Search-Based Mutant Selection for Efficient Test Suite
Improvement: Evaluation and Results

Pedro Delgado-Pérez®*, Inmaculada Medina Bulo®

@ FEscuela Superior de Ingenieria, Universidad de Cddiz, Spain

Abstract

Context: Search-based techniques have been applied to almost all areas in
software engineering, especially to software testing, seeking to solve hard opti-
mization problems. However, the problem of selecting mutants to improve the
test suite at a lower cost has not been explored to the same extent as other prob-
lems, such as mutant selection for test suite evaluation or test data generation.
Objective: In this paper, we apply search-based mutant selection to enhance
the quality of test suites efficiently. Namely, we use the technique known as
Evolutionary Mutation Testing (EMT), which allows reducing the number of
mutants while preserving the power to refine the test suite. Despite reported
benefits of its application, the existing empirical results were derived from a
limited number of case studies, a particular set of mutation operators and a
vague measure, which currently makes it difficult to determine the real perfor-
mance of this technique. Method: This paper addresses the shortcomings of
previous studies, providing a new methodology to evaluate EMT on the basis
of the actual improvement of the test suite achieved by using the evolutionary
strategy. We make use of that methodology in new experiments with a carefully
selected set of real-world C++ case studies. Results: EMT shows a good per-
formance for most case studies and levels of demand of test suite improvement
(around 45% less mutants than random selection in the best case). The results
reveal that even a reduced subset of mutants selected with EMT can serve to
increase confidence in the test suite, especially in programs with a large set of
mutants. Conclusions: These results support the use of search-based tech-
niques to solve the problem of mutant selection for a more efficient test suite
refinement. Additionally, we identify some aspects that could foreseeably help
enhance EMT.

Keywords: search-based software engineering, mutation testing, evolutionary
algorithm, genetic algorithm

*Corresponding author: pedro.delgado@uca.es

Preprint submitted to Information and Software Technology July 8, 2018

1. Introduction

The increasing complexity of software systems has led to the emergence
of a variety of well-known software engineering problems related to almost all
activities of the software lifecycle. The gradual appearance of search and opti-
mization techniques has allowed successfully finding near-optimal solutions to
many of these hard-to-solve problems with affordable resources, with a remark-
able contribution to the software testing phase [1]. Mutation testing, a powerful
technique to assess and improve test suites, has not been indifferent to the
opportunity offered by these optimization methods, as it can be seen in this
review [2]. These search-based techniques are especially appealing to alleviate
costly and tedious tasks, such as the execution of the whole set of mutants and
the inspection of all equivalent mutants. Indeed, these are two key impediments
that researchers are urged to investigate for a greater integration of mutation
testing in the industry.

However, these innovative techniques have been mainly devised for the prob-
lem of test case generation [3, 4, 5]. Ouly in the last years, these techniques
have been applied to the problem of mutant selection with the aim of enhancing
the fault detection of a test suite. That is the goal of the technique known as
Evolutionary Mutation Testing (EMT). This technique was conceived on the
premise that mutants killed by few or none of the test cases in the current test
suite can guide the generation of similar useful mutants. This can be achieved
by means of an evolutionary algorithm that favors the generation of mutants
from the same mutation operators that produced them, or in nearby areas to
those mutation locations. In this way, we can increase the probability of finding
a great percentage of surviving mutants —which can help the tester improve the
test suite— without the need to generate all mutants, thereby reducing the cost
of applying mutation testing.

Problem: The late attention to the application of optimization techniques
to automate the selection of mutants for test suite improvement implies a lack
of knowledge about the efficiency of these methods in different contexts (e.g.,
EMT has only been applied to WS-BPEL compositions since its inception).
Furthermore, we have also detected the absence of a well-defined methodology
to measure its performance appropriately. The ratio of strong mutants found
(i.e., those mutants with great potential to induce the design of a new test case)
was used as an indicator of the performance in the first experiments conducted.
However, that measure only gives us a partial view of the performance: finding a
percentage of strong mutants does not necessarily entail a proportional extension
of the test suite.

Contribution: The objective of this research paper is to increase knowledge
via experimentation about how much the test suite under evaluation can be
refined through the mutants selected by EMT. The experiments conducted in
this paper go a step beyond than previous experiments —where the ability of
the technique to find strong mutants was evaluated— by assessing in depth a
new methodology that allows us to estimate the extent to which EMT could
help improve the test suite. This work connects and extends the results of two

previous papers [6, 7], providing a comprehensive picture regarding the behavior
of EMT, descriptive examples on how to implement the proposed methodology,
statistical significance of the results and a discussion comparing the old and
the new methodology and the results of EMT, random selection and selective
mutation. The paper also includes a list of lessons learned that can be useful
for researchers in this field in a foreseeable future. Additionally, we double
the number of case studies to eight publicly available programs coded in C++.
Overall, the results reported in this paper support the following hypothesis:

Hypothesis: Evolutionary Mutation Testing is a useful mechanism to
improve the test suite generating a subset of the full set of mutants.

Namely, the contributions in this paper are as follows:

1. We describe and evaluate in detail the proposed method to assess
the effectiveness of EMT. This methodology is based on the actual
improvement of the test suite that the selected mutants may induce. A
comparison between the results of the previous and this novel methodology
reveals that the performance of EMT relates to the nature of the mutants
selected and not only to finding a large number of strong mutants. Indeed,
one of the main conclusions is that we do not need to generate a great
percentage of mutants to reach noticeable improvements. As an example,
to reach 80% of the size of a test suite that kills all non-equivalent mutants
(i.e., a mutant-adequate test suite), the percentage of mutants generated
on average ranges from 16% to 54% of the full set of mutants.

2. The experiments show that EMT outperforms random selection
of mutants and selective mutation. Both, when measuring the per-
centage of strong mutants and test suite improvement, EMT gets better
results overall. The differences between EMT and random selection of
mutants are even more remarkable with the new evaluation method, sta-
tistically significant in many cases, and the evolutionary algorithm also
shows more stability. In the best case, the difference between both tech-
niques was about 45% of the mutants to find a mutant-adequate test suite.
Combining random selection with selective mutation does not decrease the
number of mutants generated in general, but the results suggest that re-
moving low-productive operators could increase the performance of EMT.

