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Süstemaatiline ülevaade ja empiiriline uurimus otsingupõhiste 

algoritmide kasutusest testide loomise 

Lühikokkuvõte: 

Otsingupõhine tarkvara testimine kasutab metaheuristilisi algoritme, et automatiseerida 

testide genereerimist. Selle töö eesmärgiks on osaliselt taasluua 2010. aastal kirjutatud Ali 

et al. artikkel, et uurida, kuidas on aastatel 2008-2015 kasutatud metaheuristilisi algoritme 

testide loomiseks.  See töö analüüsib, kuidas on antud artiklid koostatud ning kuidas neis 

on algoritmide maksumust ja efektiivsust hinnatud. Kogutud tulemusi võrreldakse Ali et 

al. tulemustega. 

Võtmesõnad: 

Tarkvara testimine, otsingupõhine tarkvara testimine, süstemaatiline ülevaade 

CERCS:   P175 

A Systematic Review of the Application and Empirical Investigation of 

Search-Based Test Case Generation 

Abstract: 

Search based software testing uses metaheuristic algorithms to automate the generation of 

test cases. This thesis partially replicates a literature study published in 2010 by Ali et al. 

to determine how studies published in 2008-2015 use metaheuristic algorithms to 

automate the generation of test cases. The thesis analyses how these studies were 

conducted and how the cost-effectiveness is assessed in these papers. The trends detected 

in the new publications are compared to those presented in Ali et al. 
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1. Introduction 

Software testing is an integral part of software engineering. Testing helps to determine the 

strengths and vulnerabilities of a software program. According to Anand et al. [1] testing 

can take more than 50% of the total cost during software development. Thus, it is 

beneficial to automate parts of this process to reduce the cost. 

The software testing life cycle has many phases: requirements/design review; test 

planning; test design; test environment setup; test execution; test reporting [2]. Of all these 

phases, test design is the costliest. Manually coming up with all the different inputs can 

take a lot of time and there is always the possibility of human error e.g. forgetting one set 

of inputs. Thus, in order to speed up this phase and make it more efficient, automated test 

data generation comes into play. Automatically generating test data helps create the test 

cases that are in minimum needed to achieve the test goal.  

Search based software testing (SBST) is a part of search based software engineering. It 

aims at automating the process of test data generation with the use of metaheuristic search 

(MHS) algorithms. Search based algorithms used in SBST use a fitness function to guide 

the search of the test inputs [1].  

Focussing on the years 1996 – 2007, Ali et al. [3] give an overview of the state of how 

SBST has been applied and also about its cost-effectiveness. They also provide a 

framework on how a proper survey study in this field should be conducted. Since their 

paper was published in 2010 and it only analysed papers published until 2007, a similar 

study could be conducted covering the subsequent time period (2008 – 2015) to analyse 

whether new trends have emerged within search based software testing. This thesis aims at 

replicating some elements of the study conducted by Ali et al. and to compare the 

findings. 

The paper by Ali et al. [3] has three research questions. Two of them had three 

respectively five sub-questions. Thus, if only counting the questions on the lowest level of 

the hierarchy, nine research questions were investigated. Of these nine research questions 

investigated in [3], the following five research questions are addressed in this thesis:  

RQ1. For which metaheuristic search algorithms, test levels, and fault types is there 

credible evidence of cost-effectiveness in the literature?  

RQ2. How convincing is the evidence of cost and effectiveness of search-based software 

testing techniques, based on empirical studies that report credible results? 



 5 

RQ3. How well is the random variation, inherent in search-based software testing, 

accounted for in the design of empirical studies?  

RQ4. What are the most common alternatives to which SBST techniques are compared?   

RQ5. What are the measures used for assessing cost and effectiveness of search-based 

software testing? 

The thesis is structured as follows. Chapter 2 gives a brief introduction into software 

testing and SBST. Chapter 3 details the research method used in this thesis. Chapter 4 

reports the results of the research. Chapter 5 analyses the results and compares them to 

those of Ali et al. [3]. Chapter 5 also discusses threats to validity. Chapter 6 summarizes 

the study and presents the conclusions.   
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2. Background 

This chapter gives a brief introduction to software testing, SBST and a framework for 

conducting an empirical study in SBST, used by Ali et al. [3]. 

2.1. Software Testing 

Software testing is the process of running a programme with the intent to find errors and 

bugs so that it could be fixed and the best version of the programme could be released for 

use. It is a part of the Software Development Life Cycle. 

The Software Testing Life Cycle (STLC) usually contains the steps requirements/design 

review, test planning, test designing, test environment setup, test execution and test 

reporting [2].  

Of all these steps, the test design step is the costliest. During this step, the tests that are 

going to be used to assess the programme are created based on the requirements or code. 

Test design takes the most effort from the tester during this life cycle. There are a lot of 

possibilities for simple errors to occur (e.g. assembling a set of inputs for testing, but a 

wrong output). Thus, it is beneficial to come up with ways to automate this step and make 

it as effective as possible.  

The tests that are created during test design are grouped together into test scripts, test 

suites or test cases. A test script is a set on instructions that are performed to determine 

whether the system under test performs these actions. A test suite is a collection of test 

cases. A test case contains the input data and the expected output data and the conditions 

under which tests should be executed. Test data is data that is meant to be used in test 

cases.  

An oracle is a mechanism for determining whether a program passes or fails a test [4]. A 

complete oracle should provide the predicted and expected result of the test, compare the 

expected result and the actual result, and determine if the expected result and actual result 

are similar enough for the test to pass. A test verdict is what decides if the test is marked 

as pass/fail after the test has been executed. 

In this thesis, test cases are the point of focus. As in the paper by Ali et al. [3], the 

expected output is not of interest but generating the input data is. 
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2.2. Search Based Software Testing 

Search based software testing (SBST) is a part of search based software engineering 

(SBSE). In SBST, metaheuristic search (MHS) algorithms are used to generate test data. 

The goal is to make finding test data efficient while minimizing the cost of doing so. To 

guide the selection of this, fitness functions are used. Fitness functions help evaluate if the 

test data is good or not and guide the search to areas that might produce even better results 

from the fitness function.  

