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Abstract
The Euclidean k-median problem is defined in the following manner: given a set X of n points in
d-dimensional Euclidean space Rd, and an integer k, find a set C ⊂ Rd of k points (called centers)
such that the cost function Φ(C, X ) ≡

∑
x∈X minc∈C ∥x − c∥2 is minimized. The Euclidean k-means

problem is defined similarly by replacing the distance with squared Euclidean distance in the cost
function. Various hardness of approximation results are known for the Euclidean k-means problem
[7, 29, 17]. However, no hardness of approximation result was known for the Euclidean k-median
problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of
approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves
an open question posed explicitly in the work of Awasthi et al. [7].

Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median
problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers.
That is, bi-criteria approximation algorithms are allowed to output βk centers (for constant β > 1)
and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We
show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any
β < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for
the Euclidean k-means problem with a stronger bound of β < 1.28, again assuming UGC.
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1 Introduction

We start by giving the definition of the Euclidean k-median problem.

▶ Definition 1 (k-median). Given a set X of n points in d-dimensional Euclidean space Rd,
and a positive integer k, find a set of centers C ⊂ Rd of size k such that the cost function
Φ(C, X ) ≡

∑
x∈X minc∈C ∥x − c∥ is minimized.

The Euclidean k-means problem is defined similarly by replacing the distance with squared
Euclidean distance in the cost function (i.e., replacing ∥x−c∥ with ∥x−c∥2). These problems
are also studied in the discrete setting where the centers are restricted to be chosen from
a specific set L ⊂ Rd, also given as input. This is known as the discrete version whereas
the former version (with L = Rd) is known as the continuous version. In the approximation
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4:2 Hardness of Approximation for Euclidean k-Median

setting, the continuous version is not harder than its discrete counterpart since it is known(e.g.,
[22, 36]) that an α-approximation for the discrete problem gives an α + ε approximation
for the continuous version, for arbitrary small constant ε > 0, in polynomial time. In this
work, we only study the hardness of approximation for continuous version of the problem.
The hardness of approximation for the discrete version thus follows from the hardness of
approximation of continuous version. In the rest of the paper, we use k-means/median to
implicitly mean continuous Euclidean k-means/median unless specified otherwise 1.

The relevance of the k-means and k-median problems in various computational domains
such as resource allocation, big data analysis, pattern mining, and data compression is
well known. A significant amount of work has been done to understand the computational
aspects of the k-means/median problems. The k-means problem is known to be NP-hard
even for fixed k or d [4, 20, 33, 40]. Similar NP hardness result is also known for the
k-median problem [37]. Even the 1-median problem, popularly known as the Fermat-Weber
problem [21], is a hard problem and designing efficient algorithms for this problem is a
separate line of research in itself – see for e.g. [27, 42, 12, 10, 15]. These hardness barriers
motivate approximation algorithms for these problems and a lot of progress have been
made in this area. For example, there are various polynomial time approximation schemes
(PTASs) known for k-means and k-median when k is fixed (or constant) [36, 28, 22, 14, 25].
Similarly, various PTASs are known for fixed d [19, 23, 16]. A number of constant factor
approximation algorithms are also known for k-means and k-median when k and d are
considered as part of the input. For the k-means problem, constant approximation algorithms
have been given [26, 2], the best being a 6.357 approximation algorithm by Ahmadian et
al. [2]. On the negative side, there exists a constant ε > 0 such that there does not exist
an efficient (1 + ε)-approximation algorithm for the k-means problem, assuming P ̸= NP
[7, 29, 17]. The best-known hardness of approximation result for the k-means problem is
1.07 due to Cohen-Addad and Karthik [17].

The constant factor approximation algorithms for the k-median problem are also known [13,
5, 32, 11, 2]. The best known approximation guarantee for k-median is 2.633 due to
Ahmadian et al. [2]. On the hardness side, it was known that for general metric spaces, the
discrete k-median problem is hard to approximate within a factor of 1 + 2/e [24]. However,
unlike the Euclidean k-means problem, no hardness of approximation result was known for
the Euclidean k-median problem. Resolving the hardness of approximation for the Euclidean
k-median problem was left as an open problem in the work of Awasthi et al. [7]. They asked
whether their techniques for proving the inpproximability results for Euclidean k-means can
be used to prove the hardness of approximation result for the Euclidean k-median problem.
From their paper,

“It would also be interesting to study whether our techniques give hardness of approx-
imation results for the Euclidean k-median problem.”

In this work, assuming UGC, we solve this open problem by obtaining the hardness of
approximation result for the Euclidean k-median problem. Following is one of the main
results of this work.

▶ Theorem 2 (Main Theorem). There exists a constant ε > 0 such that the Euclidean
k-median problem in O(log k) dimensional space cannot be approximated to a factor better
than (1 + ε), assuming the Unique Games Conjecture.

1 In some literature, the Euclidean space implicitly means the dimension is bounded, but in our case the
dimension d can be arbitrarily large
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Having established the hardness of approximation results for k-means and k-median, the
next natural step in the discussion is to allow more flexibility to the algorithm. One possible
relaxation is to allow an approximation algorithm to choose more than k centers, say, βk

centers (for some constant β > 1) and produce a solution that is close to the optimal solution
with respect to k centers. This is known as bi-criteria approximation and the following
definition formalizes this notion.

▶ Definition 3 ((α, β)-approximation algorithm). An algorithm A is called an (α, β) approxim-
ation algorithm for the Euclidean k-means/k-median problem if given any instance I = (X , k)
with X ⊂ Rd, A outputs a center set F ⊂ Rd of size βk that has the cost at most α times
the optimal cost with k centers. That is,

∑
x∈X

min
f∈F

{D(x, f)} ≤ α · min
C⊆Rd

|C|=k

{∑
x∈X

min
c∈C

{D(x, c)}
}

For the Euclidean k-means problem, D(p, q) ≡ ∥p − q∥2 and for the k-median problem
D(p, q) ≡ ∥p − q∥.

One expects that as β grows, there would exist efficient (α, β)-approximation algorithms
with smaller values of α. This is indeed observed in the work of Makarychev et al. [35]. For
example, their algorithm gives a (9 + ε) approximation for β = 1; 2.59 approximation
for β = 2; 1.4 approximation for β = 3. In other words, the approximation factor
of their algorithm decreases as the value of β increases. Furthermore, their algorithm
gives a (1 + ε)-approximation guarantee with O(k log(1/ε)) centers. Bandyapadhyay and
Varadarajan [8] gave a (1 + ε) approximation algorithm that outputs (1 + ε)k centers in
constant dimension. There are various other bi-criteria approximation algorithms that use
distance-based sampling techniques and achieve better approximation guarantees than their
non bi-criteria counterparts [3, 1, 41]. Unfortunately in these bi-criteria algorithms, at least
one of α, β is large. Ideally, we would like to obtain a PTAS with a small violation of the
number of output centers. More specifically, we would like to address the following question:

Does the Euclidean k-means or Euclidean k-median problem admit an efficient (1 +
ε, 1 + ε)-approximation algorithm?

Note that such type of bi-criteria approximation algorithms that outputs (1+ε)k centers have
been extremely useful in obtaining a constant approximation for the capacitated k-median
problem [30, 31] for which no true constant approximation is known yet.2 Therefore, the
above question is worth exploring. Note that here we are specifically aiming for a PTAS
since the k-means and k-median problems already admit a constant factor approximation
algorithm. In this work, we give a negative answer to the above question by showing that
there exists a constant ε > 0 such that an efficient (1 + ε, 1 + ε)-approximation algorithm for
the k-means and k-median problems does not exist assuming the Unique Games Conjecture.
The following two theorems state this result more formally.