3. We provide a list of lessons learned based on the experience and
anticipate possible refinements of the algorithm to improve the
effectiveness of EMT. These handy tips address different factors that
affect the performance of EMT. We can highlight that EMT performs
better in complex programs, and when the test suite is not at an initial
stage or comprised of overlapped test cases. Additionally, EMT should
work better when valuable mutants are concentrated on specific areas or
produced by a subset of mutation operators. If this is not the case (valu-
able mutants are highly spread), it is likely that favoring the generation of
mutants from all operators and in all areas of the code may help guide the

search. Additionally, the results suggest that the algorithm could benefit
from the integration of methods that detect equivalent mutants.

The structure of the rest of the paper is as follows. Section 2 motivates
the use of a search-based technique to search for useful mutants to improve the
quality of the test suite. Section 3 details the evolutionary approach followed by
EMT, while Section 4 explains the proposed method to assess its effectiveness.
The research questions and the empirical evaluation are presented in Section 5.
Several lessons learned and possible enhancements are shown in Section 6. The
paper ends with the related work in Section 7 and the conclusions in Section 8.

2. Motivation

Mutation testing is a fault-based technique with increasing importance as a
method for measuring and improving the effectiveness of test suites in finding
plausible faults in the code. To achieve this:

1. Different transformation rules are applied to the code of the program un-
der test, replacing, inserting or deleting simple code fragments, so-called
mutation operators.

2. As aresult, an assortment of faulty versions are generated (each one with
a syntactic change), which are called mutants.

3. Then, the test suite is urged to reveal those faults by re-executing each
mutant against the current test suite and determine if some of its test
cases are able to kill the mutant (i.e., detect the mutation). Such detection
means that the mutated program exhibits different functionality from the
original program (based on the output of both programs).

4. Undetected mutants are known as live mutants and show that the test
suite might be insufficient —therefore it would require to be reinforced.

Search-based software engineering seeks to reformulate known problems in
the field of software engineering as optimization problems, and then use meta-
heuristics techniques to solve them, such as using genetic algorithms [8] or ant
colony optimizations [9]. Search-based techniques are especially useful with hard
optimization problems, where using exact algorithms is often unfeasible while
metaheuristics strategies have shown the ability to reach near-optimal solutions
with reasonable computational effort.

Despite awareness of the effectiveness of mutation testing as a method for
increasing the confidence level in test quality, this technique suffers from the
kind of problems that search-based strategies could help to ease: the high com-
putational cost of executing all mutants and the huge amount of human effort
required to identify equivalent mutants (i.e., mutants which do not differ from
the original program from a functional point of view). Different surveys [10, 11]
have collected several techniques suggested over the years to face both problems.

Evolutionary Mutation Testing (EMT) proposes to use a metaheuristic
approach for the selection of mutants with the aim of improving a test suite.
More specifically, EMT selects only a subset of the full set of mutants with a

particular goal: maximizing the number of mutants contained in that subset
with the potential to provide the tester with information to enhance the current
test suite. This is especially helpful when a vast number of mutants can be
derived from the code, and the program compilation and execution are costly.

Delgado-Pérez et al. [12] recently gave evidence that the effectiveness of
selection techniques should be differently assessed depending on whether our
goal is evaluating (T'SE) or refining a test suite (TSR):

e A good selection technique for TSE should avoid the selection of redun-
dant mutants, as they can be removed without affecting the mutation
score (i.e., ratio of non-equivalent mutants killed by the test suite). This
is the measure traditionally used to assess the fault detection capability
of a test suite [13].

e A good selection technique for T'SR should select mutants that can induce
the creation of new test cases. Each added test case can affect the mutation
score differently depending on its design (i.e, the number of mutants killed
depends on the specificity of the new test case). Therefore, the mutation
score can be misleading and the increase in the test suite size should be
measured instead.

Notice that the selection of mutants through the application of EMT is done
solely with the aim of improving the test suite, that is, TSR. As such, EMT
should be assessed on the basis of the increase in the quality of the test suite.

Finally, we should note that the problem of mutant selection for test suite
improvement is different from the problem of test case generation [14]; the design
of new test cases is the following step that the tester should undertake by means
of the selected mutants. In fact, these selected mutants could be used to feed
other test case generation algorithms.

3. Evolutionary Mutation Testing

In the following subsections, we explain the main concepts related to this
search-based strategy and how it works internally.

8.1. Genetic algorithm

EMT is based on the use of evolutionary algorithms [15]. These are population-
based algorithms in which a set of individuals are recombined and mutated with
the goal of generating better individuals for the problem addressed. The evo-
lutionary approach fits well with the problem of the selection of a subset of
mutants: we can first generate a relatively small subset of mutants or individ-
uals (which depends on the size of the program under test) and then produce
new individuals derived from those that seemingly have the greatest potential
to contribute to the design of new test cases. Concretely, Dominguez-Jiménez et
al. [16] proposed the use of a genetic algorithm (the most used method to address
software engineering problems according to the review by Harman et al. [1]).

Generated witl
reproductive
operators

Selection
method

Y

Compute Evaluate Set of
- fithess termination mutants
L} function conditions selected

A

First
generation

Randomly
generated

Figure 1: Diagram of the steps followed by EMT.

Figure 1 illustrates how this genetic algorithm manages the set of individuals
and the elements involved in its application:

1. A first generation of mutants is randomly produced. The population size
in a generation (PS) needs to be previously set.

2. The fitness function is responsible for determining the quality of each of
the individuals.

3. The algorithm produces a new generation. To that end, a selection method
uses the computed fitnesses to select some mutants in order to engender
new mutants through predefined reproductive operators. At the same time,
a percentage N of the mutants in each generation is randomly produced.

4. The algorithm stops according to one or more termination conditions set
by the tester (for instance, when reaching a number of generations). If so,
the algorithm returns the set of mutants generated so far. Otherwise, the
algorithm keeps iterating and produces a new generation.

8.2. Fitness function

The fitness function in EMT gives preference to mutants that are not well
covered by the test suite, as these are the mutants that can lead to the refinement
of the test cases. Equation 1 shows how the fitness function measures the quality
of each individual for this particular problem. Let I be the mutant to compute
its fitness and S the current test suite. Let also be M the number of mutants and
T the number of test cases in S. Finally, m;; takes the value 1 when the mutant
1 is detected by test case j, and 0 otherwise. Then, according to Equation 1,
the fitness of a mutant will be in the range [0, M x T]!, where this value will
be close to M x T when (1) there are few test cases killing the mutant, and (2)

IThe fitness can be normalized between [0,1]. For the sake of clarity, we maintain the
range [0, M x T7] in this study.

there are few mutants being detected by those test cases at the same time. This
second part of the equation helps differentiate mutants killed by specific test
cases (and, therefore, interesting mutants) from those killed by general ones.