There are many metaheuristic algorithms, for example: genetic algorithm (GA), simulated 

annealing (SA), particle swarm optimization (PSO), ant colony optimization (ACO), tabu 

search (TS), scatter search (SS), and hill climbing (HC) among others. All the mentioned 

algorithms are briefly introduced.  

Genetic algorithm. Genetic algorithm is inspired by the process of natural selection. First 

a population is created randomly and then each individual’s fit is assessed by the fitness 

function. The best individuals are selected and they are used to create a new population. 

This is an iterative process so this is repeated until a certain number or until the user 

deems necessary [5]. 

Genetic algorithm was first introduced to software testing in 1975 by Holland. Since then 

it has been used in software testing a lot. For example it has been used in test case/test data 

automation (e.g. [6-9]), selection (e.g. [6]), and optimization [7]. 

Simulated annealing. Simulated annealing takes its idea from heating a material and 

them cooling it to get rid of defects [8]. Simulated annealing is an iterative process. In 

each iteration a new point is chosen from its neighbours and then the algorithm either 

stays in the state it was or moves to the neighbouring state. Simulated annealing can be 

used to generate test data [9] and test cases [10], or for test selection and optimization 

[11]. 

Particle swarm optimization. PSO is inspired by the swarming behaviour like bee 

schooling or fish schooling. In each iteration the particles (candidate solutions) move 

around influenced by the local and global optima. When a better solution is found, these 

will become the new local or global optima. This makes the swarm move toward a better 

solution. PSO can be used to generate test cases [12], test case selection [13]. 

Ant colony optimization. Like with the previous metaheuristics, this also has been 

inspired by nature. In particular how ants find the shortest path to food by taking 

advantage of the pheromones deposited on the ground by others. Paths that did not lead to 
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any food and are so less used and the pheromones on the ground start to evaporate. As an 

optimization technique the algorithm is an iterative process, during each iteration an ant 

moves to the next state. When all ants have completed their trail, the trails are marked with 

pheromone in each state and it evaporates after each iteration. This way the most used path 

will be the result. ACO has been used to generate test cases [14], tackle optimization 

problems. 

Tabu search. Tabu search moves iteratively from one solution to the neighbouring 

solutions hoping they are better. TS uses memory to memorize previous search results, 

this prevents the algorithm from going back to evaluate a solution more than once.  

Scatter search.  Scatter search was first introduced in 1977 by Glover [15].  SS works 

with a set of solutions (the reference set), then combines the solutions to create better 

ones. The combined sets that are created and evaluated whether they could replace some 

of the solutions in the reference set. SS has been used for scheduling problems, in neural 

networks and for test case generation [16]. 

Hill climbing. Hill climbing is a local search optimization algorithm. It is an iterative 

algorithm that starts off with a random individual, then chooses to move on to neighbours 

if they are deemed better by the algorithm and then repeats this process at the new spot. 

HC has the threat to get stuck in local maxima, so to avoid this, the algorithm can start the 

process again at a random place. HC can be used to generate test data [17] and for test 

case prioritization [18]. 

2.3. Framework 

In their paper, Ali et al. [3] presented a framework for carrying out empirical studies on 

SBST. To be an empirical study was one of the inclusion criteria in the literature survey 

conducted by Ali et al. Therefore, this framework was used as a guideline in this thesis as 

well. The framework consists of four main elements. Firstly, it checks how clearly the test 

problem has been stated. Secondly, it checks how clearly, the MHS algorithms have been 

described. Thirdly, and most importantly, it checks the adequacy of the research design 

used. This part details what exactly should be described in the paper so that its validity can 

be assessed. Lastly, the results must be clear and reproducible.  
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3. Method  

To find relevant literature, first the snowballing method was tried. However, for reasons 

described in the following sub-section, this approach was later discarded. In its place, a 

standard systematic literature review was conducted (cf. Section 3.2 and following). 

3.1. Snowballing 

Snowballing is a systematic literature review process that starts with a start set of papers. 

Then the papers that cite these are gathered in what is called forward snowballing. Then 

the papers that the start set references are also gathered in what is called backwards 

snowballing. According to the exclusion or inclusion criteria, the desired papers are 

chosen.  Then the process is repeated with the new set of papers until no new papers are 

found. 

At the beginning of this thesis project, the idea was to use the papers analysed in [3] as the 

starting set for snowballing following the guidelines provided by Wohlin [19]. However, it 

became apparent that not all the papers Ali et al. [3] analysed were mentioned explicitly 

by every RQ and it would take too much time and resources to do snowballing on the 

papers that were. Therefore, it was decided to do what was done in the original paper, i.e. 

to search various literature repositories.  

3.2. Repository Selection and Search String Definition 

The paper by Ali et al. [3] used the repositories IEEE Xplore, The ACM Digital Library, 

Science Direct (including Elsevier Science), Wiley Interscience, Springer, and MIT Press. 

To get similar results the same repositories were used in this thesis, with the exception of 

MIT Press due to unavailability via the library of the University of Tartu.  

The search string used in the Ali paper [3] was as follows:   

(((“software” AND “test”) OR "test case generation") AND ("evolutionary algorithm" OR 

"hill climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR 

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing" 

OR "ant colony”)) <in abstract, keywords, and title> OR "evolutionary testing” <in 

abstract, keywords, title, and whole content> 

 

First it was tried to recreate the results of the original paper. Although 68 papers were 

analysed and used to answer the research questions, only 19 of these were mentioned in 



 10 

name and author in [3]. Thus, it was checked whether these 19 papers could be found. 18 

were found, one was not. The missing one could be from the fact that access to all 

repositories was not available or within certain repositories Ali et al. [3] added synonyms 

to the search string  but these were not mentioned in the paper (e.g. in IEEE Xplore). 

As this thesis has a smaller scope than the original study and to minimize the number of 

search results, an AND operator was added to the search string that contained the phrases 

“cost”, “effective”, “cost-effectiveness” all connected with an OR operator. The final 

string used in this paper is: 

((((“software” AND “test”) OR "test case generation") AND ("evolutionary algorithm" 

OR "hill climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR 

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing" 

OR "ant colony”)) <in abstract, keywords, and title> OR "evolutionary testing” <in 

abstract, keywords, title, and whole content>) AND (“cost” OR “effective” OR “cost-

effective”) 

 

Using the search string in different repositories requires adjustments. For example, since 

the “evolutionary testing” part of the search string also looks at the entire content of the 

paper and is connected to the rest of the string with an OR operator, it was sometimes 

easier to split the string in half at the OR operator. Later the results could be mixed 

together and duplicates could be removed. The split was done in ACM Digital Library and 

IEEE Xplore. 

