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Abstract

This paper is concerned with the problem of designing a non-fragile state estimator for a class of uncertain

discrete-time neural networks with time-delays. The norm-bounded parameter uncertainties enter into all the system

matrices, and the network output is of a general type that contains both linear and nonlinear parts. The additive

variation of the estimator gain is taken into account that reflects the possible implementation error of the neuron

state estimator. The aim of the addressed problem is to design a state estimator such that the estimation performance

is non-fragile against the gain variations and also robust against the parameter uncertainties. Sufficient conditions

are presented to guarantee the existence of the desired non-fragile state estimators by using the Lyapunov stability

theory and the explicit expression of the desired estimators is given in terms of the solution to a linear matrix

inequality. Finally, a numerical example is given to demonstrate the effectiveness of the proposed design approach.

Index Terms

Discrete-time neural networks; Time-delayed neural networks; State estimation; Non-fragile state estimator;

Uncertain systems.

I. INTRODUCTION

The past two decades have witnessed a surge of interest on both theoretical investigations and algorithm

developments of the recurrent neural networks (RNNs) due mainly to their remarkable ability to exhibit

dynamic temporal behavior in order to extract/detect/approximate functional information from complicated

or imprecise data. So far, the RNNs have come to play a more and more important role in a variety of

application areas including pattern recognition, image processing, optimization calculation and so on. On
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the other hand, since early 90s, the time-delay has been recognized as a ubiquitous phenomenon that could

cause undesired oscillations or even instability in both biological and man-made neural networks [2]. As

an active research branch, the study on the dynamical behaviors of RNN with time-delays has recently

attracted an ever-increasing interest from many communities including neural science, signal processing

and control engineering. Accordingly, in the past years, a large number of results have been available in the

literature on the dynamics analysis issues (e.g. stability, synchronization and estimation) for RNNs with

various kinds of time-delays such as constant, time-varying, discrete, distributed or mixed delays, see [1],

[6], [11], [13], [18], [22], [28] for some representative works. Very recently, in [21], the passivity analysis

problem has been investigated for a class of switched neural networks subject to stochastic disturbances

and time-varying delays by using the average dwell-time approach. In [33], the adaptive synchronization

problem has been addressed for memristor-based neural networks with time-varying delays by virtue of

the differential equation theory with discontinuous right-hand sides.

In many practical applications, the actual values of the neural states of a RNN are vitally important.

For example, in optimization problems, the RNNs can be implemented physically in designated hardware

such as application-specific integrated circuits where the optimization is carried out in a truly parallel

and distributed manner. In this case, the neuron states are closely related to the equilibria as well as the

decision-making solutions. However, because of the large scale of the RNN as well as the implementation

cost, the neuron states are often not fully observable and only the network outputs are available that

contain partial information about the network states. As such, accurate estimation of the neuron states

through measured outputs becomes an essential prerequisite for successful accomplishment of certain tasks

such as approximation and optimization by using RNNs. In [34], the problem of state estimation has been

first proposed for neural networks with time-varying delays. Since then, such a problem has received

considerable research attention for both continuous- and discrete-time neural networks, see e.g. [15], [17],

[23], [25], [30], [34], [35].

As is well known, the parameter uncertainties are often unavoidable in real systems due to modeling

inaccuracies and/or changes in the environment. In recent years, a great deal of effort has been devoted to

the robustness analysis for uncertain systems [7], [12], [16], [29]. Despite the rich body of literature on

the state estimation issues for RNN with parameter uncertainties, most results obtained so far have been

based on the assumption that the desired state estimator can be realized precisely. Such an assumption is,

however, not necessarily true in certain engineering practice. When implementing a state estimator digitally,

the implementation errors are often inevitable due probably to analogue-to-digital conversion, rounding

errors, finite precision or internal noise. As discussed in [19], a small or even tiny drift/fluctuation/error

with the parameter implementation of the designed controller/estimator could lead to unexpected fragility

of the closed-loop system as a whole. In other words, the parameters of the actually implemented

controller/estimator might have slight deviations from their expected values, and therefore designed

controller/estimator should have certain degree of tolerance or non-fragility against the possible parameter

deviations. In the past decade, the problem of non-fragile control has gained much attention with respect

to the implementation errors in controllers/estimators [24], [27], [32], [36], [37]. However, when it comes
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to the discrete-time RNNs with time-delays, the non-fragile state estimation problem has not been fully

studied yet, not to mention the case where the uncertainties also enter into other network parameters. It

is, therefore, the main purpose of this paper to shorten such a gap.