T M
Fitness(I,S8) =M x T — Z (mlj X Zmij) (1)
j=1 i=1

Consequently:

e Live mutants, which are the most valuable mutants to improve the test
suite, are assigned the highest value (M x T') because my; = 0 for all
j- These surviving mutants were originally called potentially-equivalent
mutants because, once these mutants are reviewed, either they can lead
to the design of a new test case or turn out to be equivalent.

e Mutants killed by a single test case, which does not kill any other mutants,
receive a fitness of M x T' — 1 because my; = 0 for all j except for one
(test case z), which kills no other mutants (m;, = 1 and Zf\il mi, = 1).
These mutants are known as difficult to kill mutants.

e The rest of the mutants are considered as weak in general and are assigned
a fitness lower than M x T'— 1. The more test cases kill I and the more
mutants those test cases kill in turn, the lower its fitness.

Potentially-equivalent mutants together with difficult to kill mutants were
called strong mutants [16]. Nonetheless, different criteria could be used to define
what is considered a strong mutant. Note that difficult to kill mutants are even
more specific than stubborn mutants [17] since the latter does not require that
the test case killing it does not kill other mutants.

The algorithm makes use of both current and historical information for a
more precise measurement of the fitness of each mutant. This means that the
fitness of a mutant is not only based on the execution results of the current
generation but also on those of the mutants selected so far by the algorithm. To
do so, EMT compiles in a second population the data of the test suite execution
of all the mutants produced in previous generations. In this way, a mutant that
seems well suited for reproduction with respect to the current generation may
result in a low-quality mutant when analyzed with respect to the current+second
population.

The fitness function is designed to penalize groups of mutants killed by a
similar subset of tests. Thus, the more mutants in the same group are selected,
the more the fitness of those mutants drops. This fact serves a twofold purpose:

e Areas of code. Mutations killed by the same test cases are normally
placed in similar areas of the code. Therefore, when the fitness attached
to these mutants is low, the algorithm will tend to focus on other areas.

e Mutation operators. Likewise, similar mutants are usually derived from
the same operators. When those mutants present poor fitnesses, fewer
mutants from those operators will be produced in successive generations.

Intuitively, the algorithm should work better when several strong mutants
are found in some apparently not well-covered areas. The same happens when
some mutation operators concentrate the generation of strong mutants. As
it can be deduced, this fact not only depends on the nature of the mutants
themselves, but it also depends on the initial test suite. That is, if the tester
fails to address a feature of the language when designing test cases, that leaves
room for EMT to find related mutants that help reveal those deficiencies.

3.8. Selection and reproductive operators

A genetic algorithm depends on two kinds of operators, selection and repro-
ductive operators, described below:

Selection operator. Selection operators follow different criteria to select individ-
uals from the population [15]. The genetic algorithm in GAmera [18], the first
tool implementing EMT, applies the roulette wheel method [19]. This selection
method is deemed suitable in the case of EMT because it is known to have a
quick convergence, which allows for reducing the subset of mutants generated
as much as possible.

Reproductive operators. The individual representation consists of two fields (which
identify uniquely each mutant):

e Operator: A code assigned to the mutation operator that generated the
mutant.

e Location: An integer that represents the order in the code of the mutants
produced by each mutation operator.

As an example of this encoding format, the mutant 03L5 is generated by
the mutation operator (0) tagged with the code 3, and it is placed in the fifth
location (L) —therefore, that operator generated four mutants before detecting
this location. Note that, in the original definition of EMT [16], individuals
were represented using a further field, the attribute, which identifies different
mutations inserted into the same location. That field, however, can be mapped
using the location field (each mutation is considered a new location). This is a
preferable option when none or few mutation operators can produce more than
a single mutant per location.

There are two reproductive operators that change these two fields to engen-
der new mutants in the next generation:

e Mutation operators. There are two mutation operators that can be
applied to a mutant OxLy. The first one modifies the value of the operator
field, producing a mutant from a different operator but with the same
number of location (0x’Ly); the second one modifies the value of the lo-
cation field instead of the operator (0xLy’). p,, represents the probability
that a mutation operator is applied.

e Crossover operator. Two parents, 0x1Ly1 and 0x2Ly2, share their data
to breed two children that inherit information from both parents: 0x1Ly2
and 0x2Ly1l. p. is the probability that a crossover operator is applied.

A graphical explanation of these two operators can be found in [7]. The
idea behind these operators is to find similar individuals to those that were
selected for reproduction. For instance, the mutation operator that changes the
field location in the offspring seeks to produce mutants in a nearby area. We
can illustrate this fact with the fragment of code shown in Figure 2, where two
different mutation operators produce several mutants. Taking into account that
the selection operator selects the individuals based on how high their fitnesses
are, if mutant 01L3 is selected for reproduction, it is reasonable to generate
mutant 01L2 as well: both mutants are in the same line of the code and, if that
line is not properly exercised by the test suite, generating new mutants in near
locations could lead to the detection of a missing test case.

/% First part of the code x/

if((x> 0 [&&](0112) y > 0) m(om3> (x > z)){
[#++] (O2L1)

/* Intermediate code %/

w = true;
while (x < y [&&](01L8) w){
if (x = z){

w = false;
}
(02L2)
}

/* Rest of the code x/

Figure 2: Fragment of code analyzed with respect to two mutation operators: O1 (replacement
of the operators && and ||) and O2 (deletion of increment/decrement operators). Mutation
locations are highlighted with a box, followed by the individual representation used by EMT
(operator and number of location).

In order to generate a similar mutant to its parent, the value of the field is
mutated according to this equation:

B = (a £ random(1,10(1 — p,,))) (mod U) (2)
Where:

[is the final value of the field.

« is the current value of the field.

« is added or subtracted a random value in the range [1,10(1 — p,,)]. In
this way, the upper limit of this range decreases as p,, increases, which
reduces the impact of the mutation.

e U is the maximum value that the field can be assigned. The operation is
carried out modulo U to avoid generating nonexistent mutants.