When using the search string in the Springer repository, it became apparent that there were 

too many results that were irrelevant to this research. To filter the search more, the search 

string was modified. The modified search string was as follows (the modification has been 

underlined): 

((("software" AND "test case generation") AND ("evolutionary algorithm" OR "hill 

climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR 

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing" 

OR "ant colony”)) OR "evolutionary testing") AND ("cost" OR "effective" OR "cost-

effective") 

 

Similarly, with the Wiley repository, there were too many out of context results (a lot of 

medical articles). In order to filter between these a NOT operator was added in front of the 
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terms “medical”, “medicine”, “biology” (all of them connected with an OR operator). This 

decreased the results from about 180 to 48, a considerable amount. 

3.3. Paper Selection  

All of the results from the repositories were run through a small self-made program that 

removed all duplicates. After duplicate removal, 597 papers were left for further analysis. 

Firstly, the title and abstract of these papers were read. As in [3] papers that 

• had abstracts or titles that did not discuss test case generation were excluded 

• had abstracts or titles that did not discuss the application of any MHS algorithm to 

automate test case generation were excluded 

After applying these exclusion criteria 108 papers were left for further analysis.  

The 108 papers were read in full and based on the second set of exclusion criteria either 

excluded or included. The second set of criteria used in [3] was as follows: 

• The papers had to automate test case generation were excluded. 

• The papers had to report an empirical study were excluded. (see 3.2.) 

• Posters, extended abstracts, technical reports, PhD dissertations, and papers with 

less than three pages were excluded. 

Table 1. Number of papers after applying exclusion criteria 

 

The two rounds of exclusion criteria left a total on 38 papers. Among the 38 papers, there 

was one paper that was published at a conference and later in a journal. Since the context 

is the same, the journal was chosen to be analysed in this thesis, thus reducing the total 

Repository 

Search string results 

(after removing 

duplicates) 

Number of papers left after 

applying the 1st set? Of 

exclusion criteria 

Number of papers left after 

applying the 2nd set on 

exclusion criteria 

IEEE Explore 361 73 23 

ACM 134 24 8 

Wiley 43 4 1 

ScienceDirect 55 8 6 

Springer 4 0 0 

Number of 

papers 
597 109 38 
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number of papers analysed to 37. The numbers of papers found in each repository are 

shown in Table 1. 

3.4. Data Extraction 

To gather all the relevant information from each paper an Excel spreadsheet for each set of 

inclusion/exclusion criteria was created. For the first set of criteria only the title and 

author(s) of the paper were gathered.  The papers that were chosen were marked and 

transferred to another spreadsheet. 

For the second set of criteria a more extensive spreadsheet was created. This spreadsheet1 

already contained the selected papers from the previous step, so the author(s) and title 

were already present. The same type of data was collected in this thesis as in the paper by 

Ali et al. [3]. This data includes the following:  

• Test level 

• Fault type 

• MHS algorithm 

• Test purpose 

• Comparison baseline 

• Cost and effectiveness results 

• Cost measures 

• Effectiveness measures 

• Random variation (accounted for or not)  

  

                                                 
1 The spreadsheet is accessible at: https://www.dropbox.com/s/pynrbn1r3w4h3ar/heidi.xlsx?dl=0 
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4. Results 

This chapter outlines the results found for each research question. After each research 

question there is also a discussion subsection in which the results of this thesis are 

compared to the results found by Ali et al. [3]. 37 papers are used to answer the research 

questions. Table 2 summarises which paper was used to answer which research question. 

The check indicates that a paper was used to answer the corresponding research question. 

All the papers answered RQ3-5, 15 papers were used to answer RQ1 and 6 to answer 

RQ2. 

Table 2. Table indicating which papers answers which research questions 

ID Title Authors RQ1 RQ2 RQ3 RQ4 RQ5 

1 

A First Approach to Test Case 

Generation for BPEL 

Compositions of Web Services 

Using Scatter Search 

Blanco et al. 

[20] 
✓  ✓ ✓ ✓ 

2 
A tabu search algorithm for 

structural software 
Díaz et al. [21] ✓  ✓ ✓ ✓ 

3 

Adapting ant colony 

optimization to generate test 

data for software structural 

testing 

Mao et al. [14]   ✓ ✓ ✓ 

4 

An approach to generate 

software test data for a specific 

path automatically with genetic 

algorithm 

Cao et al. [22] ✓  ✓ ✓ ✓ 

5 

An Improved Memetic 

Algorithm with Method 

Dependence Relations 

(MAMDR) 

Aburas and 

Groce [23] 
✓  ✓ ✓ ✓ 

6 

Application of Genetic 

Algorithm and Tabu Search in 

Software Testing 

Rathore et al. 

[24] 
  ✓ ✓ ✓ 

7 
Automated test data generation 

using a scatter search approach 

Blanco et al. 

[16] 
✓ ✓ ✓ ✓ ✓ 

8 

Automatic Generating All-Path 

Test Data of a Program Based 

on PSO 

Li and Zhang 

[12] 
✓  ✓ ✓ ✓ 

9 

Automatic generation of 

software test cases based on 

improved genetic algorithm 

Dong and Peng 

[25] 
  ✓ ✓ ✓ 
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10 

Automatic generation of 

software test data based on 

hybrid particle swarm genetic 

algorithm 

Ding et al. [26]   ✓ ✓ ✓ 

11 

Automatic generation of test 

data for path testing by 

adaptive genetic simulated 

annealing algorithm 

Zhang and 

Wang [27] 
  ✓ ✓ ✓ 

12 

Automatic Path-Oriented Test 

Data Generation Using a Multi-

population Genetic Algorithm 

Chen and Zhong 

[28] 
  ✓ ✓ ✓ 

13 

Automatic program 

instrumentation in generation 

of test data using genetic 

algorithm for multiple paths 

coverage 

Maragathavalli 

et al. [29] 
  ✓ ✓ ✓ 

14 

Automatic test case generation 

for unit software testing using 

genetic algorithm and mutation 

analysis 

Khan and 

Amjad [30] 
  ✓ ✓ ✓ 

15 

Automatic Test Data 

Generation Based on SAMPSO 

Algorithm 

Wei and Jiang 

[31] 
  ✓ ✓ ✓ 

16 

Automatic Test Data 

Generation for Software Path 

Testing Using Evolutionary 

Algorithms 

Latiu et al. [32]   ✓ ✓ ✓ 

17 

Combining Genetic Algorithms 

and Constraint Programming to 

Support Stress Testing of Task 

Deadlines 

Di Alesio et al. 

