems have
certain structures/parameters that are time-varying.

Apart from the sensor saturations, component faults
constitute another common cause for performance dete-
riorations or even instability of the engineering system-
s [12, 13, 28, 33, 34]. Therefore, in the past decade, con-
siderable research effort has been devoted to the fault
detection and estimation (FDE) problems, see e.g. [17,
19, 20, 35] and the references therein. Among others, a
new estimation algorithm based on augmented approach
has been presented in [12] for descriptor nonlinear sys-
tems with sensor fault and efficient fault-tolerant con-
trol approach with compensation mechanism has been
developed in [39] for singular systems with actuator sat-
uration and nonlinear perturbation. The sensor fault-
tolerant speed tracking control scheme has been given
in [23] for an electric vehicle powered by a permanent-
magnet synchronousmotor and novel estimationmethod
has been proposed in [36] for Takagi-Sugeno fuzzy mod-
el with time-varying sensor fault. Moreover, in [19, 20],
the fault detect filters have been designed for uncertain
systems with mixed time-varying delays and nonlinear
perturbations by using LMI method. Recently, the FDE
problems for time-varying systems have stirred much re-
search interest owing to the increasing importance of the
time-varying behaviors in practical systemmodeling. Up
to now, a few efficient FDE schemes have been proposed
for linear/nonlinear time-varying systems. For example,
the finite-horizon H∞ fault estimation problems have
been studied in [27, 38] for linear discrete time-varying
stochastic systems by using the Krein-space theory.

In parallel to the recent development of the networked
control systems [11], some initiatives have been made on
the network-induced nature of the fault signals. Recent-
ly, it has been shown in [8] that the occurrence of the
faults could be intermittent or even random especially in
networked environments due to unpredictable parame-
ter fluctuations or structural changes over the network-
s. In [8], the effects from the randomly occurring faults
(ROFs) onto the estimation performance have been ex-
amined by proposing an H∞ fault estimation algorithm
over a finite horizon, where a backward recursive Riccati

difference equation approach has been employed. So far,
to the best of the authors’ knowledge, the problem of
joint state and fault estimation problem for time-varying
systems with ROFs has not been addressed yet, not to
mention the case when the underlying system is also
subject to sensor saturations, parameter uncertainties
as well as nonlinearities. Besides, it should be mentioned
that most of existing methods fail to provide the per-
formance analysis of estimation algorithm for addressed
time-varying nonlinear systems with certain complexi-
ties. As such, the purpose of this paper is to shorten such
a gap by developing a design scheme for effective estima-
tors capable of jointly estimating system states and fault
signals with help from the difference equation method
and presenting a performance analysis criterion.

Motivated by the above discussions, in this paper, we
aim to investigate the problem of joint state and fault
estimation for a class of uncertain time-varying nonlin-
ear systems with ROFs and sensor saturations. The phe-
nomenon of randomly occurring fault is characterized
by using a Bernoulli random variable with known occur-
rence probability. The focus is on designing a recursive
estimator to simultaneously estimate the system states
and fault signals such that, for all admissible parameter
uncertainties, nonlinearities, ROFs and sensor satura-
tions, an upper bound of the estimation error covariance
is guaranteed and then minimized at each time step by
properly choosing the estimator gain. The main novel-
ties of this paper are highlighted as follows: 1) the ad-
dressed model is comprehensive which accounts for sev-
eral well-known phenomena (i.e. parameter uncertain-
ties, nonlinearities, ROFs and sensor saturations) con-
tributing to system complexities in a unified framework;
2) a new compensation scheme is proposed to attenu-
ate the effects from both the ROFs and the sensor satu-
rations onto the estimation performance; 3) a sufficient
criterion is given to quantify the boundedness analysis
of the estimation error in the mean square sense and an
upper bound of the bias of developed estimation is pre-
sented; and 4) the designed estimation algorithm is of
a recursive feature suitable for online computations. Fi-
nally, simulations are provided to demonstrate the use-
fulness of proposed estimation method.

Notations. The notations used throughout this paper
are standard.Rn denotes the n-dimensional Euclidean s-
pace. ∥·∥ is the Euclidian norm of real vectors or the spec-
tral norm of real matrices. For a matrix P , PT and P−1

represent its transpose and inverse, respectively. E{x} is
the mathematical expectation of the stochastic variable
x and E{x|y} is the mathematical expectation of the s-
tochastic variable x conditional on y. I and 0 stand for
the identity matrix and the zero matrix with appropri-
ate dimensions, respectively. tr(P ) represents the trace
of matrix P . diag{P1, P2, · · · , PN} represents a block-
diagonal matrix with matrices P1, P2, · · · , PN on the di-
agonal. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic op-
erations.

2 Problem Formulation and Preliminaries

In this paper, we consider the following class of discrete
uncertain time-varying nonlinear systems:

x⃗k+1 = (A⃗k +∆A⃗k)x⃗k + g⃗(x⃗k) + αkF⃗kfk + B⃗kωk (1)
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y⃗k = σ(C⃗kx⃗k) + νk (2)

where x⃗k ∈ Rn represents the system state, x⃗0 is the
initial value with mean ¯⃗x0, y⃗k ∈ Rm is the measurement
output, fk ∈ Rf is the fault signal, ωk is the zero-mean
process noise with covarianceQk > 0, and νk is the zero-

mean measurement noise with covariance Rk > 0. A⃗k,

F⃗k, B⃗k and C⃗k are known and bounded matrices with

appropriate dimensions. ∆A⃗k is a real-valued uncertain
matrix satisfying

∆A⃗k = M⃗kFkN⃗k, FkFT
k ≤ I (3)

where Fk represents the time-varying uncertainty, M⃗k

and N⃗k are known time-varying matrices with appro-
priate dimensions. The known nonlinear function g⃗(x⃗k)
satisfies

∥g⃗(u)− g⃗(v)∥ ≤ ∥G(u− v)∥, ∀ u, v ∈ Rn (4)

where G is a known matrix.