Thus, it is likely that the mutant 01L3 breeds the mutant 01L2 rather than
other distant mutants like 01L8. Similarly, the change of the operator field aims
at deriving mutants from operators that belong to the same syntactic category.
As a remark, the method to generate new nearby mutants could be simplified
by just increasing/decreasing 1 to the field selected for mutation. Analyzing the
difference in results between both methods would merit further investigation.

Finally, the underlying idea of the application of the crossover operator is
that two parents share their information to produce fitter individuals. For in-
stance, imagine that the selection operator selects the mutants 01L8 and 02L1
for reproduction. By crossing these mutants, we favor the application of opera-
tors 1 and 2 (which seemingly produce high-quality mutants) as well as mutants
located in two areas of the code not properly covered by the test suite. As such,
the crossover operator should be especially effective when the different mutation
operators produce a similar number of mutants across the code.

4. New Evaluation Methodology

4.1. Motivation

In order to justify the use of EMT, it is important to define a proper evalu-
ation method to measure its performance. In previous works, the authors con-
ducted some experiments to calculate the percentage of the total number
of strong mutants found. To that end, they followed the next steps:

1. As a first step before EMT execution, run all mutants against the current
test suite. By evaluating the results, we can know the total number of
strong mutants in advance.

2. Execute EMT until the termination condition is reached.

3. Measure the percentage of the total number of strong mutants contained
in the subset of mutants returned by EMT.

This evaluation method, however, presents two main issues. First, we should
know that some of the strong mutants can turn out to be equivalent since the set
of potentially-equivalent mutants contains the set of equivalent mutants (as it
was commented in Section 3.2). Second, after inspecting a surviving mutant, we
could design a test case that is able to kill several other surviving mutants. As
a consequence, the number of strong mutants found is not an accurate measure
of the actual test suite improvement, and a new evaluation method is required.

10

4.2. New methodology

The idea behind the proposed methodology is to resemble a real process of
test suite refinement when the surviving mutants found by EMT are manually
inspected. Note, however, that the new test cases are not added as a direct result
of reviewing the selected mutants, but we base this simulation on previously
generated information to be able to automate the process. In this way, we can
estimate the number of new test cases that the subset of mutants generated
with EMT could help design. In this case, we follow the next general steps:

1. As a first step before EMT execution, run all mutants against the current
test suite.

2. Review the surviving mutants and create new test cases until all non-
equivalent mutants are killed. The result is an improved version of the test
suite, so-called mutant-adequate test suite (henceforth, simply adequate).

3. Execute EMT until the termination condition is reached.

4. Determine which test cases of the improved test suite could be induced
by the mutants returned by EMT. As it will be seen later on, this step
implies analyzing the execution results of the selected mutants against the
adequate test suite in order to remove test cases that are not actually
necessary (i.e., minimize the test suite). The result is a subset of the
adequate test suite that kills all non-equivalent mutants selected by EMT.

5. Measure the percentage of the test cases in the adequate test suite con-
tained in the set of test cases obtained in the previous step.

A valuable resource to achieve step 4 is to save the execution results as
a matrix structure, so-called execution matriz. The execution matrix of size
M (mutants) x T (test cases) records a value 1 in the intersection of a mutant
and a test case when that test case is able to detect the mutant (otherwise, the
value is 0). Among other advantages, the execution matrix is useful to know
the state of a mutant:

e Live mutant: the row representing the mutant is filled with value 0.

e Dead mutant: the row contains, at least, a cell with value 1.

As a last remark, invalid mutants (i.e., mutants containing syntactically
illegal mutations) are represented with a row filled with value 2. This represen-
tation of invalid mutants is useful for EMT as all these mutants can be directly
identified and removed so that they are not assigned a fitness and they do not
affect the fitness computation of the rest of the mutants.

In the following two subsections, we detail the two phases that are necessary
to put this evaluation methodology into practice.

First phase

The first phase (steps 1 and 2) consists in designing an adequate test suite.
This implies the execution of the whole set of mutants against the current test

11

suite, the inspection of the mutants that survived the execution and the design
of test cases driven to kill them.

In order to explain the proposed methodology, we will use a running example
based on the execution matrix in Figure 3. This execution matrix, which we
will call original matriz, shows the result of the execution of each of the test
cases designed so far (|T'| = 5) on each of the mutants generated in our example
program (|M| = 8). By interpreting this matrix, we can know which mutants
are alive, dead or invalid:

e Live mutants: mutanty, mutanty, mutants and mutantsy.
e Dead mutants: mutant,, mutants and mutants.

e Invalid mutants: mutants.

test; testy tests testy tests

mutant; 1 0 1 0 0
mutants 0 0 0 0 0
mutants 0 1 1 0 0
mutanty 0 0 0 0 0
mutants 2 2 2 2 2
mutantg 0 0 0 0 0
mutant, 0 0 0 0 0
mutantg 0 0 0 0 1

Figure 3: Original matrix (associated to the original test suite and the full set of mutants).

test; testo testsy testy testy testg testy

mutant, 1 0 1 0 0 0 0
mutants 0 0 0 0 0 1 0
mutants 0 1 1 0 0 0 0
mutanty 0 0 0 0 0 0 1
mutants 2 2 2 2 2 2 2
mutantg 0 0 0 0 0 0 0
mutant, 0 0 0 1 0 0 0
mutantg 0 0 0 0 1 0 0

Figure 4: Adequate matrix (associated to the adequate test suite and the full set of mutants).
The new values “1” (mutants killed by new/modified test cases) are highlighted.

This is the information available to the tester after the execution of the
original test suite. Based on those results, the tester will face the design of
new test cases or the modification of existing ones to kill surviving mutants.
Considering the previous example, imagine that the tester:

12

test; testy tests testy test; testg testy
mutant; 1 0 1 0 0 0 0
mutants 0 1 1
mutanty 0 0 0
mutanty 0 0 0

_= o O

0 0 0
0 0 1
0 0 0

Figure 5: Selected matrix (associated to the adequate test suite and the subset of mutants
selected by EMT).

e Finds that the mutants mutants, mutanty and mutant; are killable;
mutantg is however equivalent.

e Adds two new test cases, testg and testr, to kill mutants and mutanty
respectively.

e Modifies testy (by adding a missing assertion) to kill mutant;.

