268 research outputs found

    Almost Optimal Testers for Concise Representations

    Get PDF
    We give improved and almost optimal testers for several classes of Boolean functions on n variables that have concise representation in the uniform and distribution-free model. Classes, such as k-Junta, k-Linear, s-Term DNF, s-Term Monotone DNF, r-DNF, Decision List, r-Decision List, size-s Decision Tree, size-s Boolean Formula, size-s Branching Program, s-Sparse Polynomial over the binary field and functions with Fourier Degree at most d. The approach is new and combines ideas from Diakonikolas et al. [Ilias Diakonikolas et al., 2007], Bshouty [Nader H. Bshouty, 2018], Goldreich et al. [Oded Goldreich et al., 1998], and learning theory. The method can be extended to several other classes of functions over any domain that can be approximated by functions with a small number of relevant variables

    On Regularity Lemma and Barriers in Streaming and Dynamic Matching

    Full text link
    We present a new approach for finding matchings in dense graphs by building on Szemer\'edi's celebrated Regularity Lemma. This allows us to obtain non-trivial albeit slight improvements over longstanding bounds for matchings in streaming and dynamic graphs. In particular, we establish the following results for nn-vertex graphs: * A deterministic single-pass streaming algorithm that finds a (1o(1))(1-o(1))-approximate matching in o(n2)o(n^2) bits of space. This constitutes the first single-pass algorithm for this problem in sublinear space that improves over the 12\frac{1}{2}-approximation of the greedy algorithm. * A randomized fully dynamic algorithm that with high probability maintains a (1o(1))(1-o(1))-approximate matching in o(n)o(n) worst-case update time per each edge insertion or deletion. The algorithm works even against an adaptive adversary. This is the first o(n)o(n) update-time dynamic algorithm with approximation guarantee arbitrarily close to one. Given the use of regularity lemma, the improvement obtained by our algorithms over trivial bounds is only by some (logn)Θ(1)(\log^*{n})^{\Theta(1)} factor. Nevertheless, in each case, they show that the ``right'' answer to the problem is not what is dictated by the previous bounds. Finally, in the streaming model, we also present a randomized (1o(1))(1-o(1))-approximation algorithm whose space can be upper bounded by the density of certain Ruzsa-Szemer\'edi (RS) graphs. While RS graphs by now have been used extensively to prove streaming lower bounds, ours is the first to use them as an upper bound tool for designing improved streaming algorithms

    An ~O(n) Queries Adaptive Tester for Unateness

    Get PDF
    We present an adaptive tester for the unateness property of Boolean functions. Given a function f:{0,1}^n -> {0,1} the tester makes O(n log(n)/epsilon) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is epsilon-far from being unate

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Earthmover Resilience and Testing in Ordered Structures

    Get PDF
    One of the main challenges in property testing is to characterize those properties that are testable with a constant number of queries. For unordered structures such as graphs and hypergraphs this task has been mostly settled. However, for ordered structures such as strings, images, and ordered graphs, the characterization problem seems very difficult in general. In this paper, we identify a wide class of properties of ordered structures - the earthmover resilient (ER) properties - and show that the "good behavior" of such properties allows us to obtain general testability results that are similar to (and more general than) those of unordered graphs. A property P is ER if, roughly speaking, slight changes in the order of the elements in an object satisfying P cannot make this object far from P. The class of ER properties includes, e.g., all unordered graph properties, many natural visual properties of images, such as convexity, and all hereditary properties of ordered graphs and images. A special case of our results implies, building on a recent result of Alon and the authors, that the distance of a given image or ordered graph from any hereditary property can be estimated (with good probability) up to a constant additive error, using a constant number of queries

    Hardness of Approximation for Euclidean k-Median

    Get PDF
    The Euclidean k-median problem is defined in the following manner: given a set ? of n points in d-dimensional Euclidean space ?^d, and an integer k, find a set C ? ?^d of k points (called centers) such that the cost function ?(C,?) ? ?_{x ? ?} min_{c ? C} ?x-c?? is minimized. The Euclidean k-means problem is defined similarly by replacing the distance with squared Euclidean distance in the cost function. Various hardness of approximation results are known for the Euclidean k-means problem [Pranjal Awasthi et al., 2015; Euiwoong Lee et al., 2017; Vincent Cohen{-}Addad and {Karthik {C. S.}}, 2019]. However, no hardness of approximation result was known for the Euclidean k-median problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves an open question posed explicitly in the work of Awasthi et al. [Pranjal Awasthi et al., 2015]. Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers. That is, bi-criteria approximation algorithms are allowed to output ? k centers (for constant ? > 1) and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any ? < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for the Euclidean k-means problem with a stronger bound of ? < 1.28, again assuming UGC
    corecore