▶ Theorem 4 (k-median). For any constant 1 < β < 1.015, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-median problem
in O(log k) dimensional space assuming the Unique Games Conjecture.

2 In the capacitated k-median/k-means problem there is an additional constraint on each center that it
cannot serve more than a specified number of clients (or points).
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4:4 Hardness of Approximation for Euclidean k-Median

▶ Theorem 5 (k-means). For any constant 1 < β < 1.28, there exists a constant ε > 0 such
that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-means problem in
O(log k) dimensional space assuming the Unique Games Conjecture. Moreover, the same
result holds for any 1 < β < 1.1 under the assumption that P ̸= NP.

For simplicity, we present the proof of our results in O(n) dimensional space. However, the
results easily extend to O(log k) dimensional space using dimensionality reduction techniques
of Makarychev et al. [34].
Important note: We would like to note that assuming P ̸= NP, a similar hardness of
approximation result for the Euclidean k-median problem using different techniques has been
obtained independently by Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. We
came to know about their results through personal communication with the authors. Since
their manuscript has not been published online yet, we are not able to add a citation to their
work.

In the next subsection, we discuss the known results on hardness of approximation of the
k-means and k-median problems in more detail.

1.1 Related Works
Guha and Khuller proved a (1+ 2

e ) hardness of approximation result for the discrete k-median
problem for the general metric spaces [24]. The first hardness of approximation result for the
Euclidean k-means problem was given by Awasthi et al. [7]. They obtained their result using
a reduction from Vertex Cover on triangle-free graphs of bounded degree ∆ to the Euclidean
k-means instances. Their reduction yields a (1 + ε

∆ ) hardness factor for the k-means problem
for some constant ε > 0. Lee et al. [29] showed the hardness of approximation of Vertex Cover
on triangle-free graphs of bounded degree four. Using ∆ = 4, they obtained a 1.0013 hardness
of approximation for the Euclidean k-means problem. Subsequently, Cohen-Addad and
Karthik [17] improved the hardness of approximation to 1.07 using a modified reduction from
the vertex coverage problem instead of a reduction from the vertex cover problem. Moreover,
they also gave several improved hardness results for the discrete k-means/k-median problems
in general and ℓp metric spaces. In their more recent work, they also improved the hardness
of approximation results for the continuous k-means/k-median problem in general metric
spaces [18].

Unlike the Euclidean k-means problem, no hardness of approximation result was known
for the Euclidean k-median problem. In this work, we give hardness of approximation result
for the Euclidean k-median problem assuming the Unique Game Conjecture. As mentioned
earlier, in an unpublished work communicated to us through personal communication, Vincent
Cohen-Addad, Karthik C. S., and Euiwoong Lee have independently obtained hardness of
approximation result for the Euclidean k-median problem using different set of techniques
and under the assumption that P ̸= NP. They also gave bi-criteria hardness of approximation
results in ℓ∞-metric for the k-means and k-median problems [18]. We would like to point
out that in the bi-criteria setting, our result is the first hardness of approximation result for
the Euclidean k-means/k-median problem to the best of our knowledge.

1.2 Technical Overview and Contributions
Awasthi et al. [7] proved the first hardness of approximation result for the Euclidean k-means
problem. Given any instance I = (X , k) for the Euclidean k-means problem, they showed
that there exists an ϵ > 0 such that obtaining (1 + ϵ)-approximation for Euclidean k-means
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is NP-hard. In this work we build on their techniques to prove the inapproximability result
for the Euclidean k-median problem. First, we describe the reduction employed by Awasthi
et al. for the Euclidean k-means problem and some related results.

Construction of k-means instance: Let (G, k) be a hard Vertex Cover instance where
the graph G has bounded degree ∆. Let n and m denote respectively the number
of vertices and the number of edges in the graph. A k-means instance I := (X , k)
with X ⊂ Rn is constructed as follows. For every vertex i ∈ V , we have an n-
dimensional vector xi ∈ {0, 1}n, which has a 1 at ith coordinate and 0 everywhere
else. For each edge e = (i, j) ∈ E, a point xe := xi + xj is defined in {0, 1}n. The set
X := {xe | e ∈ E} with m points in Rn and parameter k define the k-means instance.

Awasthi et al. proved the following theorem based on the above construction [7].

▶ Theorem 6 (Theorem 4.1 [7]). There is an efficient reduction from vertex cover on bounded
degree triangle-free graphs to the Euclidean k-means problem that satisfies the following
properties:
1. If vertex cover of the instance is k, then there is a k-means clustering of cost at most

(m − k).
2. If vertex cover of the instance is at least (1 + ε)k, then the cost of optimal k-means

clustering is at least (m − k + δk).
Here, ε is some fixed constant > 0 and δ = Ω(ε).

Awasthi et al. [7] used the following hardness result for the vertex cover problem on
bounded degree triangle-free graphs.

▶ Theorem 7 (Corollary 5.3 [7]). Given any unweighted bounded degree triangle-free graph G,
it is NP-hard to approximate Vertex Cover within any factor smaller than 1.36.

Theorem 6 and Theorem 7 together imply that the Euclidean k-means problem is APX-
hard. A formal statement for the same is given as follows (see Section 4 of [7] for the proof
of this result).

▶ Corollary 8. There exists a constant ε′ > 0 such that it is NP-hard to approximate the
Euclidean k-means problem to any factor better than (1 + ε′).

We would like to obtain a similar gap-preserving reduction for the Euclidean k-median
problem. The first obstacle one encounters in this direction is that unlike the 1-mean
problem, there does not exist a closed form expression for the 1-median problem, and hence
we don’t have an exact expression for the optimal 1-median cost. We overcome this barrier
by obtaining good upper and lower bounds on the optimal 1-median cost and showing that
these bounds suffice for our purpose. More concretely, to upper bound the optimal 1-median
cost, we use the centroid as the 1-median and compute the 1-median cost with respect to the
centroid. To obtain a lower bound on the 1-median cost of a cluster, we use a decomposition
technique to break a cluster into smaller sub-clusters3 for which we can compute exact or
good approximate lower bounds on the 1-median cost. Here we use a simple observation that
the optimal 1-median cost of a cluster is at least the sum of the optimal 1-median costs of
the sub-clusters. For any sub-cluster that corresponds to a star graph, one can compute the

3 Since a set of edges in a graph form a cluster of points in the reduction, we use the terms sub-graphs
and sub-clusters interchangeably.

APPROX/RANDOM 2021



4:6 Hardness of Approximation for Euclidean k-Median

exact 1-median cost using our reduction. In order to bound the 1-median cost for sub-clusters
that correspond to non-star graphs, we use the following observation crucially: the optimal
1-median cost is preserved under any transformation that preserves the pairwise distances.
For non-star graphs, we first employ such a transformation that preserves the 1-median cost
and then compute this cost exactly in the projected space. Note that this technique does not
give exact 1-median cost for any arbitrary non-star graph, but works only for some special
families of non-star graphs. The main idea of the decomposition technique is to ensure that
only these kinds of non-star graphs are created in the decomposition process. The upper
and lower bounds on the 1-median cost, as constructed in the above manner, are used in the
completeness and soundness steps of the proof of the reduction, respectively.

