
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Heidi Urmet

A Systematic Review of the Application and

Empirical Investigation of Search-Based

Test Case Generation
Bachelor’s Thesis (9 EAP)

Supervisor: Dietmar Alfred Paul Kurt Pfahl

Tartu 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Süstemaatiline ülevaade ja empiiriline uurimus otsingupõhiste

algoritmide kasutusest testide loomise

Lühikokkuvõte:

Otsingupõhine tarkvara testimine kasutab metaheuristilisi algoritme, et automatiseerida

testide genereerimist. Selle töö eesmärgiks on osaliselt taasluua 2010. aastal kirjutatud Ali

et al. artikkel, et uurida, kuidas on aastatel 2008-2015 kasutatud metaheuristilisi algoritme

testide loomiseks. See töö analüüsib, kuidas on antud artiklid koostatud ning kuidas neis

on algoritmide maksumust ja efektiivsust hinnatud. Kogutud tulemusi võrreldakse Ali et

al. tulemustega.

Võtmesõnad:

Tarkvara testimine, otsingupõhine tarkvara testimine, süstemaatiline ülevaade

CERCS: P175

A Systematic Review of the Application and Empirical Investigation of

Search-Based Test Case Generation

Abstract:

Search based software testing uses metaheuristic algorithms to automate the generation of

test cases. This thesis partially replicates a literature study published in 2010 by Ali et al.

to determine how studies published in 2008-2015 use metaheuristic algorithms to

automate the generation of test cases. The thesis analyses how these studies were

conducted and how the cost-effectiveness is assessed in these papers. The trends detected

in the new publications are compared to those presented in Ali et al.

Keywords:

Software testing, search based software testing, systematic review

CERCS: P175

 3

Table of Contents

1. Introduction ... 4

2. Background ... 6

2.1. Software Testing ... 6

2.2. Search Based Software Testing ... 7

2.3. Framework .. 8

3. Method .. 9

3.1. Snowballing... 9

3.2. Repository Selection and Search String Definition .. 9

3.3. Paper Selection .. 11

3.4. Data Extraction.. 12

4. Results ... 13

4.1. RQ1 – For Which Metaheuristic Search Algorithms, Test Levels, and Fault

Types Is There Credible Evidence for the Study of Cost-Effectiveness? 16

4.2. RQ2 - How Convincing Is The Evidence of Cost and Effectiveness of Search-

Based Software Testing Techniques, Based on Empirical Studies That Report Credible

Results? ... 17

4.3. RQ3 - How Well Is The Random Variation Inherent in Search-Based Software

Testing, Accounted for in the Design of Empirical Studies? .. 19

4.4. RQ4 - What Are the Most Common Alternatives to Which SBST Techniques

Are Compared? ... 20

4.5. RQ5 - What Are the Measures Used for Assessing Cost and Effectiveness of

Search-Based Software Testing? ... 21

4.5.1. Cost ... 21

4.5.2. Effectiveness ... 22

5. Discussion ... 24

5.1. RQ1 ... 24

5.2. RQ2 ... 24

5.3. RQ3 ... 24

5.4. RQ4 ... 25

5.5. RQ5 ... 25

5.6. Threats to Validity... 26

6. Conclusions ... 27

7. Bibliography .. 28

8. Appendix ... 32

8.1. Algorithms and Baselines ... 32

8.2. Licence .. 35

 4

1. Introduction

Software testing is an integral part of software engineering. Testing helps to determine the

strengths and vulnerabilities of a software program. According to Anand et al. [1] testing

can take more than 50% of the total cost during software development. Thus, it is

beneficial to automate parts of this process to reduce the cost.

The software testing life cycle has many phases: requirements/design review; test

planning; test design; test environment setup; test execution; test reporting [2]. Of all these

phases, test design is the costliest. Manually coming up with all the different inputs can

take a lot of time and there is always the possibility of human error e.g. forgetting one set

of inputs. Thus, in order to speed up this phase and make it more efficient, automated test

data generation comes into play. Automatically generating test data helps create the test

cases that are in minimum needed to achieve the test goal.

Search based software testing (SBST) is a part of search based software engineering. It

aims at automating the process of test data generation with the use of metaheuristic search

(MHS) algorithms. Search based algorithms used in SBST use a fitness function to guide

the search of the test inputs [1].

Focussing on the years 1996 – 2007, Ali et al. [3] give an overview of the state of how

SBST has been applied and also about its cost-effectiveness. They also provide a

framework on how a proper survey study in this field should be conducted. Since their

paper was published in 2010 and it only analysed papers published until 2007, a similar

study could be conducted covering the subsequent time period (2008 – 2015) to analyse

whether new trends have emerged within search based software testing. This thesis aims at

replicating some elements of the study conducted by Ali et al. and to compare the

findings.

The paper by Ali et al. [3] has three research questions. Two of them had three

respectively five sub-questions. Thus, if only counting the questions on the lowest level of

the hierarchy, nine research questions were investigated. Of these nine research questions

investigated in [3], the following five research questions are addressed in this thesis:

RQ1. For which metaheuristic search algorithms, test levels, and fault types is there

credible evidence of cost-effectiveness in the literature?

RQ2. How convincing is the evidence of cost and effectiveness of search-based software

testing techniques, based on empirical studies that report credible results?

 5

RQ3. How well is the random variation, inherent in search-based software testing,

accounted for in the design of empirical studies?

RQ4. What are the most common alternatives to which SBST techniques are compared?

RQ5. What are the measures used for assessing cost and effectiveness of search-based

software testing?

The thesis is structured as follows. Chapter 2 gives a brief introduction into software

testing and SBST. Chapter 3 details the research method used in this thesis. Chapter 4

reports the results of the research. Chapter 5 analyses the results and compares them to

those of Ali et al. [3]. Chapter 5 also discusses threats to validity. Chapter 6 summarizes

the study and presents the conclusions.

 6

2. Background

This chapter gives a brief introduction to software testing, SBST and a framework for

conducting an empirical study in SBST, used by Ali et al. [3].

2.1. Software Testing

Software testing is the process of running a programme with the intent to find errors and

bugs so that it could be fixed and the best version of the programme could be released for

use. It is a part of the Software Development Life Cycle.

The Software Testing Life Cycle (STLC) usually contains the steps requirements/design

review, test planning, test designing, test environment setup, test execution and test

reporting [2].

Of all these steps, the test design step is the costliest. During this step, the tests that are

going to be used to assess the programme are created based on the requirements or code.

Test design takes the most effort from the tester during this life cycle. There are a lot of

possibilities for simple errors to occur (e.g. assembling a set of inputs for testing, but a

wrong output). Thus, it is beneficial to come up with ways to automate this step and make

it as effective as possible.

The tests that are created during test design are grouped together into test scripts, test

suites or test cases. A test script is a set on instructions that are performed to determine

whether the system under test performs these actions. A test suite is a collection of test

cases. A test case contains the input data and the expected output data and the conditions

under which tests should be executed. Test data is data that is meant to be used in test

cases.

An oracle is a mechanism for determining whether a program passes or fails a test [4]. A

complete oracle should provide the predicted and expected result of the test, compare the

expected result and the actual result, and determine if the expected result and actual result

are similar enough for the test to pass. A test verdict is what decides if the test is marked

as pass/fail after the test has been executed.

In this thesis, test cases are the point of focus. As in the paper by Ali et al. [3], the

expected output is not of interest but generating the input data is.

 7

2.2. Search Based Software Testing

Search based software testing (SBST) is a part of search based software engineering

(SBSE). In SBST, metaheuristic search (MHS) algorithms are used to generate test data.

The goal is to make finding test data efficient while minimizing the cost of doing so. To

guide the selection of this, fitness functions are used. Fitness functions help evaluate if the

test data is good or not and guide the search to areas that might produce even better results

from the fitness function.