[33] 
✓ ✓ ✓ ✓ ✓ 

18 

Comparing algorithms for 

search-based test data 

generation of Matlab® 

Simulink® models 

Ghani et al. [35]   ✓ ✓ ✓ 

19 

Comparison of Two Fitness 

Functions for GA-Based Path-

Oriented Test Data Generation 

Chen et al. [36]   ✓ ✓ ✓ 

20 

Critical Components Testing 

Using Hybrid Genetic 

Algorithm 

Jeya Mala et al. 

[37] 
  ✓ ✓ ✓ 

21 

Diversity oriented test data 

generation using metaheuristic 

search techniques 

Bueno et al. [38] ✓ ✓ ✓ ✓ ✓ 

22 

Enhanced Genetic Algorithm 

For MC/DC Test Data 

Generation 

El-Serafy et al. 

[39] 
  ✓ ✓ ✓ 

23 

Evolutionary Algorithms for 

Object-Oriented Test Data 

Generation 

Suresh et al. 

[40] 
  ✓ ✓ ✓ 
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24 
Evolutionary Testing of 

Object-Oriented Software 

Silva and van 

Someren [41] 
  ✓ ✓ ✓ 

25 
GA-based multiple paths test 

data generator 

Ahmed and 

Hermadi [42] 
✓  ✓ ✓ ✓ 

26 

Generating combinatorial test 

cases using Simplified Swarm 

Optimization (SSO) algorithm 

for automated GUI functional 

testing 

Ahmed et al. 

[43] 
✓  ✓ ✓ ✓ 

27 

Generating Test Data for 

Structural Testing Based on 

Ant Colony Optimization 

Mao et al. [44]   ✓ ✓ ✓ 

28 

Hybridizing Evolutionary 

Testing with Artificial Immune 

Systems and Local Search 

Liaskos and 

Roper [45] 
  ✓ ✓ ✓ 

29 

Multi-Objective Test 

Generation for Software 

Product Lines 

Henard et al. 

[46] 
✓ ✓ ✓ ✓ ✓ 

30 

Orthogonal Exploration of the 

Search Space in Evolutionary 

Test Case Generation 

Kifetew et al. 

[47] 
  ✓ ✓ ✓ 

31 

PWiseGen: Generating test 

cases for pairwise testing using 

genetic algorithms 

Flores and 

Cheon [48] 
  ✓ ✓ ✓ 

32 

Reformulating Branch 

Coverage as a Many-Objective 

Optimization Problem 

Panichella et al. 

[50] 
  ✓ ✓ ✓ 

33 

Search Based Testing of 

Embedded Systems 

Implemented in IEC 61131-3: 

An Industrial Case Study 

Doganay et al. 

[51] 
✓ ✓ ✓ ✓ ✓ 

34 
Search-based testing using 

constraint-based mutation 

Malburg and 

Fraser [34] 
✓ ✓ ✓ ✓ ✓ 

35 
Test Data Generation Approach 

for Basis Path Coverage 
Jiang et al. [52]   ✓ ✓ ✓ 

36 

Test Data Generation for 

Multiple Paths Based on Local 

Evolution 

Xiangjuan et al. 

[49] 
✓  ✓ ✓ ✓ 

37 
Test Data Generation From 

Hibernate Constraints 

Marin and 

Doungsa-ard 

[53] 

✓  ✓ ✓ ✓ 
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4.1. RQ1 – For Which Metaheuristic Search Algorithms, Test Levels, 

and Fault Types Is There Credible Evidence for the Study of Cost-

Effectiveness?   

The papers that are qualified to answer this RQ must comply to the following criteria set 

by Ali et al. [3]: 

• Must account for random variation 

• Comparison baseline must be a local SBST technique or a simpler non-SBST 

technique 

After going through all 37 papers and applying the criteria mentioned above 15 papers 

were left. The details of these papers can be seen in Table 3. Among these 15 papers using 

GA was the most popular with 8 uses (although memetic algorithm is an extension of 

GA). SS was used twice, TS, HC, memetic algorithm (MA), PSO, SA, simulated repulsion 

(SR) and simplified swarm optimization (SSO) were all used once. The testing level for all 

papers but one was unit, the exception being system. None of the papers focused on 

finding fault types. 

Table 3. List of papers with the MHS algorithm used, test level and fault type used to 

answer the first research question. 

ID Authors MHS algorithm used Test level Fault type 

1 Blanco et al. [20] SS unit - 

2 Díaz et al. [21] TS unit - 

4 Cao et al. [22] GA unit - 

5 Aburas and Groce [23] MA unit - 

7 Blanco et al. [16] SS unit - 

8 Li and Zhang [12] PSO unit - 

17 Di Alesio et al. [33] GA system - 

21 Bueno et al. [38] SA, GA, SR unit - 

25 Ahmed and Hermadi [42] GA unit - 

26 Ahmed et al. [43] SSO unit - 

29 Henard et al. [46] GA unit - 

33 Doganay et al. [51] HC unit - 

34 Malburg and Fraser [34] GA unit - 
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36 Xiangjuan et al. [49] GA unit - 

37 Marin and Doungsa-ard [53] GA unit - 

 

4.2. RQ2 - How Convincing Is The Evidence of Cost and Effectiveness of 

Search-Based Software Testing Techniques, Based on Empirical 

Studies That Report Credible Results? 