The analysis for the completeness part of the reduction is relatively straightforward. If
the vertex cover of a graph is k, then the edges of the graph can be divided into k star
sub-graphs, each of which results in a star cluster in the k-median instance. The cost for
this clustering with k star clusters can be found using the reduction easily.

In the proof for the soundness part of our reduction, we prove the contrapositive statement
that assumes the k-median clustering cost to be bounded and proves that the vertex cover
of the graph is not too large. Our analysis crucially depends on the relation between the
vertex cover of a subgraph and the 1-median cost for that subgraph. More specifically, we
need to answer the following question. Given a graph with r edges having vertex cover z,
how does the optimal 1-median cost for that graph behave with respect to z. For example,
for star graphs, z = 1 and the optimal 1-median cost of a star graph on r edges is exactly√

r(r − 1). For any non-star graph with r edges, we first show that the optimal 1-median
cost of the non-star graph is at least the optimal 1-median cost of a star graph with r edges.
For any non-star graph F with r edges, we denote by δ(F ) the extra cost of F , defined as the
difference of the optimal 1-median cost of F and the optimal 1-median cost of a star graph
with r edges. If we can figure out non-trivial lower bounds for δ(F ) for different non-star
graphs F , then we would be done. But, figuring out these non-trivial lower bounds that work
for any non-star graph is quite a daunting prospect. The way we overcome this in our work
is as follows. We characterize the non-star graphs as having maximum matching of size two
or more than two, and for each, we relate the extra cost of 1-median clustering of that graph
with the vertex cover of that graph. We show that the extra cost of a non-star sub-graph is
proportional to the number of vertex-disjoint edges in the sub-graph. And since we assume
the k-median cost to be bounded, the number of vertex disjoint edges is also bounded, giving
a small vertex cover.

We need one more idea to finish the proof for the soundness part of the reduction. We
call a cluster “singleton” if there is only one point in the cluster. Note that any such cluster
would cost zero in a k-median clustering. If there are a large number of singleton clusters,
say t < k, then they pay zero to the cost of the solution, even though those edges have vertex
cover t. We prove a key lemma showing that for any hard instance of the vertex cover, the
vertex cover of the sub-graph spanned by t singleton edges is at most 2t

3 . We combine these
ideas to prove that if k-median clustering cost is bounded, the vertex cover of the graph
cannot be too large.

We also prove the hardness of bi-criteria approximation results for Euclidean k-means
and k-median problems. The hardness of bi-criteria approximation for Euclidean k-median
is obtained by extending the proof for the hardness of approximation for the Euclidean
k-median problem. We use the same reduction from the vertex cover problem and show that
the soundness guarantees hold even if one is allowed to use βk centers, for some β > 1. We
also show that similar techniques give the hardness of bi-criteria approximation results for
the Euclidean k-means problem.
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2 Useful Facts and Inequalities

In this section, we discuss some basic facts and inequalities that we will frequently use in
our proofs. First, we note that the Fermat-Weber problem is not difficult for all 1-median
instances. We can efficiently obtain 1-median for some special instances. For example, for a
set of equidistant points, the 1-median is simply the centroid of the point set. We give a
proof of this statement in the next section. Most importantly, we use the following fact and
lemma to compute the 1-median cost.

▶ Fact 1 ([38]). For a set of non-collinear points the optimal 1-median is unique.

▶ Lemma 9. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be any two sets of n points in Rd.
If the pairwise distances between points within A is the same as pairwise distance between
points within B. That is, for all i, j ∈ {1, . . . , n}, ∥ai − aj∥ = ∥bi − bj∥. Then the optimal
1-median cost of A is the same as the optimal 1-median cost of B.

The proof of Lemma 9 is deferred to Appendix A. We use the above lemma, in vector
spaces where it is tricky to compute the optimal 1-median exactly. In such cases, we transform
the space to a different vector space, where computing the 1-median is relatively simpler.
More specifically, we employ a rigid transformation since it preserves pairwise distances.
Next, we give a simple lemma, that is used to prove various bounds related to the quantity√

m(m − 1).

▶ Lemma 10. Let m and t be any positive real numbers greater than one. If m ≥ t, the
following bound holds:

m − (t −
√

t(t − 1)) ≤
√

m(m − 1) ≤ m − 1/2.

Proof. The upper bound follows from the sequence of inequalities:
√

m(m − 1) <√
m2 − m + 1/4 =

√
(m − 1/2)2 = m − 1/2. The lower bound follows from the following

sequence of inequalities:

√
m(m − 1) = m + m ·

(√
m − 1

m
− 1
)

≥ m + t ·

(√
t − 1

t
− 1
)

= m − (t −
√

t(t − 1)).

The second inequality holds because a+1
b+1 ≥ a

b for b ≥ a. This completes the proof of the
lemma. ◀

2.1 Preliminaries
Recall that a point in X corresponds to an edge of the graph. Therefore, a sub-graph S of G

corresponds to a subset of points X (S) := {xe | e ∈ E(S)} of X . We define the 1-median
cost of X (S) with respect to a center c ∈ Rn as Φ(c, S) ≡

∑
x∈X (S) ∥x − c∥. Furthermore,

we define the optimal 1-median cost of X (S) as Φ∗(S). That is, Φ∗(S) ≡ minc∈Rn Φ(c, S).
We often use these statements interchangeably, “optimal 1-median cost of a graph S” to
mean “optimal 1-median cost of the cluster X (S)”.

3 Inapproximability of Euclidean k-Median

In this section, we show the inapproximability result of the Euclidean k-median problem.
We obtain this result by showing a gap preserving reduction from Vertex Cover on bounded
degree triangle-free graphs to the Euclidean k-median. For Vertex Cover on bounded degree
triangle-free graphs, the inapproximability result is stated in Corollary 13. The corollary
simply follows from the following two results of Austrin et al. [6] and Awasthi et al. [7].

APPROX/RANDOM 2021



4:8 Hardness of Approximation for Euclidean k-Median

▶ Theorem 11 (Austrin et al. [6]). Given any unweighted bounded degree graph G = (V, E)
of maximum degree ∆, Vertex Cover can not be approximated within any factor smaller than
2 − ε, for ε = (2 + o∆(1)) · log log ∆

log ∆ assuming the Unique Games Conjecture.

In the above theorem, ε can be set to arbitrarily small value by taking sufficiently large value
of ∆.

▶ Theorem 12 (Awasthi et al. [7]). There is a (1 + ε)-approximation-preserving reduction
from Vertex Cover on bounded degree graphs to Vertex Cover on triangle-free graphs of bounded
degree.

▶ Corollary 13. Given any unweighted triangle-free graph G of bounded degree, Vertex Cover
can not be approximated within a factor smaller than 2 − ε, for any constant ε > 0, assuming
the Unique Games Conjecture.

Earlier, in Section 1.2, we described the reduction used by Awasthi et al. [7] to construct
instances for Euclidean k-means from a Vertex Cover instance. We use the same construction
for the Euclidean k-median instances. Let G = (V, E) denote a triangle-free graph of bounded
degree ∆. Let I = (X , k) denote the Euclidean k-median instance constructed from G. We
establish the following theorem based on this construction.