There are many metaheuristic algorithms, for example: genetic algorithm (GA), simulated

annealing (SA), particle swarm optimization (PSO), ant colony optimization (ACO), tabu

search (TS), scatter search (SS), and hill climbing (HC) among others. All the mentioned

algorithms are briefly introduced.

Genetic algorithm. Genetic algorithm is inspired by the process of natural selection. First

a population is created randomly and then each individual’s fit is assessed by the fitness

function. The best individuals are selected and they are used to create a new population.

This is an iterative process so this is repeated until a certain number or until the user

deems necessary [5].

Genetic algorithm was first introduced to software testing in 1975 by Holland. Since then

it has been used in software testing a lot. For example it has been used in test case/test data

automation (e.g. [6-9]), selection (e.g. [6]), and optimization [7].

Simulated annealing. Simulated annealing takes its idea from heating a material and

them cooling it to get rid of defects [8]. Simulated annealing is an iterative process. In

each iteration a new point is chosen from its neighbours and then the algorithm either

stays in the state it was or moves to the neighbouring state. Simulated annealing can be

used to generate test data [9] and test cases [10], or for test selection and optimization

[11].

Particle swarm optimization. PSO is inspired by the swarming behaviour like bee

schooling or fish schooling. In each iteration the particles (candidate solutions) move

around influenced by the local and global optima. When a better solution is found, these

will become the new local or global optima. This makes the swarm move toward a better

solution. PSO can be used to generate test cases [12], test case selection [13].

Ant colony optimization. Like with the previous metaheuristics, this also has been

inspired by nature. In particular how ants find the shortest path to food by taking

advantage of the pheromones deposited on the ground by others. Paths that did not lead to

 8

any food and are so less used and the pheromones on the ground start to evaporate. As an

optimization technique the algorithm is an iterative process, during each iteration an ant

moves to the next state. When all ants have completed their trail, the trails are marked with

pheromone in each state and it evaporates after each iteration. This way the most used path

will be the result. ACO has been used to generate test cases [14], tackle optimization

problems.

Tabu search. Tabu search moves iteratively from one solution to the neighbouring

solutions hoping they are better. TS uses memory to memorize previous search results,

this prevents the algorithm from going back to evaluate a solution more than once.

Scatter search. Scatter search was first introduced in 1977 by Glover [15]. SS works

with a set of solutions (the reference set), then combines the solutions to create better

ones. The combined sets that are created and evaluated whether they could replace some

of the solutions in the reference set. SS has been used for scheduling problems, in neural

networks and for test case generation [16].

Hill climbing. Hill climbing is a local search optimization algorithm. It is an iterative

algorithm that starts off with a random individual, then chooses to move on to neighbours

if they are deemed better by the algorithm and then repeats this process at the new spot.

HC has the threat to get stuck in local maxima, so to avoid this, the algorithm can start the

process again at a random place. HC can be used to generate test data [17] and for test

case prioritization [18].

2.3. Framework

In their paper, Ali et al. [3] presented a framework for carrying out empirical studies on

SBST. To be an empirical study was one of the inclusion criteria in the literature survey

conducted by Ali et al. Therefore, this framework was used as a guideline in this thesis as

well. The framework consists of four main elements. Firstly, it checks how clearly the test

problem has been stated. Secondly, it checks how clearly, the MHS algorithms have been

described. Thirdly, and most importantly, it checks the adequacy of the research design

used. This part details what exactly should be described in the paper so that its validity can

be assessed. Lastly, the results must be clear and reproducible.

 9

3. Method

To find relevant literature, first the snowballing method was tried. However, for reasons

described in the following sub-section, this approach was later discarded. In its place, a

standard systematic literature review was conducted (cf. Section 3.2 and following).

3.1. Snowballing

Snowballing is a systematic literature review process that starts with a start set of papers.

Then the papers that cite these are gathered in what is called forward snowballing. Then

the papers that the start set references are also gathered in what is called backwards

snowballing. According to the exclusion or inclusion criteria, the desired papers are

chosen. Then the process is repeated with the new set of papers until no new papers are

found.

At the beginning of this thesis project, the idea was to use the papers analysed in [3] as the

starting set for snowballing following the guidelines provided by Wohlin [19]. However, it

became apparent that not all the papers Ali et al. [3] analysed were mentioned explicitly

by every RQ and it would take too much time and resources to do snowballing on the

papers that were. Therefore, it was decided to do what was done in the original paper, i.e.

to search various literature repositories.

3.2. Repository Selection and Search String Definition

The paper by Ali et al. [3] used the repositories IEEE Xplore, The ACM Digital Library,

Science Direct (including Elsevier Science), Wiley Interscience, Springer, and MIT Press.

To get similar results the same repositories were used in this thesis, with the exception of

MIT Press due to unavailability via the library of the University of Tartu.

The search string used in the Ali paper [3] was as follows:

(((“software” AND “test”) OR "test case generation") AND ("evolutionary algorithm" OR

"hill climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing"

OR "ant colony”)) <in abstract, keywords, and title> OR "evolutionary testing” <in

abstract, keywords, title, and whole content>

First it was tried to recreate the results of the original paper. Although 68 papers were

analysed and used to answer the research questions, only 19 of these were mentioned in

 10

name and author in [3]. Thus, it was checked whether these 19 papers could be found. 18

were found, one was not. The missing one could be from the fact that access to all

repositories was not available or within certain repositories Ali et al. [3] added synonyms

to the search string but these were not mentioned in the paper (e.g. in IEEE Xplore).

As this thesis has a smaller scope than the original study and to minimize the number of

search results, an AND operator was added to the search string that contained the phrases

“cost”, “effective”, “cost-effectiveness” all connected with an OR operator. The final

string used in this paper is:

((((“software” AND “test”) OR "test case generation") AND ("evolutionary algorithm"

OR "hill climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing"

OR "ant colony”)) <in abstract, keywords, and title> OR "evolutionary testing” <in

abstract, keywords, title, and whole content>) AND (“cost” OR “effective” OR “cost-

effective”)

Using the search string in different repositories requires adjustments. For example, since

the “evolutionary testing” part of the search string also looks at the entire content of the

paper and is connected to the rest of the string with an OR operator, it was sometimes

easier to split the string in half at the OR operator. Later the results could be mixed

together and duplicates could be removed. The split was done in ACM Digital Library and

IEEE Xplore.

When using the search string in the Springer repository, it became apparent that there were

too many results that were irrelevant to this research. To filter the search more, the search

string was modified. The modified search string was as follows (the modification has been

underlined):

((("software" AND "test case generation") AND ("evolutionary algorithm" OR "hill

climbing" OR "metaheuristic" OR "meta-heuristic" OR "genetic algorithm" OR

"optimization algorithm" OR "search based" OR "search-based" OR "simulated annealing"

OR "ant colony”)) OR "evolutionary testing") AND ("cost" OR "effective" OR "cost-

effective")

Similarly, with the Wiley repository, there were too many out of context results (a lot of

medical articles). In order to filter between these a NOT operator was added in front of the

 11

terms “medical”, “medicine”, “biology” (all of them connected with an OR operator). This

decreased the results from about 180 to 48, a considerable amount.

3.3. Paper Selection

All of the results from the repositories were run through a small self-made program that

removed all duplicates. After duplicate removal, 597 papers were left for further analysis.

Firstly, the title and abstract of these papers were read. As in [3] papers that

• had abstracts or titles that did not discuss test case generation were excluded

• had abstracts or titles that did not discuss the application of any MHS algorithm to

automate test case generation were excluded

After applying these exclusion criteria 108 papers were left for further analysis.

The 108 papers were read in full and based on the second set of exclusion criteria either

excluded or included. The second set of criteria used in [3] was as follows:

• The papers had to automate test case generation were excluded.

