6,107 research outputs found

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Using Evolutionary Mutation Testing to improve the quality of test suites

    Get PDF
    Mutation testing is a method used to assess and improve the fault detection capability of a test suite by creating faulty versions, called mutants, of the system under test. Evolutionary Mutation Testing (EMT), like selective mutation or mutant sampling, was proposed to reduce the computational cost, which is a major concern when applying mutation testing. This technique implements an evolutionary algorithm to produce a reduced subset of mutants but with a high proportion of mutants that can help the tester derive new test cases (strong mutants). In this paper, we go a step further in estimating the ability of this technique to induce the generation of test cases. Instead of measuring the percentage of strong mutants within the subset of generated mutants, we compute how much the test suite is actually improved thanks to those mutants. In our experiments, we have compared the extent to which EMT and the random selection of mutants help to find missing test cases in C++ object-oriented systems. We can conclude from our results that the percentage of mutants generated with EMT is lower than with the random strategy to obtain a test suite of the same size and that the technique scales better for complex programs

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    Costing JIT Traces

    Get PDF
    Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute frequently. The AJITPar project aims to investigate whether the information in JIT traces can be used to make better scheduling decisions or perform code transformations to adapt the code for a specific parallel architecture. To achieve this goal, a cost model must be developed to estimate the execution time of an individual trace. This paper presents the design and implementation of a system for extracting JIT trace information from the Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We perform a search of the cost model parameter space using genetic algorithms to identify the best weightings for those parameters. We test the accuracy of these cost models for predicting the cost of individual traces on a set of loop-based micro-benchmarks. We also compare the accuracy of the cost models for predicting whole program execution time over the Pycket benchmark suite. Our results show that the weighted cost model using the weightings found from the genetic algorithm search has the best accuracy

    A Systematic Review of the Application and Empirical Investigation of Search-Based Test Case Generation

    Get PDF
    Otsingupõhine tarkvara testimine kasutab metaheuristilisi algoritme, et automatiseerida testide genereerimist. Selle töö eesmärgiks on osaliselt taasluua 2010. aastal kirjutatud Ali et al. artikkel, et uurida, kuidas on aastatel 2008-2015 kasutatud metaheuristilisi algoritme testide loomiseks. See töö analüüsib, kuidas on antud artiklid koostatud ning kuidas neis on algoritmide maksumust ja efektiivsust hinnatud. Kogutud tulemusi võrreldakse Ali et al. tulemustega.Search based software testing uses metaheuristic algorithms to automate the generation of test cases. This thesis partially replicates a literature study published in 2010 by Ali et al. to determine how studies published in 2008-2015 use metaheuristic algorithms to automate the generation of test cases. The thesis analyses how these studies were conducted and how the cost-effectiveness is assessed in these papers. The trends detected in the new publications are compared to those presented in Ali et al

    Search-Based Mutant Selection for Efficient Test Suite Improvement: Evaluation and Results

    Get PDF
    Context: Search-based techniques have been applied to almost all areas in software engineering, especially to software testing, seeking to solve hard optimization problems. However, the problem of selecting mutants to improve the test suite at a lower cost has not been explored to the same extent as other problems, such as mutant selection for test suite evaluation or test data generation. Objective: In this paper, we apply search-based mutant selection to enhance the quality of test suites efficiently. Namely, we use the technique known as Evolutionary Mutation Testing (EMT), which allows reducing the number of mutants while preserving the power to refine the test suite. Despite reported benefits of its application, the existing empirical results were derived from a limited number of case studies, a particular set of mutation operators and a vague measure, which currently makes it difficult to determine the real performance of this technique. Method: This paper addresses the shortcomings of previous studies, providing a new methodology to evaluate EMT on the basis of the actual improvement of the test suite achieved by using the evolutionary strategy. We make use of that methodology in new experiments with a carefully selected set of real-world C++ case studies. Results: EMT shows a good performance for most case studies and levels of demand of test suite improvement (around 45% less mutants than random selection in the best case). The results reveal that even a reduced subset of mutants selected with EMT can serve to increase confidence in the test suite, especially in programs with a large set of mutants. Conclusions: These results support the use of search-based techniques to solve the problem of mutant selection for a more efficient test suite refinement. Additionally, we identify some aspects that could foreseeably help enhance EMT
    corecore