Therefore, the tester obtains an adequate test suite with size |T'| = 7. When
running this improved test suite on the same mutants, a new execution matrix is
obtained, which we will refer as mutant-adequate matriz. This matrix is shown
in Figure 4. The adequate test suite will be used as a ground truth in the second
phase to evaluate how close we are to killing all non-equivalent mutants with
the aid of the mutants selected by EMT.

Second phase

In the second phase (steps 3, 4 and 5), it is the turn to run EMT and then
evaluate how much the test suite could be improved with the mutants selected
by the genetic algorithm so far. To do this, we analyze the mutants generated
by EMT in order to know which of the test cases in the adequate test suite
are necessary to kill that subset of mutants (those which are not equivalent).
Finally, we compare the size of that subset of test cases with the size of the
adequate test suite.

Going back to our example, we can imagine that EMT is run and mutant,
mutants mutant, and mutanty are selected. We can estimate how much the test
suite could be improved thanks to these mutants by extracting their execution
results from the adequate matrix. The resulting matrix, which we will call as
selected matriz from now on, is shown in Figure 5.

At this point, we need to know which of those seven test cases are really
necessary to kill those four mutants. A good option to do this is using the con-
cept of test suite minimization: that avoids the negative impact that redundant
test cases could have on the results, and also removes test cases that kill no
mutants. We can minimize a test suite regarding a set of mutants to obtain a
new test suite (minimal test suite) that detects the same mutants as the original
test suite but with as few test cases as possible. According to this concept, we
can obtain a minimal adequate test suite through the analysis of the adequate

13

testy testy tests testg testr

mutant; 1 0 0 0 0
mutanty 0 0 0 1 0
mutantg 1 0 0 0 0
mutanty 0 0 0 0 1
mutant; 0 1 0 0 0
mutantg 0 0 1 0 0
(a)
tests testy testy
mutanty 1 0 0
mutants 1 0 0
mutanty 0 0 1
mutant; 0 1 0

(b)

Figure 6: a) Matrix associated to the minimal adequate test suite; b) Matrix associated to
the minimal selected test suite.

matrix. Similarly, we can obtain a minimal selected test suite by analyzing the
selected matrix as follows:

e Minimal adequate test suite: It contains the test cases tests, testy,
tests, tests and testr; test; and testy can be discarded given that the
mutants that they kill (mutant; and mutants respectively, as shown in
Figure 4) are also killed by tests. The resulting matrix can be seen in
Figure 6 (a).

e Minimal selected test suite: It contains tests, test, and test;: accord-
ing to Figure 5, these test cases suffice to kill mutant;, mutants mutant,
and mutanty. The resulting matrix can be seen in Figure 6 (b).

As a result, we can say that the four mutants returned by EMT (mutanty,
mutants mutanty and mutanty) could guide the design of up to 3 (tests, testy
and testy) of 5 test cases (tests, testy, tests, testg and testr) that are necessary
to kill all non-equivalent mutants. Thus, we have reached the estimation of the
improvement that we could achieve with the mutants selected by EMT.

4.8. Termination condition

In practice, the genetic algorithm can be configured to stop the execution
after a fixed number of generations or when a certain percentage of the to-
tal number of mutants has been produced. For the experiments of this paper,
however, we can define new stopping conditions that help to compare the per-
formance of the different techniques studied later on in Section 5.

As such, we have implemented a new termination condition that fits better
with the evaluation method explained in Section 4.2. Because of the availability
of an adequate test suite for the program under test, this condition stops the

14

algorithm when reaching a given percentage P of the size of the minimal ade-
quate test suite. In this way, the algorithm keeps producing new generations of
mutants until satisfying the condition in Equation 3.

|Minimal selected test suite| > |Minimal adequate test suite| x P (3)

Using the example in Section 4.2 again, we could have established P = 70%.
This means that we want the algorithm to generate as many mutants as neces-
sary to obtain a test suite with a size greater or equal than 70% of the size of the
minimal adequate test suite. Recall that |Minimal selected test suite| = 3 and
|Minimal adequate test suite] = 5, so the condition 3 > 5 x 70% is not met.
Therefore, at least a new generation of mutants is needed. On the contrary, the
algorithm would have stopped with P = 60% (3 > 5 x 60%).

This termination condition is helpful because, in the end, we can compare the
number of mutants that the different techniques need to generate until reaching
the same percentage of the size of the test suite.

5. Evaluation of EMT

5.1. Research questions

In this section, we aim at answering the following research questions:

RQ1: Is EMT able to generate a lower percentage of mutants to find the
same percentage of strong mutants than Random Selection (RS)?

To answer RQ1. With this question, we seek to assess the ability of EMT to
find strong mutants when compared to the random selection of mutants (that
is, one mutant is randomly created in each generation). Both algorithms, EMT
and RS, were executed under the following conditions:

1. We established 5 different termination conditions: finding 30%, 45%, 60%,
75% and 90% of the total number of strong mutants.

2. We counted the number of mutants generated until reaching each termi-
nation condition in 30 independent runs.

By using different termination conditions, we can compare these techniques
with different levels of demand regarding the number of strong mutants to find.

RQ2: What percentage of mutants does EMT generate to reach different
percentages of the size of the minimal adequate test suite?

15

To answer RQ2. This question intends to analyze how EMT behaves as the
level of demand for test suite improvement increases, and how the percentage
of mutants generated relates to the percentage of strong mutants found. EMT
was executed under the following conditions:

1. We established 4 different termination conditions: P = 70%, P = 80%,
P =90% and P = 100%2.

2. We counted the number of mutants generated until reaching each termi-
nation condition in 30 independent runs.

Finally, we measured the percentage of strong mutants generated until stop-
ping the genetic algorithm. These percentages allow us to know the number of
strong mutants that is actually needed to enhance the test suite, and how it
grows in relation to the percentage of test suite improvement.

RQ3: Is EMT able to induce a greater refinement of the test suite than
RS?

To answer RQ3. Both algorithms, EMT and RS, were executed under the same
conditions imposed to answer RQ2. Different statistics were measured to com-
pare the performance of both techniques. Finally, we run statistical tests to
know about the significance of the results.