• The papers had to report an empirical study were excluded. (see 3.2.)

• Posters, extended abstracts, technical reports, PhD dissertations, and papers with

less than three pages were excluded.

Table 1. Number of papers after applying exclusion criteria

The two rounds of exclusion criteria left a total on 38 papers. Among the 38 papers, there

was one paper that was published at a conference and later in a journal. Since the context

is the same, the journal was chosen to be analysed in this thesis, thus reducing the total

Repository

Search string results

(after removing

duplicates)

Number of papers left after

applying the 1st set? Of

exclusion criteria

Number of papers left after

applying the 2nd set on

exclusion criteria

IEEE Explore 361 73 23

ACM 134 24 8

Wiley 43 4 1

ScienceDirect 55 8 6

Springer 4 0 0

Number of

papers
597 109 38

 12

number of papers analysed to 37. The numbers of papers found in each repository are

shown in Table 1.

3.4. Data Extraction

To gather all the relevant information from each paper an Excel spreadsheet for each set of

inclusion/exclusion criteria was created. For the first set of criteria only the title and

author(s) of the paper were gathered. The papers that were chosen were marked and

transferred to another spreadsheet.

For the second set of criteria a more extensive spreadsheet was created. This spreadsheet1

already contained the selected papers from the previous step, so the author(s) and title

were already present. The same type of data was collected in this thesis as in the paper by

Ali et al. [3]. This data includes the following:

• Test level

• Fault type

• MHS algorithm

• Test purpose

• Comparison baseline

• Cost and effectiveness results

• Cost measures

• Effectiveness measures

• Random variation (accounted for or not)

1 The spreadsheet is accessible at: https://www.dropbox.com/s/pynrbn1r3w4h3ar/heidi.xlsx?dl=0

 13

4. Results

This chapter outlines the results found for each research question. After each research

question there is also a discussion subsection in which the results of this thesis are

compared to the results found by Ali et al. [3]. 37 papers are used to answer the research

questions. Table 2 summarises which paper was used to answer which research question.

The check indicates that a paper was used to answer the corresponding research question.

All the papers answered RQ3-5, 15 papers were used to answer RQ1 and 6 to answer

RQ2.

Table 2. Table indicating which papers answers which research questions

ID Title Authors RQ1 RQ2 RQ3 RQ4 RQ5

1

A First Approach to Test Case

Generation for BPEL

Compositions of Web Services

Using Scatter Search

Blanco et al.

[20]
✓ ✓ ✓ ✓

2
A tabu search algorithm for

structural software
Díaz et al. [21] ✓ ✓ ✓ ✓

3

Adapting ant colony

optimization to generate test

data for software structural

testing

Mao et al. [14] ✓ ✓ ✓

4

An approach to generate

software test data for a specific

path automatically with genetic

algorithm

Cao et al. [22] ✓ ✓ ✓ ✓

5

An Improved Memetic

Algorithm with Method

Dependence Relations

(MAMDR)

Aburas and

Groce [23]
✓ ✓ ✓ ✓

6

Application of Genetic

Algorithm and Tabu Search in

Software Testing

Rathore et al.

[24]
 ✓ ✓ ✓

7
Automated test data generation

using a scatter search approach

Blanco et al.

[16]
✓ ✓ ✓ ✓ ✓

8

Automatic Generating All-Path

Test Data of a Program Based

on PSO

Li and Zhang

[12]
✓ ✓ ✓ ✓

9

Automatic generation of

software test cases based on

improved genetic algorithm

Dong and Peng

[25]
 ✓ ✓ ✓

 14

10

Automatic generation of

software test data based on

hybrid particle swarm genetic

algorithm

Ding et al. [26] ✓ ✓ ✓

11

Automatic generation of test

data for path testing by

adaptive genetic simulated

annealing algorithm

Zhang and

Wang [27]
 ✓ ✓ ✓

12

Automatic Path-Oriented Test

Data Generation Using a Multi-

population Genetic Algorithm

Chen and Zhong

[28]
 ✓ ✓ ✓

13

Automatic program

instrumentation in generation

of test data using genetic

algorithm for multiple paths

coverage

Maragathavalli

et al. [29]
 ✓ ✓ ✓

14

Automatic test case generation

for unit software testing using

genetic algorithm and mutation

analysis

Khan and

Amjad [30]
 ✓ ✓ ✓

15

Automatic Test Data

Generation Based on SAMPSO

Algorithm

Wei and Jiang

[31]
 ✓ ✓ ✓

16

Automatic Test Data

Generation for Software Path

Testing Using Evolutionary

Algorithms

Latiu et al. [32] ✓ ✓ ✓

17

Combining Genetic Algorithms

and Constraint Programming to

Support Stress Testing of Task

Deadlines

Di Alesio et al.

[33]
✓ ✓ ✓ ✓ ✓

18

Comparing algorithms for

search-based test data

generation of Matlab®

Simulink® models

Ghani et al. [35] ✓ ✓ ✓

19

Comparison of Two Fitness

Functions for GA-Based Path-

Oriented Test Data Generation

Chen et al. [36] ✓ ✓ ✓

20

Critical Components Testing

Using Hybrid Genetic

Algorithm

Jeya Mala et al.

[37]
 ✓ ✓ ✓

21

Diversity oriented test data

generation using metaheuristic

search techniques

Bueno et al. [38] ✓ ✓ ✓ ✓ ✓

22

Enhanced Genetic Algorithm

For MC/DC Test Data

Generation

El-Serafy et al.

[39]
 ✓ ✓ ✓

23

Evolutionary Algorithms for

Object-Oriented Test Data

Generation

Suresh et al.

[40]
 ✓ ✓ ✓

 15

24
Evolutionary Testing of

Object-Oriented Software

Silva and van

Someren [41]
 ✓ ✓ ✓

25
GA-based multiple paths test

data generator

Ahmed and

Hermadi [42]
✓ ✓ ✓ ✓

26

Generating combinatorial test

cases using Simplified Swarm

Optimization (SSO) algorithm

for automated GUI functional

testing

Ahmed et al.

[43]
✓ ✓ ✓ ✓

27

Generating Test Data for

Structural Testing Based on

Ant Colony Optimization

Mao et al. [44] ✓ ✓ ✓

28

Hybridizing Evolutionary

Testing with Artificial Immune

Systems and Local Search

Liaskos and

Roper [45]
 ✓ ✓ ✓

29

Multi-Objective Test

Generation for Software

Product Lines

Henard et al.

[46]
✓ ✓ ✓ ✓ ✓

30

Orthogonal Exploration of the

Search Space in Evolutionary

Test Case Generation

Kifetew et al.

[47]
 ✓ ✓ ✓

31

PWiseGen: Generating test

cases for pairwise testing using

genetic algorithms

Flores and

Cheon [48]
 ✓ ✓ ✓

32

Reformulating Branch

Coverage as a Many-Objective

Optimization Problem

Panichella et al.

[50]
 ✓ ✓ ✓

33

Search Based Testing of

Embedded Systems

Implemented in IEC 61131-3:

An Industrial Case Study

Doganay et al.

[51]
✓ ✓ ✓ ✓ ✓

34
Search-based testing using

constraint-based mutation

Malburg and

Fraser [34]
✓ ✓ ✓ ✓ ✓

35
Test Data Generation Approach

for Basis Path Coverage
Jiang et al. [52] ✓ ✓ ✓

36

Test Data Generation for

Multiple Paths Based on Local

Evolution

Xiangjuan et al.

[49]
✓ ✓ ✓ ✓

37
Test Data Generation From

Hibernate Constraints

Marin and

Doungsa-ard

[53]

✓ ✓ ✓ ✓

 16

4.1. RQ1 – For Which Metaheuristic Search Algorithms, Test Levels,

and Fault Types Is There Credible Evidence for the Study of Cost-

Effectiveness?