It is assumed that the dynamic characteristics of the
fault fk are represented by

fk+1 = Af,kfk (5)

where Af,k is a known matrix with appropriate dimen-
sion. It is easy to see that the fault becomes a constant
one if Af,k ≡ I. The random variable αk ∈ R, which
characterizes the phenomenon of the randomly occur-
ring fault, satisfies the Bernoulli distribution taking the
values of 0 or 1 with

Prob {αk = 1}=E {αk} = ᾱ,

Prob {αk = 0}= 1− ᾱ, (6)

where ᾱ ∈ [0, 1] is a known scalar. Throughout this pa-
per, we assume that αk, ωk, νk and x⃗0 are mutually in-
dependent.

The saturation function σ : Rm → Rm is defined as:

σ(v) =
[
σ1(v1) σ2(v2) · · · σm(vm)

]T
, (7)

where σi(vi) = sign(vi)min{ϱi, |vi|}, sign(·) denotes the
signum function and ϱi (i = 1, 2, · · · ,m) is the satura-
tion level.

Remark 1 The assumption (4) has been widely inves-
tigated in a large body of literature. It is worthwhile to
notice that, under the same assumption, the problems of
fault detection and fault estimation have been extensive-
ly studied for complex dynamical systems subject to the
Lipschitz nonlinearities, see e.g. [3, 22].

Remark 2 In this paper, the fault estimation problem
is studied for a class of time-varying nonlinear systems,
where the additive fault is addressed. It is worthwhile to
note that the fault model in (5) depicts that the faults can
dynamically change with hope to better reflect the engi-
neering reality. In fact, the faults in (5) could include the

constant faults as a special case [8]. Besides, we use a
linear fault dynamics with time-varying Af,k to charac-
terize the time-varying nature of the system addressed,
which can be applicable to the case after the fault detec-
tion. Here, we assume that Af,k is a known matrix. The
reason is that we can obtain certain priori knowledge of
the fault based on the engineering background after the
stage of the fault detection, see e.g. the incipient faults
and constant faults. Such kind of fault is fairly common
in real world, see e.g. [21]. On the other hand, we discuss
the phenomenon of the randomly occurring fault in (1)
by employing a Bernoulli distributed random variable αk.
That is, the fault occurs if αk = 1, and there is no fault
if αk = 0. It is worthwhile to note that the randomness
of the fault lies in its effects onto the addressed systems
rather than the “amplitude” of the fault signal.

Remark 3 The aim of the addressed problem is to de-
velop a fault estimation scheme after the fault is detected.
For example, when the sudden fault at random instants
occurs, the sudden change (i.e. the fault signal) would be
firstly detected by utilizing the existing fault detection al-
gorithm, and then the fault estimation scheme proposed
in this paper would be implemented. In this case, the ini-
tial execution time of our developed estimation algorithm
is equivalent to the sudden change time. Summarizing the
above discussions, the sudden change could be regarded
as the emergence of the fault, which could be reflected by
fault detection schemes. The fault model (5) describes the
dynamics of the fault signal, which could characterize the
change of the “amplitude” of the fault signal. The main
idea of our developed estimation scheme is to generate
the fault estimation after the fault is detected (e.g. after
the sudden change time). On the other hand, it should be
mentioned that it is vital important to discuss the uncer-
tain fault model when the priori knowledge of the fault is
inaccurate. Hence, we will consider the possibility of ex-
tending our results to address the uncertain fault model,
which constitutes one of the future research directions.

Setting xk =
[
x⃗Tk fTk

]T
, we have

xk+1 = [Āk + Ā1,k + (αk − ᾱ)Ā2,k]xk + g(xk)

+Bkωk (8)

yk = σ(Ckxk) + νk (9)

where

Āk =

[
A⃗k ᾱF⃗k

0 Af,k

]
, Ā1,k =

[
∆A⃗k 0

0 0

]
,

Ā2,k =

[
0 F⃗k

0 0

]
, g(xk) =

[
g⃗(x⃗k)

0

]
,

Bk =

[
B⃗k

0

]
, Ck =

[
C⃗k 0

]
, yk = y⃗k. (10)

In this paper, we construct the following time-varying
estimator:

x̂k+1|k = Ākx̂k|k + g(x̂k|k) (11)

3



x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Ck+1x̂k+1|k) (12)

where x̂k|k is the estimation of xk at time k with x̂0|0 =[
¯⃗xT0 0

]T
, x̂k+1|k is the one-step prediction at time k,

and Kk+1 is the estimator gain to be determined.

Let x̃k+1|k+1 = xk+1 − x̂k+1|k+1 be the estimation error

and Pk+1|k+1 = E{x̃k+1|k+1x̃
T
k+1|k+1} be the estimation

error covariance. Now, we are in a position to state the
main objectives of the addressed designed task where
both ROFs and sensor saturations are taken into account
within a unified framework.

Objective 1. We aim to design a time-varying estimator
of form (11)-(12) such that there exists an upper bound
of the estimation error covariance Pk+1|k+1, i.e., we are
looking for a series of positive-definite matrices Ξk+1|k+1

satisfying

Pk+1|k+1 ≤ Ξk+1|k+1. (13)

Moreover, such an upper bound Ξk+1|k+1 is minimized
by properly designing the estimator gain Kk+1 at each
time step.

Objective 2. We will provide a sufficient condition to ver-
ify the exponential boundedness of the estimation error
in mean square sense.

To end this section, we introduce the following lemma
which will be used in the proof of our main results.

Lemma 1 For matricesM ,N ,K andX with appropri-
ate dimensions, the following properties hold

∂tr(MKN)

∂K
=MTNT ,

∂tr(MKTN)

∂K
= NM,

∂tr(MKNKTX)

∂K
=MTXTKNT +XMKN.

3 Main Results

In this section, the upper bounds of the one-step pre-
diction error covariance as well as estimation error co-
variance are obtained by employing the stochastic anal-
ysis technique. Subsequently, the desired explicit form
of the estimator gain is given based on the solutions to
two difference equations. At last, a sufficient condition
is established to test the exponential boundedness of the
estimation error in mean square sense.