According to Ali et al. [3] for a paper to have convincing evidence, it has to comply to the 

criteria set in RQ1 and in addition to that: 

• Studies must report proper descriptive statistics or statistical hypothesis testing 

results 

After applying this to the 15 papers from the previous RQ, there were only 6 left. Of these 

6 the most common comparison baseline was RS, all but one used this as a baseline. Three 

papers also used GA as a baseline. In addition half of the papers used more than one 

comparison baseline. When looking at the result highlights in 5 cases the proposed 

technique was superior to the baseline(s). In only one case the proposed algorithm did not 

prove to be better than RS. The test purpose varies in the papers, not all of them have the 

same goal. Two papers were focused on maximising the coverage result, one looked to 

find worst case scenarios, one looked to improve a MHS algorithm, one paper introduced 

a new method to generate test cases, and one focused on testing software product lines. 

Table 4. Papers that provide convincing evidence for cost and effectiveness 

ID Authors Test purpose 
Comparison 

baseline 
Result highlights 

7 
Blanco et 

al. [16] 

Applying SS to 

automated test case 

generation to achieve 

high branch coverage 

RS, GA 

(different 

versions), SS 

(different 

versions), TS 

The authors found that the 

proposed algorithm generates 

fewer test cases to reach the 

same or better percentage of 

coverage 
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17 
Di Alesio 

et al. [33] 

Use GA and CP to 

automate the 

generation of test 

cases to search for 

worst case scenarios 

where tasks are likely 

to miss deadlines 

GA, CP 

The technique was tested on 

five different systems and the 

study concluded that the 

proposed technique (GA+CP) 

is nearly as efficient as GA 

and practically as effective as 

CP 

21 
Bueno et 

al. [38] 

Present a new testing 

technique that can be 

applied to automated 

test data generation 

RS 

The proposed algorithm 

performed better (in terms of 

coverage) in 10 out of the 12 

cases. 

The statistical results point out 

that the algorithm is more 

effective than RTS while only 

in one pair of coverage values 

is RTS more effective than the 

proposed algorithm. The 

proposed algorithm did not 

perform as well when test set 

sizes were defined smaller. 

29 
Henard et 

al. [46] 

Minimize the cost 

(number of tests) and 

maximize pairwise 

coverage 

RS 

For the same (or higher) 

pairwise coverage the 

algorithm requires less 

products making the cost 

lower. 

33 
Doganay 

et al. [51] 

Automatically 

generate test data to 

maximize MC/DC 

coverage for 

embedded control 

software 

RS 

The authors found that RS is 

more efficient in the majority 

of cases (HC outperforms RS 

in only about 30% of the 

cases). The results did not 

show a clear winner between 

the two approaches, but on 

average RS performed better. 
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34 

Malburg 

and 

Fraser 

[34] 

To overcome the 

disadvantages a MHS 

algorithm might 

possess with the help 

of constraint solving 

RS, GA, DSE 

The proposed method 

surpassed GA and RS 

significantly in branch 

coverage. When comparing to 

DSE, in 9 out of 20 examples 

the proposed algorithm 

achieved higher branch 

coverage, for the remaining 11 

branch coverage was the same 

(no statistically significant 

difference) 

RS – Random search, CP – constraint programming, DSE – dynamic symbolic execution, 

RTS – random test sets 

4.3. RQ3 - How Well Is The Random Variation Inherent in Search-Based 

Software Testing, Accounted for in the Design of Empirical Studies? 

To assess how well random variation is present in the analysed papers, there are first two 

categories: one where random variation is accounted for and the other is random variation 

is not accounted for. Like Ali et al. [3], a paper is considered to be in the first category if 

the number of runs is presented (and it is more than 10), sufficient evidence that the runs 

are independent, and the data analysis method used to compare MHS algorithms and the 

baseline is reported. Among the first category (random variation is accounted for) the 

papers are further divided into three categories:  

1. Poor descriptive statistics – only the average of the result is reported 

2. Good descriptive statistics – levels of variation or central tendencies are reported 

3. Statistical data analysis – in addition to the previous category’s (‘Good’) demands 

the paper had to report the results of a statistical hypothesis test and establish the 

statistical significance of differences 

The second category (random variation not accounted for) is divided into two sub-

categories: random variation not discussed or accounted of, insufficient number of runs. 

Among the 37 papers analysed 8 did not account for random variation. All 8 of these were 

in the first sub-category – random variation not discussed or accounted for. In these papers 

most often the number of runs was not mentioned. 

Of the remaining 29 that accounted for random variation, 16 were categorized under ‘poor 

descriptive statistics’. These papers only described the average of their results. Three 
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papers were categorized as ‘Good descriptive statistics’. These papers brought out more 

than the ones in the previous category and analysed their techniques further. Statistical 

data analysis was found to be used in 10 papers. Some of the statistical test methods used 

were Mann-Whitney U test and t-test. 

The distribution of the papers can also be seen in Table 5. 

Table 5. Distribution of how random variation is reported in 37 papers 

Random Variation Accounted For 
Random Variation not 

accounted for 

Poor 

descriptive 

statistics 

Good 

descriptive 

statistics 

Statistical data analysis 

Not 

discussed or 

accounted 

for 

Insufficient 

number of 

runs 

16 3 10 8 0 

 

4.4. RQ4 - What Are the Most Common Alternatives to Which SBST 

Techniques Are Compared? 

Baselines are important to show how the proposed algorithm works better and also justify 

why the proposed algorithm is needed. 

In order for the results to be comparable, the alternative techniques are categorised the 

same way as Ali et al. [3], divided into four categories. These four categories are: 

1. Baseline of comparison is a global MHS algorithm 

2. Baseline of comparison is a local MHS algorithm 

3. Baseline of comparison is not a SBST technique 

4. Baseline of comparison was not discussed 

Of the 37 papers only 3 did not have a comparison baseline. These papers proposed a new 

method for software test case generation, but did not compare it to anything or compared 

two or more MHS algorithms to each other. 

A global MHS baseline was used in 31 papers. Out of these 31, using a genetic algorithm 

and its extensions was the most popular with 24 uses. In some papers the proposed 

algorithm was even compared to different versions of genetic algorithms. Particle swarm 

optimization was used in 5 papers and simulated annealing and its extensions in 2. Both of 

these were used significantly less than genetic algorithms.  
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Local MHS algorithms, TS, were used only once. Making this option (using local SBST 

techniques as a baseline) the least popular.  