The papers that are qualified to answer this RQ must comply to the following criteria set

by Ali et al. [3]:

• Must account for random variation

• Comparison baseline must be a local SBST technique or a simpler non-SBST

technique

After going through all 37 papers and applying the criteria mentioned above 15 papers

were left. The details of these papers can be seen in Table 3. Among these 15 papers using

GA was the most popular with 8 uses (although memetic algorithm is an extension of

GA). SS was used twice, TS, HC, memetic algorithm (MA), PSO, SA, simulated repulsion

(SR) and simplified swarm optimization (SSO) were all used once. The testing level for all

papers but one was unit, the exception being system. None of the papers focused on

finding fault types.

Table 3. List of papers with the MHS algorithm used, test level and fault type used to

answer the first research question.

ID Authors MHS algorithm used Test level Fault type

1 Blanco et al. [20] SS unit -

2 Díaz et al. [21] TS unit -

4 Cao et al. [22] GA unit -

5 Aburas and Groce [23] MA unit -

7 Blanco et al. [16] SS unit -

8 Li and Zhang [12] PSO unit -

17 Di Alesio et al. [33] GA system -

21 Bueno et al. [38] SA, GA, SR unit -

25 Ahmed and Hermadi [42] GA unit -

26 Ahmed et al. [43] SSO unit -

29 Henard et al. [46] GA unit -

33 Doganay et al. [51] HC unit -

34 Malburg and Fraser [34] GA unit -

 17

36 Xiangjuan et al. [49] GA unit -

37 Marin and Doungsa-ard [53] GA unit -

4.2. RQ2 - How Convincing Is The Evidence of Cost and Effectiveness of

Search-Based Software Testing Techniques, Based on Empirical

Studies That Report Credible Results?

According to Ali et al. [3] for a paper to have convincing evidence, it has to comply to the

criteria set in RQ1 and in addition to that:

• Studies must report proper descriptive statistics or statistical hypothesis testing

results

After applying this to the 15 papers from the previous RQ, there were only 6 left. Of these

6 the most common comparison baseline was RS, all but one used this as a baseline. Three

papers also used GA as a baseline. In addition half of the papers used more than one

comparison baseline. When looking at the result highlights in 5 cases the proposed

technique was superior to the baseline(s). In only one case the proposed algorithm did not

prove to be better than RS. The test purpose varies in the papers, not all of them have the

same goal. Two papers were focused on maximising the coverage result, one looked to

find worst case scenarios, one looked to improve a MHS algorithm, one paper introduced

a new method to generate test cases, and one focused on testing software product lines.

Table 4. Papers that provide convincing evidence for cost and effectiveness

ID Authors Test purpose
Comparison

baseline
Result highlights

7
Blanco et

al. [16]

Applying SS to

automated test case

generation to achieve

high branch coverage

RS, GA

(different

versions), SS

(different

versions), TS

The authors found that the

proposed algorithm generates

fewer test cases to reach the

same or better percentage of

coverage

 18

17
Di Alesio

et al. [33]

Use GA and CP to

automate the

generation of test

cases to search for

worst case scenarios

where tasks are likely

to miss deadlines

GA, CP

The technique was tested on

five different systems and the

study concluded that the

proposed technique (GA+CP)

is nearly as efficient as GA

and practically as effective as

CP

21
Bueno et

al. [38]

Present a new testing

technique that can be

applied to automated

test data generation

RS

The proposed algorithm

performed better (in terms of

coverage) in 10 out of the 12

cases.

The statistical results point out

that the algorithm is more

effective than RTS while only

in one pair of coverage values

is RTS more effective than the

proposed algorithm. The

proposed algorithm did not

perform as well when test set

sizes were defined smaller.

29
Henard et

al. [46]

Minimize the cost

(number of tests) and

maximize pairwise

coverage

RS

For the same (or higher)

pairwise coverage the

algorithm requires less

products making the cost

lower.

33
Doganay

et al. [51]

Automatically

generate test data to

maximize MC/DC

coverage for

embedded control

software

RS

The authors found that RS is

more efficient in the majority

of cases (HC outperforms RS

in only about 30% of the

cases). The results did not

show a clear winner between

the two approaches, but on

average RS performed better.

 19

34

Malburg

and

Fraser

[34]

To overcome the

disadvantages a MHS

algorithm might

possess with the help

of constraint solving

RS, GA, DSE

The proposed method

surpassed GA and RS

significantly in branch

coverage. When comparing to

DSE, in 9 out of 20 examples

the proposed algorithm

achieved higher branch

coverage, for the remaining 11

branch coverage was the same

(no statistically significant

difference)

RS – Random search, CP – constraint programming, DSE – dynamic symbolic execution,

RTS – random test sets

4.3. RQ3 - How Well Is The Random Variation Inherent in Search-Based

Software Testing, Accounted for in the Design of Empirical Studies?

To assess how well random variation is present in the analysed papers, there are first two

categories: one where random variation is accounted for and the other is random variation

is not accounted for. Like Ali et al. [3], a paper is considered to be in the first category if

the number of runs is presented (and it is more than 10), sufficient evidence that the runs

are independent, and the data analysis method used to compare MHS algorithms and the

baseline is reported. Among the first category (random variation is accounted for) the

papers are further divided into three categories:

1. Poor descriptive statistics – only the average of the result is reported

2. Good descriptive statistics – levels of variation or central tendencies are reported

3. Statistical data analysis – in addition to the previous category’s (‘Good’) demands

the paper had to report the results of a statistical hypothesis test and establish the

statistical significance of differences

The second category (random variation not accounted for) is divided into two sub-

categories: random variation not discussed or accounted of, insufficient number of runs.

Among the 37 papers analysed 8 did not account for random variation. All 8 of these were

in the first sub-category – random variation not discussed or accounted for. In these papers

most often the number of runs was not mentioned.

Of the remaining 29 that accounted for random variation, 16 were categorized under ‘poor

descriptive statistics’. These papers only described the average of their results. Three

 20

papers were categorized as ‘Good descriptive statistics’. These papers brought out more

than the ones in the previous category and analysed their techniques further. Statistical

data analysis was found to be used in 10 papers. Some of the statistical test methods used

were Mann-Whitney U test and t-test.

The distribution of the papers can also be seen in Table 5.

Table 5. Distribution of how random variation is reported in 37 papers

Random Variation Accounted For
Random Variation not

accounted for

Poor

descriptive

statistics

Good

descriptive

statistics

Statistical data analysis

Not

discussed or

accounted

for

Insufficient

number of

runs

16 3 10 8 0

4.4. RQ4 - What Are the Most Common Alternatives to Which SBST

Techniques Are Compared?

Baselines are important to show how the proposed algorithm works better and also justify

why the proposed algorithm is needed.

In order for the results to be comparable, the alternative techniques are categorised the

same way as Ali et al. [3], divided into four categories. These four categories are:

1. Baseline of comparison is a global MHS algorithm

2. Baseline of comparison is a local MHS algorithm

3. Baseline of comparison is not a SBST technique

4. Baseline of comparison was not discussed

Of the 37 papers only 3 did not have a comparison baseline. These papers proposed a new

method for software test case generation, but did not compare it to anything or compared

two or more MHS algorithms to each other.

A global MHS baseline was used in 31 papers. Out of these 31, using a genetic algorithm

and its extensions was the most popular with 24 uses. In some papers the proposed

algorithm was even compared to different versions of genetic algorithms. Particle swarm

optimization was used in 5 papers and simulated annealing and its extensions in 2. Both of

these were used significantly less than genetic algorithms.

 21

Local MHS algorithms, TS, were used only once. Making this option (using local SBST

techniques as a baseline) the least popular.

Using techniques that were not SBST techniques was almost as popular as using global

MHS algorithms. These techniques were used in 21 papers. A random generator was used

in 14. Constraint solving was used once. Other techniques were used in 6 papers. Among

the non-SBST techniques using a random generator was the most popular.