3.1 Design of The Estimator Gain

Let the one-step prediction error be x̃k+1|k = xk+1 −
x̂k+1|k. Then, it follows from (8) and (11) that

x̃k+1|k = Ākx̃k|k + [Ā1,k + (αk − ᾱ)Ā2,k]xk

+g(xk)− g(x̂k|k) +Bkωk (14)

where Āk, Ā1,k and Ā2,k are defined in (10). Similarly,
from (9) and (12), we have the estimation error as fol-
lows:

x̃k+1|k+1 = x̃k+1|k −Kk+1[σ(Ck+1xk+1)

−Ck+1x̂k+1|k + νk+1]. (15)

In view of (14) and (15), we can obtain the recursion
forms of the one-step prediction error covariance and es-
timation error covariance immediately, which are shown
in the following lemmas.

Lemma 2 The one-step prediction error covariance
Pk+1|k = E{x̃k+1|kx̃

T
k+1|k} has the following recursion:

Pk+1|k

= ĀkPk|kĀ
T
k + ĀkE{x̃k|kxTk }ĀT1,k + Ā1,kE{xkx̃Tk|k}Ā

T
k

+E{Ak + A T
k }+ Ā1,kE{xkxTk }ĀT1,k + E{Bk + BT

k }
+ᾱ(1− ᾱ)Ā2,kE{xkxTk }ĀT2,k + E{[g(xk)− g(x̂k|k)]

×[g(xk)− g(x̂k|k)]
T }+BkQkB

T
k (16)

where

Ak = Ākx̃k|k[g(xk)− g(x̂k|k)]
T ,

Bk = Ā1,kxk[g(xk)− g(x̂k|k)]
T . (17)

Proof: It follows from the definition of the one-step pre-
diction error covariance that

Pk+1|k

= ĀkPk|kĀ
T
k + ĀkE{x̃k|kxTk }ĀT1,k + Ā1,kE{xkx̃Tk|k}Ā

T
k

+P1,k + PT
1,k + ĀkE{x̃k|k[g(xk)− g(x̂k|k)]

T }
+E{[g(xk)− g(x̂k|k)]x̃

T
k|k}Ā

T
k + P2,k + PT

2,k

+Ā1,kE{xkxTk }ĀT1,k + Ā1,kE{xk[g(xk)− g(x̂k|k)]
T }

+E{[g(xk)− g(x̂k|k)]x
T
k }ĀT1,k + P3,k + PT

3,k

+P4,k + PT
4,k + ᾱ(1− ᾱ)Ā2,kE{xkxTk }ĀT2,k

+P5,k + PT
5,k + P6,k + PT

6,k

+E{[g(xk)− g(x̂k|k)][g(xk)− g(x̂k|k)]
T }

+P7,k + PT
7,k +BkQkB

T
k

where

P1,k =E{(αk − ᾱ)Ākx̃k|kx
T
k Ā

T
2,k},

P2,k =E{Ākx̃k|kωTk BTk },
P3,k =E{(αk − ᾱ)Ā1,kxkx

T
k Ā

T
2,k},

P4,k =E{Ā1,kxkω
T
k B

T
k },

P5,k =E{(αk − ᾱ)Ā2,kxk[g(xk)− g(x̂k|k)]
T },

P6,k =E{(αk − ᾱ)Ā2,kxkω
T
k B

T
k },

P7,k =E{[g(xk)− g(x̂k|k)]ω
T
k B

T
k }.

It is not difficult to see that the terms Pi,k (i =
1, 2, · · · , 7) are equal to zero. Then, the relationship
(16) is true.
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Lemma 3 The recursion of the estimation error covari-
ance Pk+1|k+1 = E{x̃k+1|k+1x̃

T
k+1|k+1} can be obtained

as follows:

Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T

+E{Ck+1 + C T
k+1}+ E{Dk+1 + DT

k+1}
+Kk+1Ck+1E{xk+1x

T
k+1}CTk+1K

T
k+1

+Kk+1E{σ(Ck+1xk+1)σ
T (Ck+1xk+1)}KT

k+1

+E{Ek+1 + E T
k+1}+Kk+1Rk+1K

T
k+1 (18)

where

Ck+1 = (I −Kk+1Ck+1)x̃k+1|kx
T
k+1C

T
k+1K

T
k+1,

Dk+1 =−(I −Kk+1Ck+1)x̃k+1|kσ
T (Ck+1xk+1)K

T
k+1,

Ek+1 =−Kk+1Ck+1xk+1σ
T (Ck+1xk+1)K

T
k+1. (19)

Proof: Adding the zero term

Kk+1Ck+1xk+1 −Kk+1Ck+1xk+1

to the right-hand side of (15) leads to

x̃k+1|k+1 = (I −Kk+1Ck+1)x̃k+1|k +Kk+1Ck+1xk+1

−Kk+1σ(Ck+1xk+1)−Kk+1νk+1. (20)

Based on (20), we arrive at

Pk+1|k+1

= (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T

+(I −Kk+1Ck+1)E{x̃k+1|kx
T
k+1}CTk+1K

T
k+1

+Kk+1Ck+1E{xk+1x̃
T
k+1|k}(I −Kk+1Ck+1)

T

−(I −Kk+1Ck+1)E{x̃k+1|kσ
T (Ck+1xk+1)}KT

k+1

−Kk+1E{σ(Ck+1xk+1)x̃
T
k+1|k}(I −Kk+1Ck+1)

T

−Q1,k+1 − QT
1,k+1 +Kk+1Ck+1E{xk+1x

T
k+1}CTk+1

×KT
k+1 −Kk+1Ck+1E{xk+1σ

T (Ck+1xk+1)}KT
k+1

−Kk+1E{σ(Ck+1xk+1)x
T
k+1}CTk+1K

T
k+1 − Q2,k+1

−QT
2,k+1 +Kk+1E{σ(Ck+1xk+1)σ

T (Ck+1xk+1)}
×KT

k+1 + Q3,k+1 + QT
3,k+1 +Kk+1Rk+1K

T
k+1

where

Q1,k+1 =E{(I −Kk+1Ck+1)x̃k+1|kν
T
k+1K

T
k+1},

Q2,k+1 =E{Kk+1Ck+1xk+1ν
T
k+1K

T
k+1},

Q3,k+1 =E{Kk+1σ(Ck+1xk+1)ν
T
k+1K

T
k+1}.