Motivated by the above discussion, we aim to design a non-fragile state estimator for a class of discrete-

time neural networks with parameter uncertainties. A sufficient condition for the asymptotic stability of the

error dynamics of the state estimation is obtained and the gain matrix of the state estimator is derived by

solving a linear matrix inequality (LMI). A numerical example is presented to demonstrate the effectiveness

of the theoretical results obtained. The main contribution of this paper lies mainly on the problem addressed

and the model proposed, which is twofold as follows: 1) the non-fragile state estimation problem is put

forward for discrete time-delay neural networks in the presence of parameter uncertainties in all network

parameters; and 2) the network output is quite general that is subject to nonlinear disturbances.

Notation: Throughout this paper, the superscript “T” represents the matrix transposition. R denotes

the set of real numbers; Rn denotes the n-dimensional Euclidean space; Rn×m denotes the set of all

n ×m real matrices. N+ stands for the sets of positive integers, I and 0 denote the identity matrix and

zero matrix of appropriate dimensions, respectively. We use X > 0 (X < 0) to denote a positive-definite

matrix (negative-definite matrix) X . | · | is the Euclidean norm in Rn. If A is a matrix, λmin stands for

the smallest eigenvalue of A. The notation ∗ always denotes the symmetric block in a symmetric matrix,

and diag{· · · } stands for a block-diagonal matrix.

II. PROBLEM FORMULATION

In this paper, we consider a discrete-time neural network described by the following dynamical

equations: {
x(k + 1) = (C +∆C)x(k) + (A+∆A)f(x(k)) + (B +∆B)f(x(k − d))

x(k) = ϕ(k), k ∈ [−d, 0)
(1)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ Rn is the neural state vector; f(x(k)) = [f1(x1(k)), f2(x2(k)),

· · · , fn(xn(k))]T represents the nonlinear activation function with the initial condition f(0) = 0; C =

diag{c1, c2, · · · , cn} is a positive diagonal matrix; A = [aij]n×n, B = [bij]n×n are, respectively, the

connection weight matrix and the delayed connection weight matrix; d ≥ 0 denotes the discrete time-

delay; ϕ(k) describes the initial condition. In addition, ∆A, ∆B and ∆C are time-varying parameter

uncertainties that satisfy [
∆A ∆B ∆C

]
=M1F1(k)

[
N1 N2 N3

]
(2)

where M1, N1, N2, N3 are known real-valued matrices with appropriate dimensions and F1(k) is an

unknown matrix satisfying

F T
1 (k)F1(k) ≤ I, ∀k ∈ N+ (3)

Throughout this paper, we make the following assumption.
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Assumption 1: For any α1, α2 ∈ R, α1 ̸= α2, the activation function f(·) satisfies

γ−i ≤ fi(α1)− fi(α2)

α1 − α2

≤ γ+i , (i = 1, 2, · · · , n) (4)

where γ−i and γ+i are known constant scalars.
Remark 1: As shown in [22], the activation functions described in (1) are more general than the usual

sigmoid functions and the commonly used Lipschitz conditions, where the constants γ−i and γ+i are

allowed to be positive, negative or zero. Therefore, such activation functions could be nonmonotonic and

would induce less conservative results.
The outputs from the neural network (1) are of the following form:

y(k) = Dx(k) + Eg(k, x(k)) (5)

where y(k) = [y1(k), y2(k), · · · , yn(k)]T represents the measurement output, D and E are known real-

valued matrices with appropriate dimensions, and g(k, x(k)) is the neuron-dependent nonlinear disturbance

that satisfies the following Lipschitz condition:

|g(k, µ1)− g(k, µ2)| ≤ |G(µ1 − µ2)| (6)