All of these results can be seen in Table 6. In addition, a table containing all the papers,

the MHS technique and the baseline that was used can be seen in the appendix 8.1.

Table 6. Comparison baselines

Global SBST technique

Local

SBST

technique

Non-SBST technique
Not

discussed

GA+ SA+ PSO TS Random Constraint Others

24 2 5 1 14 1 6 3

GA+ – genetic algorithm and its extensions, SA+ – simulated annealing and its extensions

4.5. RQ5 - What Are the Measures Used for Assessing Cost and

Effectiveness of Search-Based Software Testing?

The cost and effectiveness can be measured in different ways, so the answer to this RQ is

divided into two parts, first cost and then effectiveness.

4.5.1. Cost

Cost is one of the main factors driving the purpose to find better ways to automate test

case generation.

Like in the paper by Ali et al. [3] the cost measures were divided into two categories:

1. Cost of finding the target (the cost of automating test case generation)

2. Cost of executing the generated test suite

In the category “cost of executing the generated test suite” the size of the test suite was the

sub-category used by Ali et al. [3] and the same category was used here. The category

“cost of finding the target” has the subcategories test case generation time, number of

fitness evaluations, number of iterations (e.g. number of generations in genetic

algorithms), and number of individuals (test cases). The same division was used here.

 22

Of the 37 papers analysed 15 papers did not report using any cost measures, these papers

oftentimes focused on the effectiveness of the proposed technique. Cost measures in the

first category (cost of finding the target) were used 39 times. Among these 39, the number

of iterations was used 13 times. The number of individuals was used 8 times and the

number of fitness evaluations was used once. The most popular measure in this category

was test time generated with 18 uses. In the second category, size of the test suite was

used twice. The distribution of cost measures can be seen in Table 7.

Table 7. Measures of cost used in 37 papers

Cost of finding the target

Cost of

executing the

final suite No cost

measure
Number of

iterations

Number of

individuals

Number of

fitness

evaluations

Test case

generation

time

Size of test

suite

13 8 1 18 2 15

4.5.2. Effectiveness

In the paper by Ali et al. [3], the measures for effectiveness are divided into four

categories. These categories are:

1. Coverage-based measures

2. Fault based measures

3. Others

4. No cost measure

The first category, coverage-based measures, is divided into three sub-categories: control-

flow coverage criteria (branch, statement, path, condition and condition-decision

coverage), data-flow coverage criteria (all-DU coverage), and n-wise coverage criteria (for

MHS algorithms in combinatorial testing). There are no sub-categories for fault based

measures. Under fault based measures mutation analysis was the main strategy used, thus

mutation score was classified under here. A few papers used the number of faults found to

assess the effectiveness, so these papers were also classified ‘fault based measures’. The

other measures used in the analysed papers that did not qualify under the first two

 23

categories were classified under the third category, ‘Others’. Within in this, ‘Time based

measures’, ‘The fitness value of individuals’ and ‘Misc.’ are three subcategories identified

by Ali et al. [3] and also used here. Papers that did not assess the effectiveness of the

proposed technique were categorised under the last category (No cost measure).

Table 8. Distribution of effectiveness measures in 37 papers

Of the collected 37 papers there were 5 that did not report the effectiveness of the

proposed technique at all. 22 papers used coverage based measures to assess the

effectiveness of the proposed technique. Of those 22 papers, 17 used control-flow criteria,

making this the most popular option within coverage based measures. Data-flow coverage

criteria were used 2 times and n-wise coverage criteria were used only once. 5 papers used

fault based measures to measure the effectiveness. Only one paper that was analysed used

n-wise coverage criteria to evaluate the effectiveness. 8 papers were classified under using

other effectiveness measures. Of these 8 papers one used ‘Time-based measures’ and two

used ‘Fitness value of individuals’. 6 papers used other measures that could not be

classified to any other category, but were still relevant to the paper. The distribution of

effectiveness measures can also be seen in Table 8.

Coverage-based

measures Fault

based

measures

Others
No

effectiveness

measure Control-

flow

Data

flow

n-

wise

Time

based

measures

Fitness value

of

individuals

Misc.

17 2 1 5 1 2 6 5

 24

5. Discussion

In this chapter the results will be analysed and compared to those of the paper by Ali et al.

[3].

5.1. RQ1

According to the results presented in the previous chapter (chapter 4.1), there are only 15

papers among 37 (40%) that provide credible evidence for assessing cost-effectiveness. In

the paper by Ali et al. [3] this percentage was only 28%. According to these percentages

the amount of papers that provide good evidence in the study of cost-effectiveness is

rising. Based on Table 3 using GA is the most popular choice. When comparing this to the

result found by Ali et al. [3] it can be seen that in their research GA was also the most

popular choice (12 out of 18 papers used GA), this was also the most popular MHS

algorithm used to generate test cases both in this thesis (26 times) and in the paper by Ali

et al. [3].

5.2. RQ2

There were 6 papers out of 37 that have sufficient criteria to be categorized as having

credible evidence. That is only 16% when in comparison Ali et al. [3] found that 14% (8

papers out of 64) had enough evidence. Percentage-wise the difference is not very large,

meaning that during the past 8 (2008-2015) years not much has changed and the level of

providing convincing evidence of cost-effectiveness has not changed. As in the paper by

Ali et al. [3] the test purposes vary, meaning that MHS algorithms can be applied to

different problems.

5.3. RQ3

As shown in Table 5, 78% of the papers accounted for random variation. Because random

variation helps convince the reader of the stability of the results of the proposed technique,

it is encouraging that this number is 78%. In comparison Ali et al. found that 39 papers of

64 (61%) accounted for random variation, meaning this number has risen in the past years.

The percentage of papers in the poor descriptive statistics column of Table 5 has remained

fairly similar with a slight increase in the recent years, in this thesis the percentage is 43%

(of all the papers) and in the paper by Ali et al. [3] it was 38%. The number of papers in

the good descriptive statistics category is alarmingly small, only 8% of all the papers

qualified for this. The number of papers in the statistical data analysis category was higher

 25

than expected in this paper, 27% of the papers qualified under this, meaning that

researchers are putting more emphasis on confirming their proposed techniques efficiency

or effectiveness by statistical methods. In the paper by Ali et al. [3] only 11% on the

papers could be classified as having done statistical data analysis. This means that more

researchers are inclined to do statistical data analysis now than before. Among the papers

analysed in this thesis 22% did not account for random variation at all, whereas in then the

paper by Ali et al. [3] 39% did not account for variation.

5.4. RQ4

Based on the numbers in Table 6 it can be said that using GA is the most popular choice to

compare the different MHS algorithms to. Since this is also one of the most popular

algorithms to use to automate test data generation, it makes sense to compare a new

enhanced GA to a previous, maybe even dated version of GA. The second most popular

comparison baseline is random search, with 14 uses. When introducing a new approach or

applying a MHS algorithm to a new aspect in test case generation, it is difficult to

compare the algorithm to anything if the area doesn’t have any previous research done. In

this case it is beneficial to use random search. When comparing the results shown in Table

6 to those of the paper by Ali et al. [3] it can be seen that using GA is not the most popular

option there (22 uses out of 70), but using random search is (24/70). Although the two

most popular has remained the same, they have switched places. The difference between

GA and random is not that large in the paper by Ali et al. [3] (only 2 uses), whereas in this

thesis the difference is more noticeable (8 uses). This might indicate that using GA as a

baseline has become more prominent and could act as a better baseline.