Subsequently, it is easy to see that the terms Qi,k+1

(i = 1, 2, 3) are equal to zero. Consequently, it can be
concluded that (18) is true, and this ends the proof of
this Lemma.

Remark 4 It should be pointed out that there exist some
unknown terms in Lemmas 2–3 due to the existence of
parameter uncertainties, nonlinearities and sensor satu-
rations. Then, the exact value of the one-step prediction
error covariance cannot be obtained. Hence, it is literally

impossible to obtain the accurate value of the estimation
error covariance and then it is difficult to quantify the
achievable performance requirements for addressed joint
estimation problem. In the sequel, we aim to look for an
upper bound of the estimation error covariance and min-
imize such an upper bound at each sampling instant by
properly designing the estimator gain with the help of the
recursive difference equation approach.
Theorem 1 For positive scalars γk,i (i = 1, · · · , 4) and
γk+1,j (j = 5, · · · , 8), under the initial condition Ξ0|0 =
P0|0, assume that the following two difference equations
have solutions Ξk+1|k and Ξk+1|k+1:

Ξk+1|k = (1 + γk,1 + γk,2)ĀkΞk|kĀ
T
k + (1 + γ−1

k,1 + γk,3)

×tr
(
N̄kΘkN̄

T
k

)
M̄kM̄

T
k + ᾱ(1− ᾱ)Ā2,kΘkĀ

T
2,k

+(1 + γ−1
k,2 + γ−1

k,3)ḠΞk|kḠ
T +BkQkB

T
k , (21)

and
Ξk+1|k+1 = (1 + γk+1,5 + γk+1,6)(I −Kk+1Ck+1)Ξk+1|k

×(I −Kk+1Ck+1)
T + (1 + γ−1

k+1,5 + γk+1,7)

×Kk+1Ck+1Ωk+1C
T
k+1K

T
k+1 +Kk+1

×[ϱ̄(1 + γ−1
k+1,6 + γ−1

k+1,7)I +Rk+1]K
T
k+1(22)

where

ϱ̄=

m∑
i=1

ϱ2i , M̄T
k =

[
M⃗T
k 0

]
,

N̄k =
[
N⃗k 0

]
, Ḡ = diag{G, 0},

Θk = (1 + γk,4)Ξk|k + (1 + γ−1
k,4)x̂k|kx̂

T
k|k,

Ωk+1 = (1 + γk+1,8)Ξk+1|k + (1 + γ−1
k+1,8)x̂k+1|kx̂

T
k+1|k.

(23)

Then, the matrixΞk+1|k+1 is an upper bound of Pk+1|k+1,
i.e.,
Pk+1|k+1 ≤ Ξk+1|k+1. (24)

Moreover, such an upper bound Ξk+1|k+1 can be mini-
mized at each time step by using the following estimator
gain

Kk+1 = (1 + γk+1,5 + γk+1,6)Ξk+1|kC
T
k+1K

−1
k+1 (25)

where
Kk+1 = (1 + γk+1,5 + γk+1,6)Ck+1Ξk+1|kC

T
k+1

+(1 + γ−1
k+1,5 + γk+1,7)Ck+1Ωk+1C

T
k+1

+ϱ̄(1 + γ−1
k+1,6 + γ−1

k+1,7)I +Rk+1. (26)

Proof: Firstly, we will handle the unknown terms of the
right-hand side of (16) and then derive the upper bound
of the one-step prediction error covariance. From the
following elementary inequality

abT + baT ≤ γaaT + γ−1bbT (27)

where γ is a positive scalar and a, b are vectors of ap-
propriate dimensions, one has
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ĀkE{x̃k|kxTk }ĀT1,k + Ā1,kE{xkx̃Tk|k}Ā
T
k

≤ γk,1ĀkPk|kĀ
T
k + γ−1

k,1Ā1,kE{xkxTk }ĀT1,k, (28)

where γk,1 is a positive scalar. Similarly, it follows from
(27) that

E{Ak + A T
k }

≤ γk,2ĀkPk|kĀ
T
k + γ−1

k,2E{[g(xk)− g(x̂k|k)]

×[g(xk)− g(x̂k|k)]
T }, (29)

E{Bk + BT
k }

≤ γk,3Ā1,kE{xkxTk }ĀT1,k + γ−1
k,3E{[g(xk)− g(x̂k|k)]

×[g(xk)− g(x̂k|k)]
T }, (30)

where γk,2 and γk,3 are positive scalars. Substituting
(28)–(30) into (16) leads to

Pk+1|k ≤ (1 + γk,1 + γk,2)ĀkPk|kĀ
T
k + (1 + γ−1

k,1 + γk,3)

×Ā1,kE{xkxTk }ĀT1,k + (1 + γ−1
k,2 + γ−1

k,3)

×E{[g(xk)− g(x̂k|k)][g(xk)− g(x̂k|k)]
T }

+ᾱ(1− ᾱ)Ā2,kE{xkxTk }ĀT2,k +BkQkB
T
k . (31)

Next, from (27), we have

E{xkxTk }
=E{(x̃k|k + x̂k|k)(x̃k|k + x̂k|k)

T }
≤ (1 + γk,4)Pk|k + (1 + γ−1

k,4)x̂k|kx̂
T
k|k, (32)

where γk,4 is a positive scalar. Then, it follows from (3)
and (32) that

Ā1,kE{xkxTk }ĀT1,k
= M̄kFkN̄k

[
(1 + γk,4)Pk|k + (1 + γ−1

k,4)x̂k|kx̂
T
k|k

]
×N̄T

k FT
k M̄

T
k

≤ tr
{
N̄k

[
(1 + γk,4)Pk|k + (1 + γ−1

k,4)x̂k|kx̂
T
k|k

]
N̄T
k

}
×M̄kM̄

T
k , (33)

where M̄k and N̄k are defined as in (23). In view of (4),
it follows that

E{[g(xk)− g(x̂k|k)][g(xk)− g(x̂k|k)]
T }

≤E{Ḡx̃k|kx̃Tk|kḠ
T } = ḠPk|kḠ

T (34)

where Ḡ is defined as in (23). Thus, according to (31)–
(34), we can obtain the following inequality