where G is a known constant matrix with appropriate dimension.
In order to estimate the state of the neural network (1) from available measurement output (5), we

construct the following non-fragile state estimator:{
x̂(k + 1) = Cx̂(k) + Af(x̂(k)) +Bf(x̂(k − d)) + (K +∆K) [y(k)−Dx̂(k)− Eg(k, x̂(k))]

x̂(k) = ϕ̂(k), k ∈ [−d, 0)
(7)

where x̂(k) ∈ Rn is the state estimation, ϕ̂(k) is the initial function of x̂(k), and K is the estimator

gain parameter to be determined. ∆K quantifies the estimator gain variation in the following additive

norm-bounded form:

∆K =M2F2(k)N4 (8)

where M2, N4 are known real-valued matrices with appropriate dimensions and F2(k) is an unknown

matrix satisfying

F T
2 (k)F2(k) ≤ I, ∀k ∈ N+ (9)

Letting the estimation error be e(k) = x(k)−x̂(k), the dynamics of the estimation error can be obtained

from (1), (5) and (7) as follows:

e(k + 1) =(C −KD −∆KD)e(k) + ∆Cx(k) + Af̃(e(k)) + ∆Af(x(k)) +Bf̃(e(k − d))

+ ∆Bf(x(k − d))− (K +∆K)Eg̃(e(k))
(10)

where

f̃(e(k)) := f(x(k))− f(x̂(k)),

f̃(e(k − d)) := f(x(k − d))− f(x̂(k − d),

g̃(e(k)) := g(k, x(k))− g(k, x̂(k)).
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From (4) and (6), we have that

γ−i ≤ f̃i(e(k))

e(k)
≤ γ+i (11)

|g̃(e(k))| ≤ |Ge(k)| (12)

Set

η(k) =
[
xT (k) eT (k)

]T
,

φ(η(k)) =
[
fT (x(k)) f̃T (e(k))

]T
,

ψ(η(k)) =
[
gT (k, x(k)) g̃T (e(k))

]T
.

Considering (1) and (10), we obtain the following augmented system:

η(k + 1) = C̃η(k) + Ãφ(η(k)) + B̃φ(η(k − d))− Ẽψ(η(k)) (13)

where

C̃ = C̄ +∆C̃, Ã = Ā+∆Ã, B̃ = B̄ +∆B̃, Ẽ = Ē +∆Ẽ,

C̄ = diag{C,C −KD}, Ā = diag{A,A}, B̄ = diag{B,B}, Ē = diag{0, KE},

∆C̃ =

[
∆C 0

∆C −∆KD

]
, ∆Ã =

[
∆A 0

∆A 0

]
, ∆B̃ =

[
∆B 0

∆B 0

]
, ∆Ẽ =

[
0 0

0 ∆KE

]
.

Before proceeding further, we introduce the following definition.
Definition 1: The augmented system (13) is said to be asymptotically stable if, for any solution η(k)

of it, the following holds:

lim
k→∞

|η(k)|2 = 0.

The objective of this paper is to design appropriate estimator parameter K for the state estimator (7) such

that, in the presence of admissible gain variations as well as parameter uncertainties, the augmented system

(13) is asymptotically stable, which implies that the error dynamics e(k) tends to zero asymptotically.

III. MAIN RESULTS

In this section, the stability is analyzed for the augmented system (13). A sufficient condition is given to

guarantee that the augmented system (13) is asymptotically stable and then the explicit expression of the

desired estimator gain is proposed in terms of the solution to certain matrix inequality derived according

to the obtained condition.
Before stating our main results, we introduce the following lemmas.
Lemma 1: [3] (Schur Complement) Given constant matrices S1,S2,S3 where S1 = ST

1 and 0 < S2 =

ST
2 , then S1 + ST

3 S−1
2 S3 < 0 if and only if[

S1 ST
3

S3 −S2

]
< 0 or

[
−S2 S3

ST
3 S1

]
< 0.
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Lemma 2: [3] (S-procedure) Let U ,V(t),W and Q be real matrices of appropriate dimensions with

Q satisfying Q = QT . Then, for all V(t)VT (t) ≤ I ,

Q+ UV(t)W +WTVT (t)UT < 0

holds if and only if there exists a positive scalar µ such that

Q+ µ−1UUT + µWTW < 0.