▶ Theorem 14. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs with m edges to the Euclidean k-median problem that satisfies the following
properties:
1. If the graph has a vertex cover of size k, then the k-median instance has a solution of

cost at most m − k/2.
2. If the graph has no vertex cover of size at most (2 − ε) · k, then the cost of any k-median

solution on the instance is at least m − k/2 + δk.
Here, ε is some fixed constant, δ = Ω(ε), and k ≥ the size of maximum matching of the
graph.

The graphs with a vertex cover of size at most k are said to be “Yes” instances and the
graphs with no vertex cover of size at most (2 − ε)k are said to be “No” instances. Now,
the above theorem gives the following inapproximability result for the Euclidean k-median
problem.

▶ Corollary 15. There exists a constant ε′ > 0 such that the Euclidean k-median problem can
not be approximated to a factor better than (1 + ε′), assuming the Unique Games Conjecture.

Proof. Since the hard Vertex Cover instances have bounded degree ∆, the maximum matching
of such graphs is at least ⌈ m

2∆ ⌉. First, let us prove this statement. Suppose M be a matching,
that is initially empty, i.e., M = ∅. We construct M in an iterative manner. First, we pick
an arbitrary edge from the graph and add it to M . Then, we remove this edge and all the
edges incident on it. We repeat this process for the remaining graph until the graph becomes
empty. In each iteration, we remove at most 2∆ edges. Therefore, the matching size of the
graph is at least ⌈ m

2∆ ⌉.
Now, suppose k < m

2∆ . Then, the graph does not have a vertex cover of size k since
matching size is at least ⌈ m

2∆ ⌉. Therefore, such graph instances can be classified as “No”
instances in polynomial time. So, they are not the hard Vertex Cover instances. Therefore, we
can assume k ≥ m

2∆ for all the hard Vertex Cover instances. In that case, the second property
of Theorem 14, implies that the cost of k-median instance is (m− k

2 )+δk ≥ (1+ δ
2∆ ) ·(m− k

2 ).
Thus, the k-median problem can not be approximated within any factor smaller than
1 + δ

2∆ = 1 + Ω(ε). ◀
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3.1 Completeness
Let W = {v1, . . . , vk} be a vertex cover of G. Let Si denote the set of edges covered by vi. If
an edge is covered by two vertices vi and vj , then we arbitrarily keep the edge either in Si or
Sj . Let mi denote the number of edges in Si. We define {X (S1), . . . , X (Sk)} as a clustering
of the point set X . Now, we show that the cost of this clustering is at most m − k/2. Note
that each Si forms a star graph centered at vi. Moreover, the point set X (Si) forms a regular
simplex of side length

√
2. We compute the optimal cost of X (Si) using the following lemma.

▶ Lemma 16. For a regular simplex on r vertices and side length s, the optimal 1-median is

the centroid of the simplex. Moreover, the optimal 1-median cost is s ·
√

r(r − 1)
2 .

Proof. The statement is easy to see for r = 1. For r = 2, there are two points s distance
apart. Therefore, the optimal center lies on the line segment joining the two points and the
optimal 1-median cost is trivially s. So, for the rest of the proof, we assume that r > 2.
Suppose A = {a1, a2, . . . , ar} denote the vertex set of a regular simplex. Let s be the side
length of the simplex. Using Lemma 9, we can represent each point ai in an r-dimensional
space as follows; we use the same notation to denote the points after such transformations.

a1 :=
(

s√
2

, 0, ..., 0
)

, a2 :=
(

0,
s√
2

, ..., 0
)

, . . . , ar :=
(

0, 0, ...,
s√
2

)
Note that the distance between any ai and aj is s, which is the side length of the simplex.
Let c∗ = (c1, . . . , cr) be an optimal 1-median of point set A. Then, the 1-median cost is the
following:

Φ(c∗, A) =
r∑

i=1
∥ai − c∗∥ =

r∑
i=1

 r∑
j=1

c2
j − c2

i +
(

s√
2

− ci

)2
1/2

Suppose ci ̸= cj for any i ̸= j. Then, we can swap ci and cj to create a different median,
while keeping the 1-median cost the same. It contradicts the fact that there is only one
optimal 1-median, by Fact 1. Therefore, we can assume c∗ = (c, c, . . . , c). Now, the optimal
1-median cost is:

Φ∗(A) = Φ(c∗, A) := r ·

√(
c − s√

2

)2
+ (r − 1) · c2

The function Φ(c∗, A) is strictly convex and attains minimum at c = s

m ·
√

2
, which is the

centroid of A. The optimal 1-median clustering cost is Φ(c∗, A) = s ·
√

r(r − 1)
2 . This

completes the proof of the lemma. ◀

The following corollary establishes the cost of a star graph Si.

▶ Corollary 17. Any star graph Si with r edges has the optimal 1-median cost of
√

r(r − 1)

Using this corollary, we bound the optimal k-median cost of X as follows. Let OPT (X , k)
denote the optimal k-median cost of X . The following sequence of inequalities proves the
first property of Theorem 14.

OPT (X , k) ≤
k∑

i=1
Φ∗(Si)

(Corollary 17)=
k∑

i=1

√
mi(mi − 1)

(Lemma 10)
≤

k∑
i=1

(
mi − 1

2

)
= m− k

2 .
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3.2 Soundness

Now, we prove the second property of Theorem 14. For this, we prove the equivalent contra-
positive statement: If the optimal k-median clustering of X has cost at most

(
m − k

2 + δk
)
,

for some constant δ > 0, then G has a vertex cover of size at most (2 − ε)k, for some constant
ε > 0. Let C denote an optimal k-median clustering of X . We classify its optimal clusters
into two categories: (1) star and (2) non-star. Let F1, F2, . . . , Ft denote the non-star clusters,
and S1, . . . , Sk−t denote the star clusters. For any star cluster, the vertex cover size is exactly
one. Moreover, using Corollary 17, the optimal 1-median cost of any star cluster with r edges
is
√

r(r − 1). On the other hand, it may be tricky to exactly compute the vertex cover or
the optimal cost of any non-star cluster. Suppose the optimal 1-median cost of a non-star
cluster F on r edges is given as

√
r(r − 1) + δ(F ), where δ(F ) denotes the extra-cost due to

a non-star cluster F . Using this, we define δ(F ) as the following:

δ(F ) ≡ Φ∗(F ) −
√

|F |(|F | − 1)

The following lemmas bound the vertex cover of F in terms of δ(F ).

▶ Lemma 18. Any non-star cluster F with a maximum matching of size two has a vertex
cover of size at most 1.62 +

(√
2 + 1

)
δ(F ).

▶ Lemma 19. Any non-star cluster F with a maximum matching of size at least three has a
vertex cover of size at most 1.8 +

(√
2 + 1

)
δ(F ).