Pk+1|k

≤ (1 + γk,1 + γk,2)ĀkPk|kĀ
T
k + (1 + γ−1

k,1 + γk,3)

×tr
{
N̄k

[
(1 + γk,4)Pk|k + (1 + γ−1

k,4)x̂k|kx̂
T
k|k

]
N̄T
k

}
×M̄kM̄

T
k + ᾱ(1− ᾱ)Ā2,k

[
(1 + γk,4)Pk|k

+(1 + γ−1
k,4)x̂k|kx̂

T
k|k
]
ĀT2,k + (1 + γ−1

k,2 + γ−1
k,3)

×ḠPk|kḠT +BkQkB
T
k . (35)

Secondly, let us deal with the unknown terms of the
right-hand side of (18). By using the inequality (27) a-
gain, we have

E{Ck+1 + C T
k+1}

≤ γk+1,5(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T

+γ−1
k+1,5Kk+1Ck+1E{xk+1x

T
k+1}CTk+1K

T
k+1, (36)

E{Dk+1 + DT
k+1}

≤ γk+1,6(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T

+γ−1
k+1,6Kk+1E{σ(Ck+1xk+1)σ

T (Ck+1xk+1)}KT
k+1,

(37)

E{Ek+1 + E T
k+1}

≤ γk+1,7Kk+1Ck+1E{xk+1x
T
k+1}CTk+1K

T
k+1 + γ−1

k+1,7

×Kk+1E{σ(Ck+1xk+1)σ
T (Ck+1xk+1)}KT

k+1 (38)

where γk+1,i (i = 5, 6, 7) are positive scalars. Similar to
(32), it follows that

E{xk+1x
T
k+1}

≤ (1 + γk+1,8)Pk+1|k + (1 + γ−1
k+1,8)x̂k+1|kx̂

T
k+1|k (39)

with γk+1,8 being a positive scalar. Moreover, one has
from (7) that

E{σ(Ck+1xk+1)σ
T (Ck+1xk+1)} ≤ ϱ̄I (40)

where ϱ̄ is defined as in (23). Substituting (36)–(40) into
(18) yields

Pk+1|k+1 ≤ (1 + γk+1,5 + γk+1,6)(I −Kk+1Ck+1)Pk+1|k

×(I −Kk+1Ck+1)
T + (1 + γ−1

k+1,5 + γk+1,7)

×Kk+1Ck+1Ω̄k+1C
T
k+1K

T
k+1 +Kk+1

×[ϱ̄(1 + γ−1
k+1,6 + γ−1

k+1,7)I +Rk+1]K
T
k+1,(41)

where

Ω̄k+1 = (1 + γk+1,8)Pk+1|k + (1 + γ−1
k+1,8)x̂k+1|kx̂

T
k+1|k.

Then, based on the mathematical induction approach,
it is not difficult to verify that

Pk+1|k+1 ≤ Ξk+1|k+1. (42)

Finally, we are ready to derive the estimator gain which
can minimize the obtained upper bound Ξk+1|k+1. Ac-
cording to Lemma 1, taking the partial derivative of the
trace of (22) with respect toKk+1 and letting the deriva-
tive be zero, we obtain

∂tr(Ξk+1|k+1)

∂Kk+1

=−2(1 + γk+1,5 + γk+1,6)(I −Kk+1Ck+1)Ξk+1|kC
T
k+1

+2Kk+1

[
(1 + γ−1

k+1,5 + γk+1,7)Ck+1Ωk+1C
T
k+1

+ϱ̄(1 + γ−1
k+1,6 + γ−1

k+1,7)I +Rk+1

]
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= 0. (43)

Based on (43) and through tedious algebraic manipula-
tions, the estimator gain can be determined as in (25).
Therefore, the proof of this theorem is complete.

So far, we have obtained an upper bound of the esti-
mation error covariance and minimized such an upper
bound by designing proper estimator gain. In terms of
the solutions to two difference equations, the explicit
form of the estimator gain has also been proposed. It is
worthwhile to note that the developed estimation scheme
can estimate the systems states and fault simultaneous-
ly and, moreover, the proposed estimation algorithm is
of a recursive feature suitable for online applications.

Remark 5 To deal with the computational complexity
of the developed joint estimation algorithm, we recall that
the variable dimensions can be seen from xk ∈ Rn and
fk ∈ Rf . It is not difficult to obtain the overall compu-
tational complexity of the proposed estimation algorithm
as O((n + nf )

3), which depends on the variable dimen-
sion. It can be easily seen that the computational burden
is mainly caused by the basic mathematical operations.
Fortunately, many methods can be utilized to improve the
computational efficiency of mathematical operations in
the areas of computational mathematics and optimiza-
tion. On the other hand, in case that the robustness of
the developed estimation algorithm becomes a concern,
we can introduce the robustness criterion in both state
estimation and fault estimation simultaneously with re-
spect to the uncertainties, which constitutes one of future
research directions.

In what follows, we are ready to conduct the performance
analysis of the developed estimation algorithm and pro-
vide a sufficient condition to ensure that the estimation
error is exponentially bounded in mean square sense.

3.2 Performance Analysis

To facilitate further developments, let us introduce the
following definition regarding the boundedness of a s-
tochastic process.

Definition 1 [26] The stochastic process ζk is said to
be exponentially bounded in mean square, if there are real
numbers η > 0, ν > 0 and 0 < ϑ < 1 such that

E{∥ζk∥2} ≤ ηE{∥ζ0∥2}ϑk + ν (44)

holds for every time step k ≥ 0.

Based on Definition 1, a sufficient criterion is given in the
following theorem to verify the exponential boundedness
of the estimation error in mean square sense.