5.2. Experiment configuration

The experiments were conducted using the tool GiGAn, which connects
the genetic algorithm implemented in GAmera [18] with the mutation tool
MuCPP [20] for C++. Namely, we analyzed eight case studies with respect
to the set of class mutation operators implemented in MuCPP. Further details
about GiGAn can be found in a previous paper [6]. The parameter values used
for the genetic algorithm (see Sections 3.1 and 3.3) were those recommended in
the literature [16]:

e The population size PS is 5% from the full set of mutants.

e In that population, 90% of the mutants are generated with reproductive
operators; the remaining 10% of the mutants are generated randomly (NV).

e Mutation and crossover operators are applied with probability p,, = 30%
and p. = 70% respectively.

2These conditions are more demanding than those imposed to answer RQ1 with the goal
that the new and modified test cases appear in the minimal selected test suite.

16

Recall that the first generation is generated completely at random.

These programs were extracted from known open-source projects. Namely,
Matriz TCL Pro (TCL), Dolphin (DPH), MuParser (MUP), KMyMoney (KMY),
Kate (KAT), TinyXML2 (TXM), MySQLServer (SQL) and QtDom (DOM). In
most cases, we carefully studied the source code of those programs and narrowed
it down to those classes (1) with a manageable number of mutants and (2) ap-
parently well covered by the respective test suites; each of the test suites had
to undergo a process of refinement oriented to kill surviving mutants, so those
two conditions were necessary to ease such laborious and time-consuming task.

Additionally, these case studies were selected because they present quite
different properties regarding number of mutants, percentage of strong mutants,
size of the test suite and lines of code, among others. All these parameters can
be seen separately in Table 1 (test suite) and Table 2 (size of the code and
mutants generated). In general, in those programs with a high percentage of
strong mutants, such as KMY (60.2%), KAT (80.1%) and, especially, SQL
(84.1%), it was necessary a greater refinement of the test suite than in the rest
of programs.

Table 1: Test suites sizes
TCL DPH MUP KMY KAT TXM SQL DOM

| Original| 17 61 13 241 158 57 271 46
|New tests| 7 9 9 7 15 5 23 10
| Modified tests| 3 5 2 10 1 3 17 4
| Adequate| 24 70 22 248 173 62 294 56
| Minimal| 15 22 17 34 23 17 43 25

Table 2: Case studies statistics

TCL DPH MUP KMY KAT TXM SQL DOM
Lines of code 3,228 3,667 2,723 13,709 4,261 2,620 2,280 2,117
Total mutants 137 219 226 322 385 614 683 1,146
Operators applied 6 14 10 15 17 14 13 15
Valid mutants 135 208 207 251 261 433 530 681
Strong mutants 45 103 133 151 209 159 446 348
% Strong mutants 33.3% 49.5% 64.2% 60.2% 80.1% 36.7% 84.1% 51.1%

To summarize, the independent variables in these experiments are the con-
figuration of the algorithm, the set of mutation operators, case studies with their
respective test suites and different ground truths (depending on the methodol-
ogy, percentage of strong mutants or generated mutant-adequate test suites).
Our cost-effectiveness measure, the dependent variable, is the percentage of mu-
tants generated to reach the aforementioned termination conditions (depending
on the methodology, different percentages of all strong mutants found or differ-
ent percentages of the size with respect to the minimal adequate test suite).

17

5.3. Results

The three following subsections show the results of the conducted experi-
ments according to our three research questions:

Strong mutants

Table 3 collects statistics (average, minimum and maximum result, and stan-
dard deviation (SD)) about the percentage of mutants generated in the 30 execu-
tions using EMT and RS in each case study. This table breaks the results down
into the five termination conditions, from 30% to 90%, which allows observing
how the percentage of mutants generated evolves in relation to the percentage
of strong mutants to find. Notice that the lower the percentage of mutants
generated, the better the performance of the technique.

Analyzing the average results, we can see that EMT outperforms RS in all
case studies and termination conditions, except for MUP and KMY (where
EMT only produces a lower percentage of mutants with 30% as stopping condi-
tion). These results hold for the rest of statistics, except for a few cases. EMT
also shows a lower standard deviation than RS in general.

The best results are obtained in TXM and DOM, where the gap between
techniques is about 10% in some cases (see figures marked in bold in Table 3).
On the contrary, the difference is not meaningful in SQL. We can also highlight
that, in general, the distance between EMT and RS narrows with the more
demanding condition (90%). For instance, this difference is 5.6% in the case of
TXM in contrast with the three previous stopping conditions (8-10%).

Test suite improvement with EMT

Table 4 shows the statistical results of the 30 executions of EMT in a similar
way as Table 3. In this case, the results represent the percentage of mutants
generated before reaching four different levels of improvement of the test suite
(from 70% to 100% of the minimal adequate test suite in each case study).
Recall that the more mutants are generated, the less efficient is the algorithm.
Also, note that we only focus on the results of EMT execution in this subsection.

Remarkably, the genetic algorithm only needs to generate 34.7% and 49.3%
of the mutants on average in DOM and TXM respectively to complete the
minimal adequate test suite. Similarly, EMT does not require to generate more
than 44% of the mutants associated with each of the programs to reach 70% of
their respective minimal adequate test suites. DOM, with 11.35% of mutants
generated, and DPH, 43.85%, show the best and worst result in this aspect re-
spectively. Therefore, it is not necessary to generate a great number of mutants
to reach considerable improvements in the initial test suite, contrary to expec-
tations on analyzing Table 3. In broad terms, these percentages decrease for
the more complex programs (in terms of the number of mutants) and contrarily
increases when the termination condition becomes more demanding, especially
when P = 100%.

Figure 7 depicts the relation between the new methodology and the percent-
age of strong mutants generated before reaching the four different percentages of

18

Table 3: Statistics about the percentage of mutants generated by EMT and RS to reach 30%,
45%, 60%, 75% and 90% of the set of strong mutants. Results derived from 30 executions.