5.5. RQ5

59% on the papers analysed in this thesis used cost measures of some kind. 22 papers used

1.91 cost measures on average per paper meaning that the tendency is rather to use more

than one cost measure in an empirical review. Among the results using the test case

generation time was the most popular. The number of iterations (most often the number of

test cases) was the second most popular cost measure, but this measure is also one of the

least precise. When looking at the results found by Ali et al. [3], they found that the most

popular cost measure was the number of iterations. In second place was test case

generation time followed closely by the number of fitness evaluations. The two most

popular cost measures in this thesis and the paper by Ali et al. [3] are the same, but in

 26

reverse order. The number of iterations was used 5 times less than test case generation

time, whereas in Ali et al. [3] the difference was 12, a much larger difference. According

to this the type of measures used has not changed, the scales have tipped more in the

favour of using the number of iterations as a cost measure.

Based on the data in Table 8 it can said that using control-flow based coverage criteria is

the most popular choice, it precedes the other options by a large margin (no other measure

reaches double digits). As the paper by Ali et al. [3] stated, using control-flow based

coverage has been researched a lot and is thus a widely accepted standard to use in fitness

functions. Like in this paper, the paper by Ali et al. [3] found that the most popular

effectiveness measure is control-flow coverage criteria, meaning that using this measure

was a popular choice, still is and probably will continue to be common practice. Using

fault based measures was not very popular among the 37 papers analysed, only 5 uses.

Similarly in the paper by Ali et al. [3] using fault based measures was not very popular.

No effectiveness measure was used only 5 times, in these papers the main focus was on

the cost of the effectiveness. Ali et al. [3] found that no effectiveness measures were used

3 times (out of 64 papers). In percentages, this thesis no effectiveness measure was used in

14% of the papers and in 5% according to Ali et al. [3]. This could mean that measuring

the effectiveness has become less popular.

5.6. Threats to Validity

The original search string used by Ali et al. [3] was not modified in this thesis, it is

possible that some relevant papers used other synonyms and did not turn up in the search.

The paper selection step was conducted only by one person, meaning that when in doubt

whether to exclude or include a paper, the paper was not discussed with anybody else and

so some relevant papers may have been discarded and mistakes could have been made

when extracting data without noticing. In addition the papers that were analysed and

named in the paper by Ali et al. [3] influenced the selection process.

 27

6. Conclusions

The aim of this thesis was to partially replicate a literature survey conducted by Ali et al.

[3] in 2010. Ali et al.’s study reviewed empirical studies conducted in the realm of search-

based software testing from 1997 to 2007. To complement the original study, in this

thesis, the timeframe 2008-2015 was used.

Based on the results found in this thesis and the discussion it can be deducted that most

points of interest looked at remained fairly the same as in Ali et al. [3] or had a slight

fluctuation to the positive or negative side. RQ1 and RQ2 produced similar results to the

paper by Ali et al. [3] in this thesis. The number of papers that could qualify for these two

questions was higher in this thesis than in Ali et al. [3]. The most popular MHS algorithm

that was used in the papers selected for answering these two research questions was GA

and the most popular baseline RS. This was also the case in the paper by Ali et al. [3]. The

most difference could be found when looking at the data for RQ3, accounting for random

variation. In this thesis 27% of the papers provided statistical data analysis, whereas only

11% did this in the paper by Ali et al. [3]. Baselines to which the proposed algorithms

were compared to in this thesis and in the paper by Ali et al. [3] followed very similar

tendencies. The only difference was that the two most popular choices had switched

places. In this paper the most popular was GA, followed by RS, whereas in the paper by

Ali et al. [3] the order was reversed, meaning that GA has become more popular for

comparing new approaches. The measures for cost found in the papers analysed in this

thesis were categorised the same way as in [3] and the results indicated that the two most

popular measures (test case generation time and number of iterations) are the same as in

Ali et al. [3] although the scales have tipped in favour or using test case generation. The

distribution of measures of effectiveness found in this paper and the results from Ali et al.

[3] indicate that the most popular effectiveness measure in both papers remains the same -

control-flow coverage criteria. The only downside was that more papers did not use any

effectiveness measures in the 37 papers analysed, than in the paper by Ali et al. [3].

 28

7. Bibliography

[1] S. Anand, E. K. Burke , T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M.

Harman, M. J. Harrold and P. McMinn, An orchestrated survey of methodologies for

automated software test case generation, Journal of Systems and Software, vol. 86,

no. 8, pp. 1978-2001, 2013.

[2] Software Testing Life Cycle (STLC),

http://softwaretestingfundamentals.com/software-testing-life-cycle/. (17 March

2017).

[3] S. Ali, L. C. Briand, H. Hemmati and R. K. Panesar-Walawege, A Systematic Review

of the Application and Empirical Investigation of Search-Based Test Case

Generation, IEEE Transactions on Software Engineering, vol. 36, no. 6, pp. 742-762,

2010.

[4] A Course in Black Box Software Testing - Examples of Test Oracles,

http://www.testingeducation.org/k04/OracleExamples.htm. (22 April 2017).

[5] What Is the Genetic Algorithm?, https://www.mathworks.com/help/gads/what-is-the-

genetic-algorithm.html (30 April 2017).

[6] A. C. Monção, G. C. Camilo-Jr, L. T. Queiroz, C. L. Rodrigues, P. de Sá Leitão-Jr

and A. M. Vincenzi, Applying genetic algorithms to data selection for SQL mutation

analysis, in GECCO '13 Companion Proceedings of the 15th annual conference

companion on Genetic and evolutionary computation, Amsterdam, 2013.

[7] D. Jeya Mala and V. Mohan, Quality improvement and optimization of test cases: a

hybrid genetic algorithm based approach, vol. 35, 2010, pp. 1-14.

[8] What Is Simulated Annealing?, https://www.mathworks.com/help/gads/what-is-

simulated-annealing.html (30 April 2017).

[9] K. Hou, J. Huang and X. Bai, Geographical Test Data Generation by Simulated-

Annealing, in Computer Software and Applications Conference (COMPSAC), 2015

IEEE 39th Annual, Taichung, 2013.

[10] B. L. Li, S. Li, J. Y. Zhang and J. R. Sun, An Automated Test Case Generation

Approach by Genetic Simulated Annealing Algorithm, in Third International

Conference on Natural Computation (ICNC 2007), Haikou, 2007.

[11] J. Qiu, X. Tan, G. Liu and K. Lü, Test selection and optimization for PHM based on

failure evolution mechanism model, Journal of Systems Engineering and Electronics,

vol. 24, no. 5, pp. 780-792, 2013.

[12] A. Li and Y. Zhang, Automatic Generating All-Path Test Data of a Program Based on

PSO, in 2009 WRI World Congress on Software Engineering, Xiamen, 2009.

[13] L. S. d. Souza, R. B. C. Prudêncio and F. d. A. Barros, A Hybrid Binary Multi-

objective Particle Swarm Optimization with Local Search for Test Case Selection, in

2014 Brazilian Conference on Intelligent Systems, Sao Paulo, 2014.

[14] C. Mao, L. Xiao, X. Yu and J. Chen, Adapting ant colony optimization to generate

test data for software structural testing, Swarm and Evolutionary Computation, vol.

20, pp. 23-36, 2015.

[15] F. Glover, Heuristics for integer programming using surrogate constraints, in

Decision Sciences, 1977, pp. 159-166.

[16] R. Blanco, T. Javier and B. Adenso-Diaz, Automated test data generation using a

 29

scatter search approach, Information and Software Technology, vol. 51, no. 4, pp.

708-720, 2009.

[17] F. C. M. Souza, M. Papadakis, Y. Le Train and M. E. Delamaro, Strong Mutation-

Based Test Data Generation Using Hill Climbing, in 2016 IEEE/ACM 9th

International Workshop on Search-Based Software Testing (SBST), Austin.

[18] N. Sharma, Sujata and G. N. Purohit, Test case prioritization techniques an empirical

study, in 2014 International Conference on High Performance Computing and

Applications (ICHPCA), Bhubaneswar, 2014.