Theorem 2 Consider the time-varying nonlinear sys-
tems (1)-(2) with the designed estimator as in (11)-(12).
Assume that there exist positive real scalars ā, b, b̄, c, c̄,
f̄ , m̄, n̄, ḡ, q

1
, q̄1, q̄2, ϑ̄1, ϑ̄2 and ϑ̄3 such that the follow-

ing conditions

∥Āk∥ ≤ ā, bI ≤ B⃗kB⃗
T
k ≤ b̄I, c ≤ ∥C⃗k∥ ≤ c̄,

∥F⃗k∥ ≤ f̄ , ∥M⃗k∥ ≤ m̄, ∥N⃗k∥ ≤ n̄, ∥G∥ ≤ ḡ,

q
1
I ≤ Qk ≤ q̄1I, Rk ≤ q̄2I, tr(Θk) ≤ ϑ̄1,

tr(Ξk|k) ≤ ϑ̄2, tr(Ωk+1) ≤ ϑ̄3,

ρ = ā2
(
1 +

c̄2

c2

)2

< 1, (45)

hold, then the estimation error is exponentially bounded
in mean square sense.

Proof: Substituting (14) into (20) yields

x̃k+1|k+1 = Λk+1Ākx̃k|k + rk+1 + sk+1 (46)

where

Λk+1 = I −Kk+1Ck+1,

rk+1 =Λk+1Ā1,kxk + Λk+1[g(xk)− g(x̂k|k)]

+Kk+1[Ck+1xk+1 − σ(Ck+1xk+1)],

sk+1 = (αk − ᾱ)Λk+1Ā2,kxk + Λk+1Bkωk −Kk+1νk+1.

(47)

From (25) and (26), we have

∥Kk+1∥
= ∥(1 + γk+1,5 + γk+1,6)Ξk+1|kC

T
k+1K

−1
k+1∥

< ∥(1 + γk+1,5 + γk+1,6)Ξk+1|kC
T
k+1

×
[
(1 + γk+1,5 + γk+1,6)Ck+1Ξk+1|kC

T
k+1

]−1∥

≤ c̄

c2
, k̄. (48)

Similarly, it is not difficult to verify that

∥Λk+1∥ = ∥I −Kk+1Ck+1∥ ≤ 1 +
c̄2

c2
, λ̄. (49)

Next, it follows from (27) and (45) that

E{rTk+1rk+1}
≤ (1 + ς1 + ς2)E{xTk ĀT1,kΛTk+1Λk+1Ā1,kxk}
+(1 + ς−1

1 + ς3)E{[g(xk)− g(x̂k|k)]
TΛTk+1Λk+1

×[g(xk)− g(x̂k|k)]}+ (1 + ς−1
2 + ς−1

3 )

×E{[Ck+1xk+1 − σ(Ck+1xk+1)]
TKT

k+1Kk+1

×[Ck+1xk+1 − σ(Ck+1xk+1)]}
≤ (1 + ς1 + ς2)tr

(
E{xkxTk }N̄T

k FT
k M̄

T
k Λ

T
k+1Λk+1

×M̄kFkN̄k
)
+ (1 + ς−1

1 + ς3)tr(ḠΞk|kḠ
TΛTk+1Λk+1)

+(1 + ς−1
2 + ς−1

3 )

{
(1 + ς4)tr(E{xk+1x

T
k+1}CTk+1

×KT
k+1Kk+1Ck+1) + (1 + ς−1

4 )tr
[
E{σ(Ck+1xk+1)

×σT (Ck+1xk+1)}KT
k+1Kk+1

]}
≤ (1 + ς1 + ς2)m̄

2λ̄2n̄2ϑ̄1 + (1 + ς−1
1 + ς3)λ̄

2ḡ2ϑ̄2

+(1 + ς−1
2 + ς−1

3 )
[
(1 + ς4)c̄

2k̄2ϑ̄3

+(1 + ς−1
4 )k̄2ϱ̄m

]
, r̄, (50)

and

E{sTk+1sk+1}
= ᾱ(1− ᾱ)E{xTk ĀT2,kΛTk+1Λk+1Ā2,kxk}
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+E{ωTk BTk ΛTk+1Λk+1Bkωk}
+E{νTk+1K

T
k+1Kk+1νk+1}

≤ ᾱ(1− ᾱ)λ̄2f̄2ϑ̄1 + q̄1nb̄λ̄
2 + q̄2mk̄

2 , s̄, (51)

where ςi (i = 1, 2, 3, 4) are positive scalars.

Subsequently, consider the following iterative matrix e-
quation with respect to Ψk:

Ψk+1 = Λk+1ĀkΨkĀ
T
kΛ

T
k+1 +BkQkB

T
k + εI (52)

where Ψ0 = B0Q0B
T
0 + εI and ε > 0 is a scalar. Then,

according to the above iterative matrix equation, it suf-
fices to see that

∥Ψk+1∥ ≤ ∥Λk+1∥2∥Āk∥2∥Ψk∥+ ∥BkQkBTk ∥+ ∥εI∥
≤ ρ∥Ψk∥+ b̄q̄1 + ε (53)

where ρ is defined as in (45). Furthermore, the following
inequality can be obtained directly

∥Ψk∥ ≤ ρk∥Ψ0∥+ (b̄q̄ + ε)
k−1∑
i=0

ρi. (54)

It follows from ρ < 1 that

∥Ψk∥ < ∥Ψ0∥+ (b̄q̄ + ε)
∞∑
i=0

ρi = ∥Ψ0∥+
b̄q̄ + ε

1− ρ
(55)

On the other hand, we can see that

Ψk ≥ εI. (56)

In view of (55) and (56), there exist two positive scalars
ψ̄ and ψ such that ψI ≤ Ψk ≤ ψ̄I is true for all k ≥ 0.