These lemmas are the key to proving the main result. We discussed the main proof ideas
earlier in Section 1.2; however, due to page-limit, the complete proof is deferred to the full
version of the paper [9]. Now, let us see how these lemmas give a vertex cover of size at most
(2 − ε)k. Let us classify the star clusters into the following two sub-categories:
(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .
(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .
Similarly, we classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1, W2, . . . , Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be:
Y1, Y2, . . . , Yt4

Note that t1 + t2 + t3 + t4 equals k. Now, consider the following strategy of computing the
vertex cover of G. Suppose, we compute the vertex cover for every cluster separately. Let Ci

be any cluster, and |V C(Ci)| denote the vertex cover size of Ci. Then, the vertex cover of G

can be simply bounded in the following manner:

|V C(G)| ≤
t1∑

i=1
|V C(Pi)| +

t2∑
i=1

|V C(Si)| +
t3∑

i=1
|V C(Wi)| +

t4∑
i=1

|V C(Yi)|

However, we can obtain a vertex cover of smaller size using a slightly different strategy.
In this strategy, we first compute a minimum vertex cover of all the clusters except single
edge clusters P1, P2, . . . , Pt1 . Suppose that vertex cover is V C ′. Then we compute a vertex
cover for P1, P2, . . . , Pt1 . Now, let us see why this strategy gives a vertex cover of smaller
size than before. Note that some vertices in V C ′ may also cover the edges in P1, . . . , Pt1 .
Suppose there are t′

1 clusters in P1, . . . , Pt1 that remain uncovered by V C ′. Without loss of
generality, assume these clusters to be P1, . . . , Pt′

1
. Now, the vertex cover of G is bounded in
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the following manner:

|V C(G)| ≤ |V C
(

∪t′
1

i=1Pi

)
| + |V C ′|

= |V C
(

∪t′
1

i=1Pi

)
| + |V C

(
(∪t2

j=1Sj) ∪ (∪t3
k=1Wk) ∪ (∪t4

l=1Yl)
)

|

≤ |V C
(

∪t′
1

i=1Pi

)
| +

t2∑
i=1

|V C(Si)| +
t3∑

i=1
|V C(Wi)| +

t4∑
i=1

|V C(Yi)|

Now, we will try to bound the size of the vertex cover of P1 ∪ ...∪Pt′
1
. Note that we can cover

all these single-edge clusters with t′
1 vertices by choosing one vertex per cluster. However, it

may be possible to obtain a vertex cover of smaller size if we collectively consider all these
clusters. Suppose EP denote the set of all edges in P1, . . . , Pt′

1
and VP denote the vertex

set spanned by them. We define a graph GP = (VP , EP ). Further, suppose that MP is a
maximal matching of GP . Then, it is easy to see that if |MP | ≤ t′

1/3 + 4δk for some δ > 0,
we can simply pick both end-points of every edge in MP , and it would give a vertex cover
of GP of size at most 2t′

1/3 + 8δk. On the other hand, if |MP | > t′
1/3 + 4δk, we show that

the graph G admits a vertex cover of size at most (2k − 2δk). This fact is mentioned in the
following lemma. Due to page limit, the proof is deferred to the full version of the paper [9].

▶ Lemma 20. Let δ > 0 be any constant and GP be as defined above. If GP does not have a
vertex cover of size ≤ ( 2t′

1
3 + 8δk), then G has a vertex cover of size at most (2k − 2δk).

Based on the above lemma, we will assume that all single edge clusters can be covered with
( 2t′

1
3 + 8δk) ≤ ( 2t1

3 + 8δk) vertices; otherwise the graph has a vertex cover of size at most
(2k − 2δk) and the soundness proof would be complete. Now, we bound the vertex cover of
the entire graph in the following manner.

|V C(G)| ≤ |V C
(

∪t′
1

i=1Pi

)
| + |V C′|

= |V C
(

∪t′
1

i=1Pi

)
| + |V C

(
(∪t2

j=1Sj) ∪ (∪t3
k=1Wk) ∪ (∪t4

l=1Yl)
)

|

≤
t′

1∑
i=1

|V C(Pi)| +
t2∑

i=1

|V C(Si)| +
t3∑

i=1

|V C(Wi)| +
t4∑

i=1

|V C(Yi)|

≤
(2t1

3 + 8δk
)

+ t2 +
t3∑

i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 18, 19, and 20)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)( t3∑

i=1

δ(Wi) +
t4∑

i=1

δ(Yi)

)

Since the optimal cost OPT (X , k) =
k∑

j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+
t4∑

i=1
δ(Yi) ≤ m−k/2+δk,

we get
t3∑

i=1
δ(Wi) +

t4∑
i=1

δ(Yi) ≤ m − k/2 + δk −
k∑

j=1

√
mj(mj − 1). We substitute this value in

the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

k∑
j=1

√
mj(mj − 1) + δk

)
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Using Lemma 10, we obtain the following inequalities:
1. For any cluster Pj with |Pj | = 1, we have

√
|Pj | (|Pj | − 1) ≥ |Pj | − 1

2. For any cluster Sj with |Sj | ≥ 2, we have
√

|Sj | (|Sj | − 1) ≥ |Sj | − (2 −
√

2)
3. For any cluster Wj with |Wj | ≥ 2, we have

√
|Wj | (|Wj | − 1) ≥ |Wj | − (2 −

√
2)

4. For any cluster Yj with |Yj | ≥ 3, we have
√

|Yj | (|Yj | − 1) ≥ |Yj | − (3 −
√

6)
We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

t1∑
j=1

(|Pj | − 1)

−
t2∑

j=1

(
|Sj | − (2 −

√
2)
)

−
t3∑

j=1

(
|Wj | − (2 −

√
2)
)

−
t4∑

j=1

(
|Yj | − (3 −

√
6)
)

+ δk

)

Since the number of edges m =
t1∑

j=1
|Pj | +

t2∑
j=1

|Sj | +
t3∑

j=1
|Wj | +

t4∑
j=1

|Yj |, we get the following

inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

− k/2 + t1 + t2 ·
(
2 −

√
2
)

+

+ t3 ·
(
2 −

√
2
)

+ t4 ·
(
3 −

√
6
)

+ δk

)
We substitute k = t1 + t2 + t3 + t4, and obtain the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

t1

2 + t2

10 + t3

10 + 3t4

50 + δk
)

= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +
(√

2 + 9
)

δk

< (1.95)k +
(√

2 + 9
)

δk (using t3 + t4 + t1 + t2 = k)

≤ (2 − ε)k, for appropriately small constants ε, δ > 0

This proves the soundness condition and it completes the proof of Theorem 14. Note that the
result holds under the Unique Games Conjecture. To prove the result in a weaker assumtion
of P ̸= NP, it would require to show that |V C(G)| < (1.36)k instead of |V C(G)| < (1.95)k.
That would require tighter analysis of the cost of k-median instances than the one done in
this work.

In the next section, we extend the above techniques to give the bi-criteria inapproximability
results for the Euclidean k-median and k-means problems.

4 Bi-criteria Hardness of Approximation

In the previous section, we showed that the k-median problem cannot be approximated to any
factor smaller than (1 + ε), where ε is some positive constant. The next step in the beyond
worst-case discussion is to study the bi-criteria approximation algorithms. That is, we allow
the algorithm to choose more than k centers and analyse whether it produces a solution that
is close to the optimal solution with respect to k centers? Since the algorithm is allowed to
output more than k centers we can hope to get a better approximate solution. An interesting
question in this regard would be: Does there exist a PTAS (polynomial time approximation
scheme) for the k-median/k-means problem when the algorithm is allowed to choose βk

centers for some constant β > 1? In other words, is there an (1 + ε, β)-approximation
algorithm? Note that here we compare the cost of βk centers with the optimal cost with
respect to k centers. See Definition 3 in Section 1 for formal definition of (α, β) bi-criteria
approximation algorithms.
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In this section, we show that even with βk centers, the k-means/k-median problems
cannot be approximated within any factor smaller than (1 + ε′), for some constant ε′ > 0.
The following theorem state this result formally.

▶ Theorem 21 (k-median). For any constant 1 < β < 1.015, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-median problem
assuming the Unique Games Conjecture.