Lemma 3: [22] Suppose that B = diag{β1, β2, · · · , βn} is a positive-semidefinite diagonal matrix. Let

x = [x1, x2, · · · , xn]T ∈ Rn and H(x) = [h1(x1), h2(x2), · · · , hn(xn)]T be a continuous nonlinear function

satisfying

l−i ≤ hi(m)

m
≤ l+i , m ̸= 0, m ∈ R, i = 1, 2, · · · , n

with l−i and l+i being constant scalars. Then[
x

H(x)

]T [
BL1 −BL2

−BL2 B

][
x

H(x)

]
≤ 0

or

xTBL1x− 2xTBL2H(x) +HT (x)BH(x) ≤ 0

where L1 = diag{l+1 l−1 , l+2 l−2 , · · · , l+n l−n } and L2 = diag{ l+1 +l−1
2

,
l+2 +l−2

2
, · · · , l

+
n+l−n
2

}.

Let us now consider the stability analysis problem for the augmented system (13).

Theorem 1: Consider the neural network model (1) and suppose that the estimator parameter K is

given. The augmented system (13) is asymptotically stable if there exist a positive constant ε, symmetric

positive definite matrices P > 0, Q > 0, R > 0 and four sets of diagonal matrices F > 0, H > 0, X > 0,

Y > 0 satisfying the following inequality

Γ̃ =


Ω1 ∗ ∗ ∗ ∗
0 Ω2 ∗ ∗ ∗
Ω3 0 Ω4 ∗ ∗

B̃TPC̃ −Λ22 B̃TPÃ Ω5 ∗
−ẼTPC̃ 0 −ẼTPÃ −ẼTPB̃ Ω6

 < 0 (14)

where

Ī =
[
0 I

]
, Ḡ =

[
0 G

]
, Λ11 =

[
FΛ1 0

0 XΛ1

]
, Λ21 =

[
−FΛ2 0

0 −XΛ2

]
,

Λ12 =

[
HΛ1 0

0 Y Λ1

]
, Λ22 =

[
−HΛ2 0

0 −Y Λ2

]
, F̄ =

[
F 0

0 X

]
, H̄ =

[
H 0

0 Y

]
,

Γ1 = C̃TPC̃ − P +Q, Γ2 = ÃTPÃ+R, Γ3 = B̃TPB̃ −R,

Ω1 = Γ1 − Λ11 + εḠT Ḡ, Ω2 = −Q− Λ12, Ω3 = ÃTPC̃ − Λ21,

Ω4 = Γ2 − F̄ , Ω5 = Γ3 − H̄, Ω6 = ẼTPẼ − εĪT Ī ,
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Λ1 = diag{γ+1 γ−1 , γ+2 γ−2 , · · · , γ+n γ−n }, Λ2 = diag
{
γ+1 + γ−1

2
,
γ+2 + γ−2

2
, · · · , γ

+
n + γ−n

2

}
.

Proof: Choose the following Lyapunov-Krasovskii functional for system (13):

V (x(k), k) = ηT (k)Pη(k) +
k−1∑

i=k−d

ηT (i)Qη(i) +
k−1∑

i=k−d

φT (η(i))RφT (η(i)).

For P > 0, Q > 0 and R > 0, we have

∆V (k) =V (x(k + 1), k + 1)− V (x(k), k)

=ηT (k + 1)Pη(k + 1) +
k∑

i=k−d+1

ηT (i)Qη(i) +
k∑

i=k−d+1

φT (η(i))Rφ(η(i))

− ηT (k)Pη(k)−
k−1∑

i=k−d

ηT (i)Qη(i)−
k−1∑

i=k−d

φT (η(i))Rφ(η(i))

=[ηT (k)C̃T + φT (η(k))ÃT + φT (η(k − d))B̃T − ψT (η(k))ẼT ]P [C̃η(k)