Let Vk(x̃k|k) = x̃Tk|kΨ
−1
k x̃k|k. For a positive scalar δ, it

follows from (27) and (46) that

E{Vk+1(x̃k+1|k+1)|x̃k|k} − (1 + δ)Vk(x̃k|k)

=E
{ [

Λk+1Ākx̃k|k + rk+1 + sk+1

]T
Ψ−1
k+1

×
[
Λk+1Ākx̃k|k + rk+1 + sk+1

] }
− (1 + δ)x̃Tk|kΨ

−1
k x̃k|k

=E
{
x̃Tk|k[Ā

T
kΛ

T
k+1Ψ

−1
k+1Λk+1Āk − (1 + δ)Ψ−1

k ]x̃k|k

}
+2E

{
x̃Tk|kĀ

T
kΛ

T
k+1Ψ

−1
k+1rk+1

}
+E

{
rTk+1Ψ

−1
k+1rk+1

}
+ E

{
sTk+1Ψ

−1
k+1sk+1

}
≤ (1 + δ)E

{
x̃Tk|k[Ā

T
kΛ

T
k+1Ψ

−1
k+1Λk+1Āk −Ψ−1

k ]x̃k|k

}
+(1 + δ−1)E

{
rTk+1Ψ

−1
k+1rk+1

}
+E

{
sTk+1Ψ

−1
k+1sk+1

}
. (57)

According to the definition of matrix Ψk+1 and employ-
ing the matrix inversion lemma, we have

ĀTkΛ
T
k+1Ψ

−1
k+1Λk+1Āk −Ψ−1

k

= ĀTkΛ
T
k+1

(
Λk+1ĀkΨkĀ

T
kΛ

T
k+1 +BkQkB

T
k + εI

)−1

×Λk+1Āk −Ψ−1
k

=−
[
Ψk +ΨkĀ

T
kΛ

T
k+1

(
BkQkB

T
k + εI

)−1
Λk+1ĀkΨk

]−1

=−
[
I + ĀTkΛ

T
k+1

(
BkQkB

T
k + εI

)−1
Λk+1ĀkΨk

]−1

Ψ−1
k

≤−

(
1 +

ā2λ̄2ψ̄

q
1
b

)−1

Ψ−1
k (58)

Substituting (58) into (57) implies

E{Vk+1(x̃k+1|k+1)|x̃k|k} − (1 + δ)Vk(x̃k|k)

≤−(1 + δ)

(
1 +

ā2λ̄2ψ̄

q
1
b

)−1

Vk(x̃k|k) + κ (59)

with κ = (1 + δ−1) r̄
2

ψ + s̄2

ψ . Then, based on (59), we

obtain

E{Vk+1(x̃k+1|k+1)|x̃k|k} ≤ χVk(x̃k|k) + κ (60)

where χ = (1+δ)

[
1−

(
1 + ā2λ̄2ψ̄

q
1
b

)−1
]
. It is not difficult

to see that χ ∈ (0, 1) for some δ > 0. Furthermore, we
have

E{∥x̃k+1|k+1∥2}

≤ ψ̄

ψ
E{∥x̃0|0∥2}χk+1 + κψ̄

k∑
i=0

χi

≤ ψ̄

ψ
E{∥x̃0|0∥2}χk+1 + κψ̄

∞∑
i=0

χi

=
ψ̄

ψ
E{∥x̃0|0∥2}χk+1 +

κψ̄

1− χ
. (61)

According to Definition 1, it can be concluded that the
stochastic process x̃k|k is exponentially bounded in mean
square sense.

On the other hand, the estimation is biased because of
the introduced nonlinearity, sensor saturations and ran-
domly occurring faults. As such, it is often desirable to
estimate the upper bound of the bias. Since

E{(x̃k+1|k+1 − E{x̃k+1|k+1})T (x̃k+1|k+1 − E{x̃k+1|k+1})}
= E{∥x̃k+1|k+1∥2} − ∥E{x̃k+1|k+1}∥2
≥ 0,

we have the following bias estimate

∥E{x̃k+1|k+1}∥ ≤
√
E{∥x̃k+1|k+1∥2}

≤

√
ψ̄

ψ
E{∥x̃0|0∥2}χk+1 +

κψ̄

1− χ
.

The proof of this theorem is complete now.

Remark 6 Up to now, we have addressed the joint es-
timation problem for a class of uncertain time-varying
nonlinear systems with ROFs and sensor saturations.
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A new estimation scheme has been provided to estimate
the systems states and fault in a unified framework and
the performance analysis of the estimation algorithm has
been conducted to reveal the boundedness behaviour of
the estimation error. In the time-varying stochastic mod-
el addressed in the paper, there are four main aspects
that complicate the design of estimation algorithm, i.e.,
parameter uncertainties, nonlinearity, ROFs and sensor
saturations. It is worthwhile to mention that, with the de-
signed time-varying estimator of form (11)-(12), the pro-
posed joint estimation algorithm has the following advan-
tages: 1) the time-varying estimator structure is simple
and of a recursive form, hence the presented estimation
algorithm can be easily implemented in real time; and 2)
the effects from the parameter uncertainties, nonlinear-
ity, ROFs and sensor saturations are explicitly reflected

in the algorithms. To be specific, matrices M⃗k and N⃗k
quantify the parameter uncertainties, the matrix G cor-
responds to the nonlinearity, the occurrence probability ᾱ
is there for the ROFs, and the scalar ϱi (i = 1, 2, · · · ,m)
accounts for the saturation level. Compared with existing
methods, the major advantage of the paper lies in that the
effects from the mentioned four facts onto the algorithm
performance has been examined and revealed in a unified
framework with provided analysis criterion.

Remark 7 It should be noted that the additive nois-
es, nonlinearity, sensor saturations and fault lead to the
derivation of the possible equilibrium. Therefore, we aim
to consider the exponential boundedness in mean square
(rather than the stability) of the estimation error. As
shown in Theorem 2, new sufficient condition under cer-
tain assumptions is given to achieve the desired perfor-
mance requirement and an upper bound of the bias of de-
veloped estimation is presented simultaneously. Further
research directions include the developments with respect
to the global convergence criterion of the joint state and
fault estimation algorithm.