▶ Theorem 22 (k-means). For any constant 1 < β < 1.28, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-means problem
assuming the Unique Games Conjecture. Moreover, the same result holds for any 1 < β < 1.1
under the assumption that P ̸= NP.

First, let us prove the bi-criteria inapproximability result for the k-median problem.

4.1 Bi-criteria Inapproximability: k-Median
In this subsection, we give a proof of Theorem 21. Let us define a few notations. Suppose
I = (X , k) be some k-median instance. Then, OPT (X , k) denote the optimal k-median cost
of X . Similarly, OPT (X , βk) denote the optimal βk-median cost of X (or the optimal cost
of X with βk centers). We use the same reduction as we used in the previous section for
showing the hardness of approximation of the k-median problem. Based on the reduction,
we establish the following theorem.

▶ Theorem 23. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs G (with m edges) to Euclidean k-median instances I = (X , k) that satisfies the
following properties:
1. If G has a vertex cover of size k, then OPT (X , k) ≤ m − k/2
2. For any constant 1 < β < 1.015, there exists constants ε, δ > 0 such that if G has no

vertex cover of size ≤ (2 − ε) · k, then OPT (X , βk) ≥ m − k/2 + δk.

Proof. Since the reduction is the same as we discussed in Section 1.2 and 3, we keep all
notations the same as before. Also, note that Property 1 in this theorem is the same as
Property 1 of Theorem 14. Therefore, the proof is also the same as we did in Section 3.1.
Now, we directly move to the proof of Property 2.

The proof is almost the same as we gave in Section 3.2. However, it has some minor
differences since we consider the optimal cost with respect to βk centers instead of k centers.
Now, we prove the following contrapositive statement: “For any constants 1 < β < 1.015
and ε > 0, there exists constants ε, δ > 0 such that if OPT (X , βk) < (m − k/2 + δk) then G

has a vertex cover of size at most (2 − ε)k”. Let C denote an optimal clustering of X with
βk centers. We classify its optimal clusters into two categories: (1) star and (2) non-star.
Further, we sub-classify the star clusters into the following two sub-categories:
(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .
(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .
Similarly, we sub-classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1, W2, . . . , Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be:
Y1, Y2, . . . , Yt4

Note that t1+t2+t3+t4 equals βk. Suppose, we first compute a vertex cover of all the clusters
except the single edge clusters: P1, . . . , Pt1 . Let that vertex cover be V C ′. Now, some vertices
in V C ′ might also cover the edges in P1, . . . , Pt1 . Suppose there are t′

1 single edge clusters

APPROX/RANDOM 2021
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that remain uncovered by V C ′. Without loss of generality, we assume that these clusters
are P1, . . . , Pt′

1
. By Lemma 20, we can cover these clusters with ( 2t′

1
3 + 8δk) ≤ ( 2t1

3 + 8δk)
vertices; otherwise the graph would have a vertex cover of size at most (2k − δk), and the
proof of Property 2 would be complete. Now, we bound the vertex cover of the entire graph
in the following manner.

|V C(G)| ≤
t1∑

i=1

|V C(Pi)| +
t2∑

i=1

|V C(Si)| +
t3∑

i=1

|V C(Wi)| +
t4∑

i=1

|V C(Yi)|

≤
(2t1

3 + 8δk
)

+ t2 +
t3∑

i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 18, 19, and 20)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)( t3∑

i=1

δ(Wi) +
t4∑

i=1

δ(Yi)

)

Since the optimal cost OPT (X , βk) =
βk∑

j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+
t4∑

i=1
δ(Yi) ≤ m−k/2+δk,

we get
t3∑

i=1
δ(Wi) +

t4∑
i=1

δ(Yi) ≤ m − k/2 + δk −
βk∑

j=1

√
mj(mj − 1). We substitute this value in

the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

βk∑
j=1

√
mj(mj − 1) + δk

)

Using Lemma 10, we obtain the following inequalities:
1. For Pj ,

√
m(Pj) (m(Pj) − 1) ≥ m(Pj) − 1 since m(Pj) = 1

2. For Sj ,
√

m(Sj) (m(Sj) − 1) ≥ m(Sj) − (2 −
√

2) since m(Sj) ≥ 2
3. For Wj ,

√
m(Wj) (m(Wj) − 1) ≥ m(Wj) − (2 −

√
2) since m(Wj) ≥ 2

4. For Yj ,
√

m(Yj) (m(Yj) − 1) ≥ m(Yj) − (3 −
√

6) since m(Yj) ≥ 3
We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

t1∑
j=1

(m(Pj) − 1) +

−
t2∑

j=1

(
m(Sj) − (2 −

√
2)
)

−
t3∑

j=1

(
m(Wj) − (2 −

√
2)
)

−
t4∑

j=1

(
m(Yj) − (3 −

√
6)
)

+ δk

)

Since m =
t1∑

j=1
m(Pj)+

t2∑
j=1

m(Sj)+
t3∑

j=1
m(Wj)+

t4∑
j=1

m(Yj), we get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
− k/2 + t1 + t2 ·

(
2 −

√
2
)

+

+ t3 ·
(

2 −
√

2
)

+ t4 ·
(

3 −
√

6
)

+ δk

)
= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +

(√
2 + 1

)
·

(
(β − 1)k

2
−

βk

2
+ t1 + t2 ·

(
2 −

√
2
)

+

+ t3 ·
(

2 −
√

2
)

+ t4 ·
(

3 −
√

6
)

+ δk

)
Now, we substitute βk = t1 + t2 + t3 + t4, and obtain the following inequality:
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|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

(β − 1)k

2
+

t1

2
+

t2

10
+

t3

10
+

3t4

50
+ δk

)
= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +

(√
2 + 1

)
·

(β − 1)k

2
+
(√

2 + 9
)

δk

< (1.95)βk +
(√

2 + 1
)

·
(β − 1)k

2
+
(√

2 + 9
)

δk (using t3 + t4 + t1 + t2 = βk)

< (3.16)βk − (1.21)k +
(√

2 + 9
)

δk

≤ (2 − ε)k, for any β < 1.015 and appropriately small constants ε, δ > 0

This proves Property 2 and it completes the proof of Theorem 23. ◀

The following corollary states the main bi-criteria inapproximability result for the k-median
problem.

▶ Corollary 24. There exists a constant ε′ > 0 such that for any constant 1 < β < 1.015,
there is no (1+ε′, β)-approximation algorithm for the k-median problem assuming the Unique
Games Conjecture.

Proof. In the proof of Corollary 15, we showed that k ≥ m
2∆ for all the hard Vertex Cover

instances. Therefore, the second property of Theorem 23, implies that OPT (X , βk) ≥
(m − k

2 ) + δk ≥ (1 + δ
2∆ ) · (m − k

2 ). Thus, the k-median problem can not be approximated
within any factor smaller than 1 + δ

2∆ = 1 + Ω(ε), with βk centers for any β < 1.015. ◀

The proof for the bi-criteria inapproximability of the k-means problem works in a similar
manner. We deffer its proof to Appendix B.
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A Proof of Lemma 9

▶ Lemma 25. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be any two sets of n points in Rd.
If the pairwise distances between points within A is the same as pairwise distance between
points within B. That is, for all i, j ∈ {1, . . . , n}, ∥ai − aj∥ = ∥bi − bj∥. Then the optimal
1-median cost of A is the same as the optimal 1-median cost of B.