Using techniques that were not SBST techniques was almost as popular as using global 

MHS algorithms. These techniques were used in 21 papers. A random generator was used 

in 14. Constraint solving was used once. Other techniques were used in 6 papers. Among 

the non-SBST techniques using a random generator was the most popular.  

All of these results can be seen in Table 6. In addition, a table containing all the papers, 

the MHS technique and the baseline that was used can be seen in the appendix 8.1. 

Table 6. Comparison baselines 

Global SBST technique 

Local 

SBST 

technique 

Non-SBST technique 
Not 

discussed 

GA+ SA+ PSO TS Random Constraint Others 

24 2 5 1 14 1 6 3 

GA+ – genetic algorithm and its extensions, SA+ – simulated annealing and its extensions 
 

4.5. RQ5 - What Are the Measures Used for Assessing Cost and 

Effectiveness of Search-Based Software Testing? 

The cost and effectiveness can be measured in different ways, so the answer to this RQ is 

divided into two parts, first cost and then effectiveness. 

4.5.1. Cost 

Cost is one of the main factors driving the purpose to find better ways to automate test 

case generation.  

Like in the paper by Ali et al. [3] the cost measures were divided into two categories:  

1. Cost of finding the target (the cost of automating test case generation) 

2. Cost of executing the generated test suite 

In the category “cost of executing the generated test suite” the size of the test suite was the 

sub-category used by Ali et al. [3] and the same category was used here. The category 

“cost of finding the target” has the subcategories test case generation time, number of 

fitness evaluations, number of iterations (e.g. number of generations in genetic 

algorithms), and number of individuals (test cases). The same division was used here.  
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Of the 37 papers analysed 15 papers did not report using any cost measures, these papers 

oftentimes focused on the effectiveness of the proposed technique. Cost measures in the 

first category (cost of finding the target) were used 39 times. Among these 39, the number 

of iterations was used 13 times. The number of individuals was used 8 times and the 

number of fitness evaluations was used once. The most popular measure in this category 

was test time generated with 18 uses. In the second category, size of the test suite was 

used twice.  The distribution of cost measures can be seen in Table 7. 

Table 7. Measures of cost used in 37 papers 

Cost of finding the target 

Cost of 

executing the 

final suite No cost 

measure 
Number of 

iterations 

Number of 

individuals 

Number of 

fitness 

evaluations 

Test case 

generation 

time 

Size of test 

suite 

13 8 1 18 2 15 

 

4.5.2. Effectiveness 

In the paper by Ali et al. [3], the measures for effectiveness are divided into four 

categories. These categories are: 

1. Coverage-based measures 

2. Fault based measures 

3. Others 

4. No cost measure 

The first category, coverage-based measures, is divided into three sub-categories: control-

flow coverage criteria (branch, statement, path, condition and condition-decision 

coverage), data-flow coverage criteria (all-DU coverage), and n-wise coverage criteria (for 

MHS algorithms in combinatorial testing). There are no sub-categories for fault based 

measures. Under fault based measures mutation analysis was the main strategy used, thus 

mutation score was classified under here. A few papers used the number of faults found to 

assess the effectiveness, so these papers were also classified ‘fault based measures’. The 

other measures used in the analysed papers that did not qualify under the first two 
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categories were classified under the third category, ‘Others’. Within in this, ‘Time based 

measures’, ‘The fitness value of individuals’ and ‘Misc.’ are three subcategories identified 

by Ali et al. [3] and also used here. Papers that did not assess the effectiveness of the 

proposed technique were categorised under the last category (No cost measure). 

Table 8. Distribution of effectiveness measures in 37 papers 

 

Of the collected 37 papers there were 5 that did not report the effectiveness of the 

proposed technique at all. 22 papers used coverage based measures to assess the 

effectiveness of the proposed technique. Of those 22 papers, 17 used control-flow criteria, 

making this the most popular option within coverage based measures. Data-flow coverage 

criteria were used 2 times and n-wise coverage criteria were used only once. 5 papers used 

fault based measures to measure the effectiveness. Only one paper that was analysed used 

n-wise coverage criteria to evaluate the effectiveness. 8 papers were classified under using 

other effectiveness measures. Of these 8 papers one used ‘Time-based measures’ and two 

used ‘Fitness value of individuals’. 6 papers used other measures that could not be 

classified to any other category, but were still relevant to the paper. The distribution of 

effectiveness measures can also be seen in Table 8. 

  

Coverage-based 

measures Fault 

based 

measures 

Others 
No 

effectiveness 

measure Control-

flow 

Data 

flow 

n-

wise 

Time 

based 

measures 

Fitness value 

of 

individuals 

Misc. 

17 2 1 5 1 2 6 5 
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5. Discussion 

In this chapter the results will be analysed and compared to those of the paper by Ali et al. 

[3]. 

5.1. RQ1 

According to the results presented in the previous chapter (chapter 4.1), there are only 15 

papers among 37 (40%) that provide credible evidence for assessing cost-effectiveness. In 

the paper by Ali et al. [3] this percentage was only 28%. According to these percentages 

the amount of papers that provide good evidence in the study of cost-effectiveness is 

rising. Based on Table 3 using GA is the most popular choice. When comparing this to the 

result found by Ali et al. [3] it can be seen that in their research GA was also the most 

popular choice (12 out of 18 papers used GA), this was also the most popular MHS 

algorithm used to generate test cases both in this thesis (26 times) and in the paper by Ali 

et al. [3].  

5.2. RQ2 

There were 6 papers out of 37 that have sufficient criteria to be categorized as having 

credible evidence. That is only 16% when in comparison Ali et al. [3] found that 14% (8 

papers out of 64) had enough evidence. Percentage-wise the difference is not very large, 

meaning that during the past 8 (2008-2015) years not much has changed and the level of 

providing convincing evidence of cost-effectiveness has not changed. As in the paper by 

Ali et al. [3] the test purposes vary, meaning that MHS algorithms can be applied to 

different problems.  

5.3. RQ3 

As shown in Table 5, 78% of the papers accounted for random variation. Because random 

variation helps convince the reader of the stability of the results of the proposed technique, 

it is encouraging that this number is 78%. In comparison Ali et al. found that 39 papers of 

64 (61%) accounted for random variation, meaning this number has risen in the past years. 