+ Ãφ(η(k)) + B̃φ(η(k − d))− Ẽψ(η(k))]− ηT (k)Pη(k) + ηT (k)Qη(k)

− ηT (k − d)Qη(k − d) + φT (η(k))Rφ(η(k))− φT (η(k − d))Rφ(η(k − d))

=ξT (k)Γξ(k)

where

ξ(k) := [ηT (k) ηT (k − d) φT (η(k)) φT (η(k − d)) ψT (η(k))]T ,

Γ =


Γ1 ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗

ÃTPC̃ 0 Γ2 ∗ ∗
B̃TPC̃ 0 B̃TPÃ Γ3 ∗
−ẼTPC̃ 0 −ẼTPÃ −ẼTPB̃ ẼTPẼ

 .

Moreover, it follows from Assumption 1 and Lemma 3 that[
x(k)

f(x(k))

]T [
FΛ1 −FΛ2

−FΛ2 F

][
x(k)

f(x(k))

]
≤ 0 (15)

[
e(k)

f̃(e(k))

]T [
XΛ1 −XΛ2

−XΛ2 X

][
e(k)

f̃(e(k))

]
≤ 0 (16)

[
x(k − d)

f(x(k − d))

]T [
HΛ1 −HΛ2

−HΛ2 H

][
x(k − d)

f(x(k − d))

]
≤ 0 (17)

[
e(k − d)

f̃(e(k − d))

]T [
Y Λ1 −Y Λ2

−Y Λ2 Y

][
e(k − d)

f̃(e(k − d))

]
≤ 0 (18)

From (15)-(18), we have immediately that[
η(k)

φ(η(k))

]T [
Λ11 Λ21

Λ21 F̄

][
η(k)

φ(η(k))

]
≤ 0 (19)
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η(k − d)

φ(η(k − d))

]T [
Λ12 Λ22

Λ22 H̄

][
η(k − d)

φ(η(k − d))

]
≤ 0 (20)

Furthermore, it follows from (6) that

ψT (η(k))ĪT Īψ(η(k)) = [Īψ(η(k))]T [Īψ(η(k))] = g̃T (e(k))g̃(e(k))

= |g(x(k))− g(x̂(k))|2 ≤ |Ge(k)|2 = eT (k)GTGe(k)

= ηT (k)ḠT Ḡη(k).

Then, for a positive scalar ε, one can obtain

0 ≤ ε[ηT (k)ḠT Ḡη(k)− ψT (η(k))ĪT Īψ(η(k))] (21)

From (19)-(20), it is not difficult to derive that

∆V (k) = ξT (k)Γξ(k) ≤ξT (k)Γξ(k)−

[
η(k)

φ(η(k))

]T [
Λ11 Λ21

Λ21 F̄

][
η(k)

φ(η(k))

]

−

[
η(k − d)

φ(η(k − d))

]T [
Λ12 Λ22

Λ22 H̄

][
η(k − d)

φ(η(k − d))

]
+ ε[ηT (k)ḠT Ḡη(k)− ψT (η(k))ĪT Īψ(η(k))]

=ξT (k)Γ̃ξ(k)

In terms of inequality (14), we have

∆V (k) ≤ −λmin(−Γ̃)|ξ(k)|2 < 0 (22)

which implies

∆V (k) ≤ −λmin(−Γ̃)|ξ(k)|2 (23)

Given a positive integer m, the recursive sum of both sides of (23) from 0 to m leads to

V (x(m+ 1),m+ 1)− V (x(0), 0) ≤ −λmin(−Γ̃)
m∑
k=0

|ξ(k)|2 (24)

which results in
m∑
k=0

|ξ(k)|2 ≤ 1

λmin(−Γ̃)
V (x(0), 0) (25)

Letting m→ ∞, we know that the series
∑m

k=0 |ξ(k)|2 is convergent, which means

lim
k→∞

|η(k)|2 = 0.