[19] C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering, Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, p. ??, 2014.

[20] R. Blanco, J. Garcia-Fanjul and J. Tuya, A First Approach to Test Case Generation

for BPEL Compositions of Web Services Using Scatter Search, in IEEE International

Conference on Software Testing Verification and Validation Workshops, Denver,

2009.

[21] E. Díaz, J. Tuya, R. Blanco and J. J. Dolado, A tabu search algorithm for structural

software testing, Computers & Operations Research, vol. 35, no. 10, pp. 3052-3072,

2008.

[22] Y. Cao, C. Hu and L. Li, An approach to generate software test data for a specific

path automatically with genetic algorithm, in 2009 8th International Conference on

Reliability, Maintainability and Safety, Chengdu, 2009.

[23] A. Aburas and A. Groce, An Improved Memetic Algorithm with Method Dependence

Relations (MAMDR), in 2014 14th International Conference on Quality Software,

Dallas, 2014.

[24] A. Rathore, A. Bohara, R. G. Prashil, T. S. L. Parashatnth and P. R. Srivastava,

Application of Genetic Algorithm and Tabu Search in Software Testing, in

COMPUTE '11 Proceedings of the Fourth Annual ACM Bangalore Conference,

Bangalore, 2011.

[25] Y. Dong and J. Peng, Automatic generation of software test cases based on improved

genetic algorithm, in 2011 International Conference on Multimedia Technology,

Hangzhou, 2011.

[26] R. Ding, X. Feng, S. Li and H. Dong, Automatic generation of software test data

based on hybrid particle swarm genetic algorithm, in 2012 IEEE Symposium on

Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, 2012.

[27] B. Zhang and C. Wang, Automatic generation of test data for path testing by adaptive

genetic simulated annealing algorithm, in 2011 IEEE International Conference on

Computer Science and Automation Engineering, Shanghai, 2011.

[28] Y. Chen and Y. Zhong, Automatic Path-Oriented Test Data Generation Using a

Multi-population Genetic Algorithm, in 2008 Fourth International Conference on

Natural Computation, Jinan, 2008.

[29] P. Maragathavalli, S. Kanmani, J. S. Kirubakar, P. Sriraghavendrar and A. Sai Prasad,

Automatic program instrumentation in generation of test data using genetic algorithm

for multiple paths coverage, in IEEE-International Conference On Advances In

Engineering, Science And Management (ICAESM -2012), Nagapattinam, Tamil

Nadu, 2012.

[30] R. Khan and M. Amjad, Automatic test case generation for unit software testing using

genetic algorithm and mutation analysis, in 2015 IEEE UP Section Conference on

 30

Electrical Computer and Electronics (UPCON), Allahabad, 2015.

[31] F. q. Wei and S. j. Jiang, Automatic Test Data Generation Based on SAMPSO

Algorithm, in 2009 International Conference on Computational Intelligence and

Software Engineering, Wuhan, 2009.

[32] G. I. Latiu, O. A. Cret and L. Vacariu, Automatic Test Data Generation for Software

Path Testing Using Evolutionary Algorithms, in 2012 Third International Conference

on Emerging Intelligent Data and Web Technologies, Bucharest, 2012.

[33] S. Di Alesio, L. C. Briand, S. Nejati and A. Gotlieb, Combining Genetic Algorithms

and Constraint Programming to Support Stress Testing of Task Deadlines, ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 25, no. 1,

2015.

[34] J. Malburg and G. Fraser, Search-based testing using constraint-based mutation,

Software Testing, Verification and Reliability, vol. 24, no. 6, pp. 472-495, 2014.

[35] K. Ghani, J. A. Clark and Y. Zhan, Comparing algorithms for search-based test data

generation of Matlab® Simulink® models, in 2009 IEEE Congress on Evolutionary

Computation, Trondheim, 2009.

[36] Y. Chen, Y. Zhong, T. Shi and J. Liu, Comparison of Two Fitness Functions for GA-

Based Path-Oriented Test Data Generation, in 2009 Fifth International Conference on

Natural Computation, Tianjin, 2009.

[37] D. Jeya Mala, K. Sabari Nathan and S. Balamurugan, Critical Components Testing

Using Hybrid Genetic Algorithm, ACM SIGSOFT Software Engineering Notes, vol.

38, no. 5, pp. 1-13, 2013.

[38] P. M. S. Bueno, M. Jino and W. E. Wong, Diversity oriented test data generation

using metaheuristic search techniques, Information Sciences, vol. 259, pp. 490-509,

2014.

[39] A. El-Serafy, G. El-Sayed, C. Salama and A. Wahba, Enhanced Genetic Algorithm

for MC/DC test data generation, in 2015 International Symposium on Innovations in

Intelligent SysTems and Applications (INISTA), Madrid, 2015.

[40] Y. Suresh and S. K. Rath, Evolutionary Algorithms for Object-Oriented Test Data

Generation, ACM SIGSOFT Software Engineering Notes, vol. 39, no. 4, pp. 1-6,

2014.

[41] L. S. Silva and M. van Someren, Evolutionary Testing of Object-Oriented Software,

in SAC '10 Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre,

2010.

[42] M. A. Ahmed and I. Hermadi, GA-based multiple paths test data generator,

Computers & Operations Research, vol. 35, no. 10, pp. 3107-3124, 2008.

[43] B. S. Ahmed, M. A. Sahib and M. Y. Potrus, Generating combinatorial test cases

using Simplified Swarm Optimization (SSO) algorithm for automated GUI functional

testing, Engineering Science and Technology, an International Journal, vol. 17, no.

4, pp. 218-226, 2014.

[44] C. Mao, X. Yu, J. Chen and J. Chen, Generating Test Data for Structural Testing

Based on Ant Colony Optimization, in 2012 12th International Conference on

Quality Software, Xi'an, Shaanxi, 2012.

[45] K. Liaskos and M. Roper, Hybridizing Evolutionary Testing with Artificial Immune

Systems and Local Search, in 2008 IEEE International Conference on Software

Testing Verification and Validation Workshop, Lillehammer, 2008.

 31

[46] C. Henard, M. Papadakis, G. Perrouin, J. Klein and Y. Le Traon, Multi-objective Test

Generation for Software Product Lines, in SPLC '13 Proceedings of the 17th

International Software Product Line Conference, Tokyo, 2013.

[47] F. M. Kifetew, A. Panichella, A. De Lucia, R. Oliveto and P. Tonella, Orthogonal

Exploration of the Search Space in Evolutionary Test Case Generation, in ISSTA

2013 Proceedings of the 2013 International Symposium on Software Testing and

Analysis, Lugano, 2013.

[48] P. Flores and Y. Cheon, PWiseGen: Generating test cases for pairwise testing using

genetic algorithms, in 2011 IEEE International Conference on Computer Science and

Automation Engineering, Shanghai, 2011.

[49] Y. Xiangjuan, G. Dunwei and W. Wenliang, Test Data Generation for Multiple Paths

Based, Chinese Journal of Electronics, vol. 24, no. 1, pp. 46-51, 2015.

[50] A. Panichella, F. M. Kifetew and P. Tonella, Reformulating Branch Coverage as a

Many-Objective Optimization Problem, in 2015 IEEE 8th International Conference

on Software Testing, Verification and Validation (ICST), Graz, 2015.

[51] K. Doganay, M. Bohlin and O. Sellin, Search Based Testing of Embedded Systems

Implemented in IEC 61131-3: An Industrial Case Study, in 2013 IEEE Sixth

International Conference on Software Testing, Verification and Validation

Workshops, Luxembourg, 2013.

[52] S. Jiang, Y. Zhang and D. Yi, Test Data Generation Approach for Basis Path

Coverage, ACM SIGSOFT Software Engineering Notes, vol. 37, no. 3, pp. 1-7, 2012.