The percentage of papers in the poor descriptive statistics column of Table 5 has remained 

fairly similar with a slight increase in the recent years, in this thesis the percentage is 43% 

(of all the papers) and in the paper by Ali et al. [3] it was 38%. The number of papers in 

the good descriptive statistics category is alarmingly small, only 8% of all the papers 

qualified for this. The number of papers in the statistical data analysis category was higher 
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than expected in this paper, 27% of the papers qualified under this, meaning that 

researchers are putting more emphasis on confirming their proposed techniques efficiency 

or effectiveness by statistical methods. In the paper by Ali et al. [3] only 11% on the 

papers could be classified as having done statistical data analysis. This means that more 

researchers are inclined to do statistical data analysis now than before. Among the papers 

analysed in this thesis 22% did not account for random variation at all, whereas in then the 

paper by Ali et al. [3] 39% did not account for variation.  

5.4. RQ4 

Based on the numbers in Table 6 it can be said that using GA is the most popular choice to 

compare the different MHS algorithms to. Since this is also one of the most popular 

algorithms to use to automate test data generation, it makes sense to compare a new 

enhanced GA to a previous, maybe even dated version of GA. The second most popular 

comparison baseline is random search, with 14 uses. When introducing a new approach or 

applying a MHS algorithm to a new aspect in test case generation, it is difficult to 

compare the algorithm to anything if the area doesn’t have any previous research done. In 

this case it is beneficial to use random search. When comparing the results shown in Table 

6 to those of the paper by Ali et al. [3] it can be seen that using GA is not the most popular 

option there (22 uses out of 70), but using random search is (24/70). Although the two 

most popular has remained the same, they have switched places. The difference between 

GA and random is not that large in the paper by Ali et al. [3] (only 2 uses), whereas in this 

thesis the difference is more noticeable (8 uses). This might indicate that using GA as a 

baseline has become more prominent and could act as a better baseline. 

5.5. RQ5 

59% on the papers analysed in this thesis used cost measures of some kind. 22 papers used 

1.91 cost measures on average per paper meaning that the tendency is rather to use more 

than one cost measure in an empirical review. Among the results using the test case 

generation time was the most popular. The number of iterations (most often the number of 

test cases) was the second most popular cost measure, but this measure is also one of the 

least precise. When looking at the results found by Ali et al. [3], they found that the most 

popular cost measure was the number of iterations. In second place was test case 

generation time followed closely by the number of fitness evaluations. The two most 

popular cost measures in this thesis and the paper by Ali et al. [3] are the same, but in 
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reverse order. The number of iterations was used 5 times less than test case generation 

time, whereas in Ali et al. [3] the difference was 12, a much larger difference. According 

to this the type of measures used has not changed, the scales have tipped more in the 

favour of using the number of iterations as a cost measure.  

 

Based on the data in Table 8 it can said that using control-flow based coverage criteria is 

the most popular choice, it precedes the other options by a large margin (no other measure 

reaches double digits). As the paper by Ali et al. [3] stated, using control-flow based 

coverage has been researched a lot and is thus a widely accepted standard to use in fitness 

functions. Like in this paper, the paper by Ali et al. [3] found that the most popular 

effectiveness measure is control-flow coverage criteria, meaning that using this measure 

was a popular choice, still is and probably will continue to be common practice. Using 

fault based measures was not very popular among the 37 papers analysed, only 5 uses. 

Similarly in the paper by Ali et al. [3] using fault based measures was not very popular. 

No effectiveness measure was used only 5 times, in these papers the main focus was on 

the cost of the effectiveness. Ali et al. [3] found that no effectiveness measures were used 

3 times (out of 64 papers). In percentages, this thesis no effectiveness measure was used in 

14% of the papers and in 5% according to Ali et al. [3]. This could mean that measuring 

the effectiveness has become less popular. 

5.6. Threats to Validity  

The original search string used by Ali et al. [3] was not modified in this thesis, it is 

possible that some relevant papers used other synonyms and did not turn up in the search. 

The paper selection step was conducted only by one person, meaning that when in doubt 

whether to exclude or include a paper, the paper was not discussed with anybody else and 

so some relevant papers may have been discarded and mistakes could have been made 

when extracting data without noticing. In addition the papers that were analysed and 

named in the paper by Ali et al. [3] influenced the selection process.  
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6. Conclusions 

The aim of this thesis was to partially replicate a literature survey conducted by Ali et al. 

[3] in 2010. Ali et al.’s study reviewed empirical studies conducted in the realm of search-

based software testing from 1997 to 2007. To complement the original study, in this 

thesis, the timeframe 2008-2015 was used.  

Based on the results found in this thesis and the discussion it can be deducted that most 

points of interest looked at remained fairly the same as in Ali et al. [3] or had a slight 

fluctuation to the positive or negative side. RQ1 and RQ2 produced similar results to the 

paper by Ali et al. [3] in this thesis. The number of papers that could qualify for these two 

questions was higher in this thesis than in Ali et al. [3]. The most popular MHS algorithm 

that was used in the papers selected for answering these two research questions was GA 

and the most popular baseline RS. This was also the case in the paper by Ali et al. [3]. The 

most difference could be found when looking at the data for RQ3, accounting for random 

variation. In this thesis 27% of the papers provided statistical data analysis, whereas only 

11% did this in the paper by Ali et al. [3]. Baselines to which the proposed algorithms 

were compared to in this thesis and in the paper by Ali et al. [3] followed very similar 

tendencies. The only difference was that the two most popular choices had switched 

places. In this paper the most popular was GA, followed by RS, whereas in the paper by 

Ali et al. [3] the order was reversed, meaning that GA has become more popular for 

comparing new approaches. The measures for cost found in the papers analysed in this 

thesis were categorised the same way as in [3] and the results indicated that the two most 

popular measures (test case generation time and number of iterations) are the same as in 

Ali et al. [3] although the scales have tipped in favour or using test case generation. The 

distribution of measures of effectiveness found in this paper and the results from Ali et al. 