4 An Illustrative Example

In this section, we provide a simulation example to illus-
trate the feasibility and applicability of the newly pro-
posed estimation algorithm.

Following [10,15,24], we consider the joint recursive ro-
bust state/fault estimation problem for a ballistic ob-
ject tracking system. When tracking a ballistic object,
the measurements are collected sequentially by a radar
system equipped with a set of sensors communicating
through a (possibly wireless) network. The phenome-
na of sensor saturations might occur due to the phys-
ical constraints. Moreover, the system may suffer from
the fault owing to the unpredictable changes of the net-
work conditions, and the ROFs may stem from the is-
sues concerning on the aging, temporary failure of the
sensors/actuators, and electromagnetic interference. In
addition, the imperfections of the mathematical mod-
el are reflected by the norm-bounded uncertainties. Our
objective is, therefore, to propose a fault estimation al-
gorithm for a class of time-varying systems with param-
eter uncertainties, nonlinearities and sensor saturations.
To this end, we are ready to design a recursive estima-
tor such that, for all parameter uncertainties, ROFs and
sensor saturations, the upper bound of the estimation
error covariance can be minimized by properly designing

the estimator parameters at each time step. In particu-
lar, the target abscissa, target ordinate and the fault are
estimated jointly. The addressed ballistic object track-
ing systems are described by the following discrete-time
nonlinear stochastic equations:{
x⃗k+1 = (A⃗k +∆A⃗k)x⃗k + g⃗(x⃗k) + αkF⃗kfk + ωk

y⃗k = σ(C⃗kx⃗k) + νk

with

A⃗k =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , G =


T 2

2 0

T 0

0 T 2

2

0 T

 ,

Ck =

[
1 0 0 0

0 0 1 0

]
, H =

[
0

−g

]
, Fk = sin(3k),

F⃗k =


0.01

0

0.01

0

 , M⃗k =


0.1

0.3

0.2

0.1

 , N⃗T
k =


0.1

0

0.2

0.1

 ,
g⃗(x⃗k) =G(h(x⃗k) +H),

h(x⃗k) =−gρ(x⃗2,k)
2β

√
˙⃗x21,k +

˙⃗x22,k

[
˙⃗x1,k
˙⃗x2,k

]
,

ρ(x⃗2,k) = θ1 · exp(−θ2x⃗2,k),

where x⃗k =
[
x⃗1,k ˙⃗x1,k x⃗2,k ˙⃗x2,k

]T
is the state vector,

x⃗1,k denotes the target abscissa, x⃗2,k represents the tar-
get ordinate, T is the sampling period, g is the gravity
acceleration, β is the ballistic coefficient which depends
on the object mass, the shape as well as the cross-section
area. The function ρ(·) denotes the air density, typically
being an exponentially decaying function of the objec-
t height (θ1 = 1.227, θ2 = 1.093 × 10−4 for the object
height x⃗2,k < 9144m, and θ1 = 1.754, θ2 = 1.49× 10−4

for the object height x⃗2,k ≥ 9144m). ωk ∈ R4 and
νk ∈ R2 are the zero-mean Gaussian white noises with
covariances Qk and Rk = 10I2. Here,

Qk = c · diag{Q̄, Q̄}, Q̄ =

[
T 3

3
T 2

2
T 2

2 T

]
.

In the simulation, the other parameters are chosen as
g = 9.81m/s2, β = 4 × 104kg/ms2, c = 0.1m2/s3,

T = 1s, ¯⃗x0 = 102 ×
[
300 4 90 3

]T
, Afk = 2 sin(k),

ᾱ = 0.95, γ1,k = γ2,k = 0.3, γ3,k = γ4,k = 0.5, and
γ5,k+1 = γ6,k+1 = γ7,k+1 = γ8,k+1 = 0.3. In addition,
the saturation level is set to be ϱi = 33000 (i = 1, 2).
By employing the Theorem 1, the simulation results can
be obtained as in Figs. 1-3. Among them, the target ab-
scissa, target ordinate and its estimations are depicted
in Figs. 1-2 respectively. From the Figs. 1-3, we can see
that the proposed estimation algorithm can estimate the

9



additive fault, target abscissa and target ordinate well,
which further shows the practical applicability of the de-
veloped fault estimation approach. Moreover, it is easy
to see that new estimation method has better perfor-
mance than the classical Kalman filter from Figs. 1-2.
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On the other hand, for comparison, consider two cases of
saturation level, i.e., ϱi = 10000 (i = 1, 2) for Case I, and
ϱi = 5000 (i = 1, 2) for Case II. The initial condition is

¯⃗x0 = 102 ×
[
100 2 120 3

]T
, and the other parameters

are same as mentioned above. Again, by using Theorem
1, the desired estimator parameter can be obtained re-
cursively and the related simulation results can be given
in Figs. 4-7. As expected, it can be concluded that the
algorithm accuracy is better when the saturation level
is bigger.

5 Conclusions

In this paper, we have investigated the fault estimation
problem for a class of uncertain time-varying stochastic
systems with randomly occurring fault and sensor sat-
urations. A Bernoulli random variable with known con-
ditional probability has been employed to characterize

0 10 20 30 40 50 60 70 80 90 100
k/time step

-30

-25

-20

-15

-10

-5

0

5

10

15

20

A
ct
u
a
l
fa
u
lt
a
n
d
it
s
es
ti
m
a
ti
o
n

Actual fault

Estimated fault

Fig. 3. The actual fault and its estimation
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the phenomenon of randomly occurring fault. A novel
compensation scheme, which has fully taken the occur-
rence probability of the randomly occurring fault into
account, has been given to attenuate the effects from
both randomly occurring fault and sensor saturations
onto the estimation performance. An optimized estima-
tion scheme has been proposed where an upper bound of
the estimation error covariance has been obtained and
minimized at each sampling instant by designing the es-
timator gain. Moreover, a sufficient condition has been
given to ensure that the estimation error is exponential-
ly bounded in the mean square sense. Finally, simulation
examples have been provided to illustrate the feasibility
and effectiveness of the developed joint estimation algo-
rithm.
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