30% 45% 60% 75% 90%

Program

EMT RS EMT RS EMT RS EMT RS EMT RS
TCL
Avg. 23.45 28.61 37.59 43.13 53.55 57.90 67.59 72.53 84.33 88.25
Min. 13.13 16.78 25.54 31.38 40.14 44.52 51.09 60.58 70.07 79.56
Max. 37.22 40.87 51.09 54.74 65.69 70.07 79.56 79.56 92.70 94.16
SD 5.44 6.03 6.67 5.17 6.10 5.63 6.98 3.89 5.21 3.57
DPH
Avg. 28.35 29.89 41.94 45.76 55.19 59.98 69.87 75.11 85.35 89.07
Min. 24.65 24.65 38.35 38.35 50.68 52.96 62.55 67.57 78.99 82.64
Max. 33.33 35.15 47.03 53.42 59.81 67.12 76.71 81.27 90.41 93.15
SD 2.11 3.07 2.28 3.98 2.10 4.30 3.57 3.57 2.67 2.86
MUP
Avg. 30.07 28.98 46.22 43.86 61.59 58.87 76.41 74.10 90.73 89.45
Min. 26.10 23.89 40.70 37.16 55.30 52.21 71.68 69.02 86.72 84.95
Max. 35.84 33.18 50.88 48.67 66.81 63.27 80.53 77.43 93.36 92.03
SD 2.79 2.22 2.60 2.90 2.49 2.71 2.17 2.27 1.62 1.78
KMY
Avg. 29.03 29.93 44.91 44.14 60.92 59.26 76.37 74.60 90.27 88.88
Min. 24.53 24.22 40.37 36.33 55.59 51.55 70.49 69.56 87.57 83.85
Max. 34.16 35.09 49.37 50.00 65.52 64.28 81.36 79.81 92,54 92.23
SD 2.23 2.86 2.49 3.24 2.16 3.15 2.29 2.63 1.39 1.92
KAT
Avg. 26.46 29.42 40.92 44.67 54.53 59.64 68.58 74.32 85.29 89.62
Min. 23.63 25.19 36.88 40.00 48.31 54.80 64.67 69.61 81.55 87.01
Max. 30.12 32.20 45.19 49.87 58.44 64.93 73.50 79.22 88.83 91.94
SD 1.53 2.11 2.03 2.31 2.22 2.62 2.23 2.21 1.86 1.35
TXM
Avg. 24.09 29.09 36.62 44.50 49.74 59.23 64.91 74.93 84.32 89.98
Min. 20.52 22.63 31.92 38.27 44.78 54.23 60.58 69.70 77.85 85.01
Max. 27.85 35.01 41.04 51.14 56.35 65.63 71.49 80.61 89.73 93.64
SD 1.61 3.14 2.34 3.40 3.05 3.03 2.59 2.78 3.34 1.78
SQL
Avg. 29.50 30.36 45.30 45.57 60.26 60.35 74.59 75.24 89.36 89.97
Min. 27.96 27.37 43.92 43.04 57.83 57.68 72.91 72.18 87.84 88.14
Max. 31.47 32.35 47.58 47.73 61.78 63.25 77.01 78.18 90.62 91.21
SD 0.87 1.20 0.89 1.23 0.95 1.35 1.02 1.57 0.63 0.86
DOM
Avg. 21.20 29.49 34.86 44.16 52.21 59.38 69.96 74.43 87.84 89.76
Min. 19.02 25.65 32.28 39.09 46.59 54.88 66.05 71.64 83.33 86.21
Max. 23.03 34.29 37.26 49.47 57.06 63.96 73.38 78.88 90.13 93.71
SD 1.01 2.14 1.26 2.28 2.39 2.51 1.98 2.00 1.60 1.58

test suite improvement. In general, the results in Figure 7 (strong mutants) and
Table 4 (mutants generated) are quite similar. For instance, EMT generated
40.9% of the mutants in KMY for P = 70%, and that subset contains 41% of
the full set of strong mutants. However, in most cases, the percentage of strong

19

Table 4: Statistics about the percentage of mutants generated by EMT and RS to reach 70%,
80%, 90% and 100% of the minimal adequate test suite. Results derived from 30 executions.

70% 80% 90% 100%
Program
EMT RS EMT RS EMT RS EMT RS

TCL

Avg. 31.62 26.78 42.06 40.60 49.24 47.85 75.79 80.05
Min. 16.78 10.94 20.43 15.32 25.54 25.54 48.90 34.30
Max. 50.36 44.52 67.88 57.66 75.91 68.61 100.00 97.08
SD 9.92 7.92 12.01 12.03 13.41 12.78 16.11 13.43
DPH

Avg. 43.85 48.87 54.79 59.49 66.33 71.08 88.24 91.63
Min. 3242 25.11 40.18 33.33 52.51 40.63 68.94 72.60
Max. 57.07 80.36 82.19 84.93 84.93 88.58 99.08 100.00
SD 6.69 10.23 9.69 10.88 8.61 10.45 8.07 8.10
MUP

Avg. 36.93 39.48 49.08 53.96 63.99 73.06 82.74 91.10
Min. 21.23 18.14 31.41 32.74 47.34 41.15 54.42 61.50
Max. 57.52 61.06 65.04 83.62 79.20 91.59 99.11 100.00
SD 7.75 9.34 9.40 10.68 9.19 12.21 12.00 8.19
KMY

Avg. 40.93 38.46 50.47 53.13 64.65 70.27 89.26 94.66
Min. 31.36 25.77 37.88 35.40 47.51 50.00 73.60 81.36
Max. 52.79 55.27 65.52 67.08 80.12 84.16 100.00 100.00
SD 5.86 7.56 7.12 8.94 7.88 8.40 7.83 5.68
KAT

Avg. 32,96 43.02 42.24 54.24 57.99 66.27 88.20 93.19
Min. 19.22 2441 27.01 28.57 34.02 43.11 64.67 73.24
Max. 4779 65.71 65.19 72.46 76.10 84.41 99.74 99.74
SD 7.10 8.98 9.03 10.25 12.22 10.50 8.88 6.11
TXM

Avg. 16.42 19.92 21.92 32.57 31.93 46.79 49.30 75.92
Min. 9.93 9.93 13.02 13.84 20.52 24.75 24.10 32.41
Max. 26.38 39.08 29.31 64.65 46.09 86.80 65.14 98.53
SD 3.92 7.48 4.71 11.86 7.13 15.21 10.77 17.27
SQL

Avg. 30.42 35.87 42.80 52.95 58.19 70.53 87.25 94.29
Min. 21.08 34.84 28.69 34.84 44.07 55.34 62.81 78.62
Max. 41.14 49.04 54.02 74.37 72.03 93.70 99.12 99.85
SD 5.10 7.33 6.70 9.08 8.49 10.12 8.99 5.08
DOM

Avg. 11.35 19.78 16.45 34.68 21.41 49.04 34.69 80.51
Min. 7.06 10.12 10.29 19.89 11.95 26.96 25.65 52.00
Max. 17.53 41.97 25.39 53.49 35.86 81.15 55.58 99.91
SD 2.48 6.96 3.98 9.19 5.00 12.85 7.89 12.42

mutants is over the percentage of mutants generated. This fact is especially
evident for P = 100% in the case of TXM (49.3% mutants generated - 58.5%
strong mutants) and DOM (34.7% - 44.3%).