The proof is now complete.
Having conducted the estimating performance analysis in Theorem 1, we are now in a position to deal

with the problem of designing estimator and the main results are given in the following theorem.
Theorem 2: There exists a non-fragile state estimator of the type (7) with ∆K satisfying (8) such that

the augmented system (14) is asymptotically stable if there exist positive constants ε and ϵ, symmetric

positive definite matrices P = diag{P1, P2} > 0, Q > 0 and R > 0, four sets of diagonal matrices F > 0,
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H > 0, X > 0, Y > 0 and a matrix Z with appropriate dimensions such that the following linear matrix

inequality (LMI) 

Θ1 ∗ ∗ ∗ ∗ ∗ ∗
0 Ω2 ∗ ∗ ∗ ∗ ∗

−Λ21 0 Θ2 ∗ ∗ ∗ ∗
0 −Λ22 0 Θ3 ∗ ∗ ∗
0 0 0 0 Θ4 ∗ ∗
Θ5 0 PĀ PB̄ −Z2 −P ∗
0 0 0 0 0 DT

1 −ϵI


< 0 (26)

holds, where

M̃1 =

[
M1 0

M1 M2

]
, M̄1 =

[
M1 0

M1 0

]
, M̄2 =

[
0 0

0 M2

]
,

Z1 =

[
0 0

0 ZD

]
, Z2 =

[
0 0

0 ZE

]
, Ĉ = diag{C,C},

N̄1 = diag{N1, N1}, N̄2 = diag{N2, N2}, N̄3 = diag{N3,−N4D}, N̄4 = diag{N4, N4E},

D1 =
[
PM̃1 0 PM̄1 PM̄1 PM̄2 0

]
, Θ1 = −P +Q− Λ11 + εḠT Ḡ+ ϵN̄T

3 N̄3,

Θ2 = R− F̄ + ϵN̄T
1 N̄1,Θ3 = −R− H̄ + ϵN̄T

2 N̄2,Θ4 = −εĪT Ī + ϵN̄T
4 N̄4,Θ5 = PĈ − Z1.

and other parameters are defined as those in Theorem 1. In this case, the estimator gain K of the desired

non-fragile state estimator (7) can be characterized by

K = P−1
2 Z (27)

Proof: First, we denote

Ξ1 = −P +Q− Λ11 + εḠT Ḡ, Ξ2 = R− F̄ , Ξ3 = −R− H̄

Σ1 =


Ξ1 ∗ ∗ ∗ ∗
0 Ω2 ∗ ∗ ∗

−Λ21 0 Ξ2 ∗ ∗
0 −Λ22 0 Ξ3 ∗
0 0 0 0 −εĪT Ī

 , Σ2 =
[
PC̃ 0 PÃ PB̃ −PẼ

]

and then Γ̃ in (14) can be rewritten as

Γ̃ = Σ1 + ΣT
2 P

−1Σ2 ≤ 0

which, according to Lemma 1, is equivalent to[
Σ1 ΣT

2

Σ2 −P

]
< 0 (28)
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Replacing C̃, Ã, B̃ and Ẽ with C̄ + ∆C̃, Ā + ∆Ã, B̄ + ∆B̃ and Ē + ∆Ẽ in (28), respectively, one

obtains 

Ξ1 ∗ ∗ ∗ ∗ ∗
0 Ω2 ∗ ∗ ∗ ∗

−Λ21 0 Ξ2 ∗ ∗ ∗
0 −Λ22 0 Ξ3 ∗ ∗
0 0 0 0 −εĪT Ī ∗
PC̄ 0 PĀ PB̄ −PĒ −P


+DF(k)N +N TFT (k)DT ≤ 0. (29)

where

D =
[
0 0 0 0 0 DT

1

]T
, N = diag

{
N̄3 0 N̄1 N̄2 −N̄4 0

}
,

F(k) = diag
{

diag {F1(k), F2(k)} , 0, diag {F1(k), F1(k)} , diag {F1(k), F1(k)} , diag {F2(k), F2(k)} , 0
}
.

Employing Lemmas 1-2 again and applying the change of variable such that K = P−1
2 Z, we can see

that Γ̃ = Σ1 + ΣT
2 P

−1Σ2 ≤ 0 is guaranteed by the LMI (26). Therefore, the system (13) is globally

asymptotically stable and the proof is then completed.