Let co(A) and co(B) denote the convex hulls of A and B, respectively. We split the
proof of Lemma 25 in two parts. In the first part (Lemma 26), we show that there exists a
distance preserving transformation R from co(A) to co(B) such that R(ai) = bi for every
i ∈ {1, . . . , n}. By distance preserving transformation, we mean that for any two points
x, y ∈ co(A), the distance ∥x − y∥ is preserved after applying the transformation R, i.e.,
∥x − y∥ = ∥R(x) − R(y)∥. In the second part (Lemma 27), we show that applying the
transformation R preserves the optimal 1-median cost of A.

▶ Lemma 26. Given two sets of points A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} in
Rd such that ∥ai − aj∥ = ∥bi − bj∥ for all i, j ∈ {1, . . . , n}. Then there exists a distance
preserving transformation R : co(A) → co(B) such that R(ai) = bi for every i ∈ {1, . . . , n}.

Proof. Let Xi be a vector4 defined as ai − a1 for every ai ∈ A. Similarly, we define a vector
Yi := bi − b1 for every bi ∈ B. We will use these vectors to define the transformation R.
For now, note the following property of inner product of Xi and Xj .

⟨Xi, Xj⟩ = ⟨Yi, Yj⟩ for every i, j ∈ {1, . . . , n} (1)

The proof of the above property follows from the following sequence of inequalities:
2 · ⟨Xi, Xj⟩ = ∥Xi∥2 + ∥Xj∥2 − ∥Xi − Xj∥2

= ∥Yi∥2 + ∥Yj∥2 − ∥Xi − Xj∥2
, ∵ ∥Xi∥ = ∥ai − a1∥ = ∥bi − b1∥ = ∥Yi∥

for every 1 ≤ i ≤ n

= ∥Yi∥2 + ∥Yj∥2 − ∥Yi − Yj∥2
, ∵ ∥Xi − Xj∥ = ∥ai − aj∥ = ∥bi − bj∥ = ∥Yi − Yj∥

= 2 · ⟨Yi, Yj⟩

In other words, the triangles (a1, ai, aj) and (b1, bi, bj) are congruent for all i, j ∈ {1, . . . , n}.
Therefore, the inner product ⟨Xi, Xj⟩ is the same as ⟨Yi, Yj⟩.

4 For better readability, we boldfaced the vector symbols to distinguish them from any scalar quantity.
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Now, we describe the transformation R from co(A) to co(B). By the definition of

co(A), any point x ∈ co(A) can be expressed in the form
n∑

i=1
λi · ai for some 0 ≤ λ′

is ≤ 1

and
n∑

i=1
λi = 1. Equivalently, x can be expressed as a1 +

n∑
i=2

λi · Xi. For x ∈ co(A), we

define the transformation R as R(x) :=
∑n

i=1 λi · bi. Again, R(x) can be equivalently

expressed as b1 +
n∑

i=2
λi · Yi. It is easy to see that λi · bi indeed belongs to co(B) since

0 ≤ λi ≤ 1 and
n∑

i=1
λi = 1. Now, we show that R is a distance preserving transformation.

Let x := a1 +
n∑

i=2
λi · Xi and y := a1 +

n∑
i=2

γi · Xi be any two points in co(A). The following

sequence of inequalities prove that ∥x − y∥ = ∥R(x) − R(y)∥.

∥x − y∥2 = (x − y)T (x − y)

=
(

n∑
i=2

(λi − γi) · Xi

)T

·

(
n∑

i=2
(λi − γi) · Xi

)

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Xi, Xj⟩

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Yi, Yj⟩, (using Equation 1)

=
(

n∑
i=2

(λi − γi) · Yi

)T

·

(
n∑

i=2
(λi − γi) · Yi

)
= (R(x) − R(y))T (R(x) − R(y))
= ∥R(x) − R(y)∥2

This proves that R is a distance preserving transformation from co(A) to co(B). Moreover,
note that R is a bijective function. It is possible that a vector x ∈ co(A) has multiple forms,
say

∑n
i=1 λi · ai and

∑n
i=1 Λi · ai. Therefore, it appears that x maps to different vectors in

co(B). However, it always maps to the same vector. For the sake of contradiction, assume
that x maps to two different vectors p :=

∑n
i=1 λi · bi and q :=

∑n
i=1 Λi · bi in co(B). Then

∥p − q∥ ≠ 0. It contradicts the fact that R is a distance preserving transformation. Similarly,
we can show that any two different vectors x, y ∈ co(A) can not map to the same vector in
co(B). This proves that R is a bijective function.

Furthermore, note that R(ai) = bi for every i ∈ {1, . . . , n}. To see this, consider

λi = 1 and λj = 0 for all j ∈ {1, . . . , n} \ {i}. Then ai =
n∑

j=1
λj · aj and therefore

R(ai) =
n∑

j=1
λj · bj = bj . This completes the proof of the lemma. ◀

Similar to R, we can also define a distance preserving transformation R−1 from co(B)

to co(A). The transformation R−1 is defined such that for any x =
n∑

i=1
λi · bi ∈ co(B),
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R−1(x) =
n∑

i=1
λi · ai ∈ co(A). Furthermore, as per this definition of R−1, R−1(bi) = ai for

every i ∈ {1, . . . , n}. Now, we show that applying the transformation R on A preserves the
optimal 1-median cost of A.

▶ Lemma 27. If there exists distance preserving transformations R : co(A) → co(B) and
R−1 : co(B) → co(A) such that R(ai) = bi and R−1(bi) = ai for every i ∈ {1, . . . , n}. Then
the optimal 1-median cost of A is the same as the optimal 1-median cost of B.

Proof. Recall that 1-median cost of an instance A with respect to a center c ∈ Rd is denoted
by Φ(c, A) ≡

∑
ai∈A ∥ai − c∥. Let c∗

1 be the optimal 1-median of A. Furthermore, we can
assume that c∗

1 ∈ co(A) since the optimal 1-median lies in the convex hull of A (see e.g.
Remark 2.1 in [39]). Similarly, let c∗

2 ∈ co(B) be the optimal 1-median of B. Now, we
show that Φ(c∗

1, A) ≥ Φ(c∗
2, B) and Φ(c∗

1, A) ≤ Φ(c∗
2, B) using the following sequence of

inequalities:

Φ(c∗
1, A) =

∑
ai∈A

∥ai − c∗
1∥

=
∑

ai∈A

∥R(ai) − R(c∗
1)∥, ∵ R preserves the pairwise distances

=
∑

bi∈B

∥bi − R(c∗
1)∥, ∵ R(ai) = bi

≥
∑

bi∈B

∥bi − c∗
2∥, ∵ c∗

2 is the optimal 1-median of B

= Φ(c∗
2, B)

Similarly, we show that Φ(c∗
2, B) ≥ Φ(c∗

1, A) as follows:

Φ(c∗
2, B) =

∑
bi∈B

∥bi − c∗
2∥

=
∑

bi∈B

∥R−1(bi) − R−1(c∗
2)∥, ∵ R−1 preserves the pairwise distances

=
∑

ai∈A

∥ai − R−1(c∗
2)∥, ∵ R−1(bi) = ai

≥
∑

ai∈A

∥ai − c∗
1∥, ∵ c∗

1 is the optimal 1-median of A

= Φ(c∗
1, A)

This proves that Φ(c∗
1, A) = Φ(c∗

2, B). Hence it proves the lemma. ◀

Therefore, Lemma 26 and 27 together proves Lemma 25.