[53] K. Marin and C. Doungsa-ard, Test data generation from Hibernate constraints, in

The 8th International Conference on Software, Knowledge, Information Management

and Applications (SKIMA 2014), Dhaka, 2014.

[54] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, The AETG system: an

approach to testing based on combinatorial design, IEEE Transactions on Software

Engineering, vol. 23, no. 7, pp. 437-444, 1997.

[55] A. W. Williams and R. L. Probert, A practical strategy for testing pair-wise coverage

of network interfaces, in Software Reliability Engineering, 1996. Proceedings.,

Seventh International Symposium on, White Plains, 1996.

[56] A. Hartman and L. Raskin, Problems and algorithms for covering arrays, Discrete

Mathematics, vol. 284, no. 1-3, pp. 149-156, 2004.

 32

8. Appendix

8.1. Algorithms and Baselines

Table 9. Table Containing All MHS Algorithms and Baselines Used

ID Title Authors

MHS

algorithm

used

Comparison

baseline

1

A First Approach to Test Case

Generation for BPEL

Compositions of Web Services

Using Scatter Search

Blanco et al.

[20]
SS RS

2
A tabu search algorithm for

structural software
Díaz et al. [21] TS RS

3

Adapting ant colony

optimization to generate test

data for software structural

testing

Mao et al. [14] ACO SA, GA, PSO

4

An approach to generate

software test data for a specific

path automatically with genetic

algorithm

Cao et al. [22] GA RS, GA

5

An Improved Memetic

Algorithm with Method

Dependence Relations

(MAMDR)

Aburas and

Groce [23]
GA, HC GA

6

Application of Genetic

Algorithm and Tabu Search in

Software Testing

Rathore et al.

[24]
GA, TS GA

7
Automated test data generation

using a scatter search approach

Blanco et al.

[16]
SS RS, GA, SS, TS

8

Automatic Generating All-Path

Test Data of a Program Based

on PSO

Li and Zhang

[12]
PSO PSO

9

Automatic generation of

software test cases based on

improved genetic algorithm

Dong and Peng

[25]
GA GA

10

Automatic generation of

software test data based on

hybrid particle swarm genetic

algorithm

Ding et al. [26] PSO, GA GA

11

Automatic generation of test

data for path testing by adaptive

genetic simulated annealing

algorithm

Zhang and Wang

[27]
GA, SA GA

 33

12

Automatic Path-Oriented Test

Data Generation Using a Multi-

population Genetic Algorithm

Chen and Zhong

[28]
GA GA

13

Automatic program

instrumentation in generation of

test data using genetic algorithm

for multiple paths coverage

Maragathavalli

et al. [29]
GA GA

14

Automatic test case generation

for unit software testing using

genetic algorithm and mutation

analysis

Khan and Amjad

[30]
GA Mutation testing

15
Automatic Test Data Generation

Based on SAMPSO Algorithm

Wei and Jiang

[31]
PSO GA, BPSO

16

Automatic Test Data Generation

for Software Path Testing Using

Evolutionary Algorithms

Latiu et al. [32]
GA, SA,

PSO
-

17

Combining Genetic Algorithms

and Constraint Programming to

Support Stress Testing of Task

Deadlines

Di Alesio et al.

[33]
GA GA, CP

18

Comparing algorithms for

search-based test data generation

of Matlab® Simulink® models

Ghani et al. [35] GA RS, DSE, GA

19

Comparison of Two Fitness

Functions for GA-Based Path-

Oriented Test Data Generation

Chen et al. [36] GA, SA -

20
Critical Components Testing

Using Hybrid Genetic Algorithm

Jeya Mala et al.

[37]
GA -

21

Diversity oriented test data

generation using metaheuristic

search techniques

Bueno et al. [38] MA GA

22

Enhanced Genetic Algorithm

For MC/DC Test Data

Generation

El-Serafy et al.

[39]

SA, GA,

SR
RS

23

Evolutionary Algorithms for

Object-Oriented Test Data

Generation

Suresh et al. [40] GA GA

24
Evolutionary Testing of Object-

Oriented Software

Silva and van

Someren [41]

BPSO,

ABC

Selection

algorithm

25
GA-based multiple paths test

data generator

Ahmed and

Hermadi [42]
GA RS

26

Generating combinatorial test

cases using Simplified Swarm

Optimization (SSO) algorithm

for automated GUI functional

testing

Ahmed et al.

[43]
GA GA

27

Generating Test Data for

Structural Testing Based on Ant

Colony Optimization

Mao et al. [44] SSO

PIST, TVG,

CTE-XL, ITCH,

IPOG, PSO

 34

28

Hybridizing Evolutionary

Testing with Artificial Immune

Systems and Local Search

Liaskos and

Roper [45]
ACO SA, GA

29
Multi-Objective Test Generation

for Software Product Lines

Henard et al.

[46]
GA GA

30

Orthogonal Exploration of the

Search Space in Evolutionary

Test Case Generation

Kifetew et al.

[47]
GA RS

31

PWiseGen: Generating test cases

for pairwise testing using

genetic algorithms

Flores and

Cheon [48]
GA GA

32

Reformulating Branch Coverage

as a Many-Objective

Optimization Problem

Panichella et al.

[50]
GA

GA, AETG [54],

IPO, TConfig

[55], CTS [56]

33

Search Based Testing of

Embedded Systems

Implemented in IEC 61131-3:

An Industrial Case Study

Doganay et al.

[51]
GA RS, GA

34
Search-based testing using

constraint-based mutation

Malburg and

Fraser [34]
GA GA

35
Test Data Generation Approach

for Basis Path Coverage
Jiang et al. [52] HC RS

36

Test Data Generation for

Multiple Paths Based on Local

Evolution

Xiangjuan et al.

[49]
GA GA

37
Test Data Generation From

Hibernate Constraints

Marin and

Doungsa-ard

[53]

GA RS

RS – random search, BPSO - , CP – constraint programming, DSE – dynamic symbolic

execution, SR - simulated repulsion, ABC - artificial bee colony algorithm , SSO –

simplified swarm optimization, PIST, TVG – Test Vector Generator, CTE-XL –

Classification-Tree Editor eXtended Logics, ITCH - Intelligent Test Case Handler,

IPOG/IPO – In Parameter Order Generator

 35

8.2. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Heidi Urmet,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

A Systematic Review of the Application and Empirical Investigation of Search-Based Test

Case Generation,

supervised by Dietmar Alfred Paul Kurt Pfahl,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 10.05.2017

	1. Introduction
	2. Background
	2.1. Software Testing
	2.2. Search Based Software Testing
	2.3. Framework

	3. Method
	3.1. Snowballing
	3.2. Repository Selection and Search String Definition
	3.3. Paper Selection
	3.4. Data Extraction

	4. Results
	4.1. RQ1 – For Which Metaheuristic Search Algorithms, Test Levels, and Fault Types Is There Credible Evidence for the Study of Cost-Effectiveness?
	4.2. RQ2 - How Convincing Is The Evidence of Cost and Effectiveness of Search-Based Software Testing Techniques, Based on Empirical Studies That Report Credible Results?
	4.3. RQ3 - How Well Is The Random Variation Inherent in Search-Based Software Testing, Accounted for in the Design of Empirical Studies?
	4.4. RQ4 - What Are the Most Common Alternatives to Which SBST Techniques Are Compared?
	4.5. RQ5 - What Are the Measures Used for Assessing Cost and Effectiveness of Search-Based Software Testing?
	4.5.1. Cost
	4.5.2. Effectiveness

	5. Discussion
	5.1. RQ1
	5.2. RQ2
	5.3. RQ3
	5.4. RQ4
	5.5. RQ5
	5.6. Threats to Validity

	6. Conclusions
	7. Bibliography
	8. Appendix
	8.1. Algorithms and Baselines
	8.2. Licence