Remark 2: It is worth noting that the non-fragile state estimation problem is introduced for the discrete-

time RNNs with time-delays because the implementation of the designed controller/estimator is often

inaccurate due to a variety of reasons such as analog-digital and digital-analog conversion, finite word

length, finite resolution measuring instruments, programming errors, and roundoff errors in numerical

computations. In Theorems 1-2, sufficient conditions for the existence and the derivation of the desired

state estimator are provided, respectively. It is observed that all the network parameters, the sector-bounds

of the activation function, the bounds of the Lipschitz-type nonlinearities in the network output as well as

the bounds of the parameter uncertainties are all reflected in the main results. The obtained state estimator

is capable of tolerating the admissible gain variations that might occur in the physical implementation.

Conditions in Theorem 2 can be readily solved by utilizing the well-developed interior-point methods

embedded in the Matlab software.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we present a simulation example to illustrate the effectiveness of the developed theoretical

results.
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Consider an uncertain delayed neural network (1) with the following parameters:

C =

 0.2 0 0

0 0.3 0

0 0 0.15

 , A =

 −0.1 0.6 0.1

0.7 0.2 0.2

0.1 −0.2 0.3

 , B =

 0.2 −0.2 0.1

0.1 0.2 0.1

0.4 −0.1 0.3

 ,M1 =

 0.3

0.2

−0.1

 ,

M2 =

 0.2 0 0

0 0.2 0

0 0 0.2

 , N1 =
[
0.1 0.2 0.1

]
, N2 =

[
0.1 −0.2 0.1

]
,

N3 =
[
0.1 0.2 −0.1

]
, N4 =

 0.3 0 0

0 0.3 0

0 0 0.3

 , d = 5, F1(k) = sin(0.6k), F2(k) = sin(0.6k).

The parameters of the network measurement (5) are given as

D = I, E = 1, g(k, x(k)) = 0.4 cos(x(k)), G = 0.4I.

Take the activation functions as follows:

f1(s) = − tanh(0.4s), f2(s) = 0.2 tanh(s), f3(s) = tanh(0.6s).

It can be calculated that Λ1 = 0, Λ2 = diag{0.2, 0.1, 0.3}. By solving the LMI (26), the state estimator

gain matrix can be obtained as follows:

K =

 0.1775 0.1924 0.0065

0.1034 0.3321 −0.0152

0.0173 −0.0427 0.1831

 .
The simulation results are shown in Figs. 1–4, where the true states x1(k), x2(k), x3(k) and their

estimates x̂1(k), x̂2(k), x̂3(k) are depicted, respectively, in Fig. 1, Fig. 2 and Fig. 3 with the initial

condition

x(0) =
[
−0.12 0.28 −0.52

]T
, x̂(0) =

[
0.67 −1.14 0.2

]T
.

Fig. 4 shows the dynamical evolution of the estimate error e1(k), e2(k), e3(k). The simulation results verify

the effectiveness of the developed algorithm for designing the non-fragile state estimator for discrete-time

neural networks with parameter uncertainties.

V. CONCLUSIONS

In this paper, the non-fragile state estimation problem has been studied for a class of uncertain discrete-

time neural networks with time-delay. By employing the Lyapunov stability theory and the matrix analysis

technique, a sufficient condition has been established to ensure that the dynamics of the estimation error

achieves the asymptotic stability for all admissible parameter uncertainties as well as gain variations.

The explicit expression of the gain matrix of the desired non-fragile estimator has been characterized by

means of the feasibility to a linear matrix inequality. Finally, an example has been given to illustrate the
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Fig. 1: The true states of x1(k) and its estimate.
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Fig. 2: The true states of x2(k) and its estimate.
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Fig. 3: The true states of x3(k) and its estimate.
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Fig. 4: The estimation errors.

usefulness of the developed state estimation approach. The results in this paper could be further extended

to the non-fragile state estimation problems for discrete neural networks with more complicated network-

induced phenomena such as fading measurements [4], [5], [10], [20], [26], missing measurements [8],

sensor delays [9], randomly occurring faults [14] and mixed time-delays [31].
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