B Bi-criteria Inapproximability: k-means

Here, we again use the same reduction that we used earlier for the k-median problem in
Sections 1.2, 3, and 4.1. Using this, we establish the following theorem.

▶ Theorem 28. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs G (with m edges) to Euclidean k-means instances I = (X , k) that satisfies the
following properties:
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1. If G has a vertex cover of size k, then OPT (X , k) ≤ m − k

2. For any 1 < λ ≤ 2 and β <
2
7 ·
(

λ + 5
2

)
, there exists constants ε, δ > 0 such that if G

has no vertex cover of size ≤ (λ − ε) · k, then OPT (X , βk) ≥ m − k + δk.
This theorem is simply an extension of the result of Awasthi et al. [7] to the bi-criteria setting.
Now, let us prove this theorem.

B.1 Completeness
Note that the proof of completeness is already given in [7]. Therefore, we just describe the
main components of the proof for the sake of clarity. To understand the proof, let us define
some notations used in [7]. Suppose F is a subgraph of G. For a vertex v ∈ V (F ), let dF (v)
denote the number of edges in F that are incident on v. Note that, the optimal center for
1-means problem is simply the centroid of the point set. Therefore, we can compute the
optimal 1-means cost of F . The following lemma states the optimal 1-means cost of F .

▶ Lemma 29 (Claim 4.3 [7]). Let F be a subgraph of G with r edges. Then, the optimal
1-means cost of F is

∑
v dF (v)

(
1 − dF (v)

r

)
The following corollary bounds the optimal 1-means cost of a star cluster. This corollary is
implicitly stated in the proof of Claim 4.4 of [7].

▶ Corollary 30. The optimal 1-means cost of a star cluster with r edges is r − 1.

Using the above corollary, we give the proof of completeness. Let V = {v1, . . . , vk} be a
vertex cover of G. Let Si denote the set of edges covered by vi. If an edge is covered by
two vertices i and j, then we arbitrarily keep the edge either in Si or Sj . Let mi denote
the number of edges in Si. We define {X (S1), . . . , X (Sk)} as a clustering of the point set X .
Now, we show that the cost of this clustering is at most m−k. Note that each Si forms a star
graph with its edges sharing the common vertex vi. The following sequence of inequalities
bound the optimal k-means cost of X .

OPT (X , k) ≤
k∑

i=1
Φ∗(Si)

(Corollary 30)=
k∑

i=1
(m(Si) − 1) = m − k.

B.2 Soundness
For the proof of soundness, we prove the following contrapositive statement: “For any
constant 1 < λ ≤ 2 and β < 2

7 ·
(
λ + 5

2
)
, there exists constants ε, δ > 0 such that if

OPT (βk) ≤ (m − k + δk) then G has a vertex cover of size at most (λ − ε)k, for ε = Ω(δ).”
Let C denote an optimal clustering of X with βk centers. We classify its optimal clusters
into two categories: (1) star and (2) non-star. Suppose there are t1 star clusters: S1, . . . , St1 ,
and t2 non-star clusters: F1, F2, . . . , Ft2 . Note that t1 + t2 equals βk. The following lemma
bounds the optimal 1-means cost of a non-star cluster.

▶ Lemma 31 (Lemma 4.8 [7]). The optimal 1-means cost of any non-star cluster F with m

edges is at least m − 1 + δ(F ), where δ(F ) ≥ 2
3 . Furthermore, there is an edge (u, v) ∈ E(F )

such that dF (u) + dF (v) ≥ m + 1 − δ(F ).

In the original statement of the lemma in [7], the authors mentioned a weak bound of
δ(F ) > 1/2. However, in the proof of their lemma they have shown δ(F ) > 2/3 > 1/2.
This difference does not matter when we consider inapproximability of the k-means problem.
However, this difference improves the β value in bi-criteria inapproximability of the k-means
problem.
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▶ Corollary 32 ([7]). Any non-star cluster F has a vertex cover of size at most 1 + 5
2 · δ(F ).

Proof. Suppose (u, v) be an edge in F that satisfies the property: dF (u) + dF (v) ≥ m +
1 − δ(F ), by Lemma 31. This means that u and v covers at least m(F ) − δ(F ) edges of F .
We pick u and v in the vertex cover, and for the remaining δ(F ) edges we pick one vertex
per edge. Therefore, F has a vertex cover of size at most 2 + δ(F ). Since δ(F ) ≥ 2

3 , by
Lemma 31, we get 2 + δ(F ) ≤ 1 + 5

2 · δ(F ). Hence, F has a vertex cover of size at most
1 + 5

2 · δ(F ). This proves the corollary. ◀

Now, the following sequence of inequalities bound the vertex cover size of the enire graph G.

|V C(G)| ≤
t1∑

i=1
|V C(Si)| +

t2∑
i=1

|V C(Fi)|

≤ t1 +
t2∑

i=1

(
1 + 5

2 · δ(Fi)
)

(using Corollary 32)

= t1 + t2 + 5
2 ·

t2∑
i=1

δ(Fi)

Since the optimal k-means cost OPT (X , βk) =
t1∑

i=1
(m(Si) − 1) +

t2∑
i=1

(m(Fi) − 1 + δ(Fi)) ≤

m − k + δk, and t1 + t2 = βk. Therefore,
t2∑

i=1
δ(Fi) ≤ (β − 1)k + δk. On substituting this

value in the previous equation, we get the following inequality:

|V C(G)| ≤ t1 + t2 + 5
2 · (β − 1)k + 5

2 · δk

= βk + 5
2 · (β − 1)k + 5

2 · δk, (∵ t1 + t2 = βk)

≤ (λ − ε)k, for any β <
2
7 ·
(

λ + 5
2

)
and appropriately small constants ε, δ > 0

This proves the soundness condition and thus completes the proof of Theorem 28.
Next, we state a corollary of Theorem 28 that gives the main bi-criteria inapproximability

result for the k-means problem.

▶ Corollary 33. For any constant 1 < β < 1.28, there exists a constant ε′ > 0 such that
there is no (1 + ε′, β)-approximation algorithm for the k-means problem assuming the Unique
Games Conjecture. Moreover, the same result holds for any 1 < β < 1.1 under the assumption
that P ̸= NP.

Proof. Suppose Vertex Cover can not be approximated to any factor smaller than λ − ε, for
some constants ε, λ > 0. In the proof of Corollary 15, we showed that k ≥ m

2∆ for all the
hard Vertex Cover instances. In that case, the second property of Theorem 28 implies that
OPT (X , βk) ≥ (m − k) + δk ≥ (1 + δ

2∆ ) · (m − k). Thus, the k-means problem can not be
approximated within any factor smaller than 1 + δ

2∆ = 1 + Ω(ε), with βk centers. Now, let
us compute the value of β using the value of λ. We know that β <

2
7 ·
(

λ + 5
2

)
. Consider

the following two cases:
By Corollary 13, Vertex Cover is hard to approximate within any factor smaller than 2 − ε

on bounded degree triangle-free graphs assuming UGC. Hence λ = 2 and thus β < 1.28
assuming UGC.
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By Theorem 7, Vertex Cover is hard to approximate within any factor smaller than 1.36
on bounded degree triangle-free graphs assuming P ̸= NP. Hence λ = 1.36 and thus
β < 1.1 assuming P ̸= NP.

This completes the proof of the corollary. ◀
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