[3] indicate that the most popular effectiveness measure in both papers remains the same - 

control-flow coverage criteria. The only downside was that more papers did not use any 

effectiveness measures in the 37 papers analysed, than in the paper by Ali et al. [3].  
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8. Appendix 

8.1. Algorithms and Baselines 

Table 9. Table Containing All MHS Algorithms and Baselines Used 

ID Title Authors 

MHS 

algorithm 

used 

Comparison 

baseline 

1 

A First Approach to Test Case 

Generation for BPEL 

Compositions of Web Services 

Using Scatter Search 

Blanco et al. 

[20] 
SS RS 

2 
A tabu search algorithm for 

structural software 
Díaz et al. [21] TS RS 

3 

Adapting ant colony 

optimization to generate test 

data for software structural 

testing 

Mao et al. [14] ACO SA, GA, PSO 

4 

An approach to generate 

software test data for a specific 

path automatically with genetic 

algorithm 

Cao et al. [22] GA RS, GA 

5 

An Improved Memetic 

Algorithm with Method 

Dependence Relations 

(MAMDR) 

Aburas and 

Groce [23] 
GA, HC GA 

6 

Application of Genetic 

Algorithm and Tabu Search in 

Software Testing 

Rathore et al. 

[24] 
GA, TS GA 

7 
Automated test data generation 

using a scatter search approach 

Blanco et al. 

[16] 
SS RS, GA, SS, TS 

8 

Automatic Generating All-Path 

Test Data of a Program Based 

on PSO 

Li and Zhang 

[12] 
PSO PSO 

9 

Automatic generation of 

software test cases based on 

improved genetic algorithm 

Dong and Peng 

[25] 
GA GA 

10 

Automatic generation of 

software test data based on 

hybrid particle swarm genetic 

algorithm 

Ding et al. [26] PSO, GA GA 

11 

Automatic generation of test 

data for path testing by adaptive 

genetic simulated annealing 

algorithm 

Zhang and Wang 

[27] 
GA, SA GA 
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12 

Automatic Path-Oriented Test 

Data Generation Using a Multi-

population Genetic Algorithm 

Chen and Zhong 

[28] 
GA GA 

13 

Automatic program 

instrumentation in generation of 

test data using genetic algorithm 

for multiple paths coverage 

Maragathavalli 

et al. [29] 
GA GA 

14 

Automatic test case generation 

for unit software testing using 

genetic algorithm and mutation 

analysis 

Khan and Amjad 

[30] 
GA Mutation testing 

15 
Automatic Test Data Generation 

Based on SAMPSO Algorithm 

Wei and Jiang 

[31] 
PSO GA, BPSO 

16 

Automatic Test Data Generation 

for Software Path Testing Using 

Evolutionary Algorithms 

Latiu et al. [32] 
GA, SA, 

PSO 
- 

17 

Combining Genetic Algorithms 

and Constraint Programming to 

Support Stress Testing of Task 

Deadlines 

Di Alesio et al. 

[33] 
GA GA, CP 

18 

Comparing algorithms for 

search-based test data generation 

of Matlab® Simulink® models 

Ghani et al. [35] GA RS, DSE, GA 

19 

Comparison of Two Fitness 

Functions for GA-Based Path-

Oriented Test Data Generation 

Chen et al. [36] GA, SA - 

20 
Critical Components Testing 

Using Hybrid Genetic Algorithm 

Jeya Mala et al. 

[37] 
GA - 

21 

Diversity oriented test data 

generation using metaheuristic 

search techniques 

Bueno et al. [38] MA GA 

22 

Enhanced Genetic Algorithm 

For MC/DC Test Data 

Generation 

El-Serafy et al. 

[39] 

SA, GA, 

SR 
RS 

23 

Evolutionary Algorithms for 

Object-Oriented Test Data 

Generation 

Suresh et al. [40] GA GA 

24 
Evolutionary Testing of Object-

Oriented Software 

Silva and van 

Someren [41] 

BPSO, 

ABC 

Selection 

algorithm 

25 
GA-based multiple paths test 

data generator 

Ahmed and 

Hermadi [42] 
GA RS 

26 

Generating combinatorial test 

cases using Simplified Swarm 

Optimization (SSO) algorithm 

for automated GUI functional 

testing 

Ahmed et al. 

[43] 
GA GA 

27 

Generating Test Data for 

Structural Testing Based on Ant 

Colony Optimization 

Mao et al. [44] SSO 

PIST, TVG, 

CTE-XL, ITCH, 

IPOG, PSO 
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28 

Hybridizing Evolutionary 

Testing with Artificial Immune 

Systems and Local Search 

Liaskos and 

Roper [45] 
ACO SA, GA 

29 
Multi-Objective Test Generation 

for Software Product Lines 

Henard et al. 

[46] 
GA GA 

30 

Orthogonal Exploration of the 

Search Space in Evolutionary 

Test Case Generation 

Kifetew et al. 

[47] 
GA RS 

31 

PWiseGen: Generating test cases 

for pairwise testing using 

genetic algorithms 

Flores and 

Cheon [48] 
GA GA 

32 

Reformulating Branch Coverage 

as a Many-Objective 

Optimization Problem 

Panichella et al. 

[50] 
GA 

GA, AETG [54], 

IPO, TConfig 

[55], CTS [56] 

33 

Search Based Testing of 

Embedded Systems 

Implemented in IEC 61131-3: 

An Industrial Case Study 

Doganay et al. 

[51] 
GA RS, GA 

34 
Search-based testing using 

constraint-based mutation 

Malburg and 

Fraser [34] 
GA GA 

35 
Test Data Generation Approach 

for Basis Path Coverage 
Jiang et al. [52] HC RS 

36 

Test Data Generation for 

Multiple Paths Based on Local 

Evolution 

Xiangjuan et al. 

[49] 
GA GA 

37 
Test Data Generation From 

Hibernate Constraints 

Marin and 

Doungsa-ard 

[53] 

GA RS 

RS – random search, BPSO - , CP – constraint programming, DSE – dynamic symbolic 

execution, SR - simulated repulsion, ABC - artificial bee colony algorithm , SSO – 

simplified swarm optimization, PIST, TVG – Test Vector Generator, CTE-XL – 

Classification-Tree Editor eXtended Logics, ITCH - Intelligent Test Case Handler, 

IPOG/IPO – In Parameter Order Generator 
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