It is meaningful that most of the case studies show an almost linear increase
in the percentage of strong mutants used to improve the test suite (see Figure 7).

20

However, P = 100% clearly breaks that linearity, with noticeable increases in
all the programs (e.g., the increase from P = 90% to P = 100% is 21% in DPH
and 25% in KAT). In any case, these increases are in line with the increases in
the percentage of mutants produced to reach the whole test suite (see differences
between the columns P = 90% and P = 100% in Table 4).

100
90
80
70
60 == TCL
=—¢=— DPH
50 MUP
e KMY
40 —— KAT
TXM
30 === SQL
DOM
20
10
0
S° $° $° $°
Z v D N
< < < &

Figure 7: Percentage of strong mutants produced before reaching 70%, 80%, 90% and 100%
of the minimal adequate test suite in each case study.

Comparison of the test suite improvement with EMT and RS

Table 4 also furnishes the results of the random algorithm using the new
methodology. Focusing on the average, we can observe that EMT performs
better than RS in almost all cases, being the differences in TXM, SQL and
DOM especially worthy of attention. Despite this, the difference is favorable
for RS in TCL (except for P = 100%) and KMY with P = 30%. As it happened
in Table 3 with regard to strong mutants, the standard deviation when using
EMT is generally lower than using RS.

Figure 8 shows these differences graphically to help interpret the evolution
of the results. We can observe that, in general, the difference favorably increases
for EMT in relation to the termination condition. As such, it is remarkable that
EMT produces better results than RS for P = 100% in T'CL, in contrast to the
rest of stopping conditions. Nonetheless, the highest difference is not always
reported for P = 100%, as in the case of DPH (highest gap for P = 70%), KAT
(P =80%) and MUP, KMY and SQL (P = 90%).

21

50

40
30
N === TCL
g —4— DPH
) MUP
@ e KMY
3 —>— KAT
c
) P TXM
% 10 p—" == SQL
DOM

-10 4 1 T 1
go oo oo Je
Q O O S
& & & Q,,»Q

Figure 8: Difference (measured as RS — EMT) between the percentage of mutants generated
by EMT and RS to reach 70%, 80%, 90% and 100% of the minimal adequate test suite in each
case study. Positive differences mean that EMT gets a better result than RS, and vice-versa.

Table 5 collects the results of non-parametric statistical tests based on the
results in Table 4. Namely, Mann-Whitney U test and Vargha and Delaney’s
Ao to measure the effect size. The results of the application of Mann-Whitney
U lead us to accept that the percentage of mutants that EMT needs to produce
to reach different sizes of the minimal adequate test suite is lower than with RS
with 0.05 significance level, except for { TCL, 100%}, { DPH, 80% and 100%},
{MUP, 70-80%}, {KMY, 80%} and {TXM, 70%}. We can describe the effect
size as large for {MUP, 90-100%}, {KMY, 100%}, {KAT, 70-80%}, { TXM,
80-100%}, SQL and especially DOM.

5.4. Discussion

This section discusses the above-presented results focusing on the differences
between metrics and selection techniques, including selective mutation. Finally,
the RQs are answered:

Test suite tmprovement vs strong mutants

In the view of the percentage of strong mutants found, it seems that EMT
is less effective when the proportion of strong mutants in the program is high
(among other factors that may affect the results). In fact, the worst results in
terms of strong mutants found were obtained in MUP, KMY and SQL, where

22

Table 5: Results of Mann-Whitney U and Vargha and Delaney’s Aj2 statistical tests based
on the results of EMT and RS in each program and stopping condition. Favorable differences
for RS are marked with a dash (-). Differences (D) [21]: small - S (under 0.44), medium - M
(under 0.36) and large - L (under 0.29).

Pro 70% 80% 90% 100%

& p-value Aqo D p-value A D p-value A1o D p-value A1o D
TCL - - - - - - - - - 0.304 0.42 S
DPH 0.030 0.3 M 0.060 0.36 S 0.026 0.33 M 0.068 0.36 S
MUP 0.206 0.40 S 0.117 038 S 0.002 0.27 L 0.004 0.28 L
KMY - - - 0.246 0.41 S 0.008 0.30 M 0.004 0.28 L
KAT 3.83e-5 0.19 L 3.26e-5 0.19 L 0.016 0.32 M 0.014 0.32 M
TXM 0.081 0.37 S 3.59e-5 0.19 L 2,96e-5 0.19 L 2.57e-7 0.11 L
SQL 5.66e-6 0.16 L 1.53e-5 0.17 L 2.60e-5 0.18 L 9.77e-4 0.25 L
DOM 6.01e-8 0.09 L 3.01le-10 0.03 L 7.03e-11 0.01 L 3.51le-11 0.00 L

the total percentage of strong mutants is 64.2%, 60.2% and 84.1% respectively
(see Table 2). The contrary also holds, taking into account that the best result
was achieved in TXM (strong mutants = 36.7%) and that the results in T'CL
were also positive. This makes sense because the genetic algorithm is good at
finding strong mutants when these are mainly concentrated on certain areas of
the code and are generated by a subset of mutation operators.

It is curious to observe that, while RS outperformed EMT in finding strong
mutants in MUP and KMY, Table 4 shows that EMT is now better at selecting
mutants for the refinement of the test suite in these programs (especially in
MUP with P = 90%). Exactly the contrary happens in the case of TCL,
since the percentages in Table 4 contradict its positive results in Table 3. This
fact makes evident that there are other important factors beyond the initial
number of strong mutants, such as the way in which those strong mutants are
distributed. For example, it is likely that the results for TCL are affected by
the few available mutants (137) and the few mutation operators that produce
them (6), as shown in Table 2: the low number of mutants reduces the search
space and the low number of mutation operators reduces the effectiveness of
reproductive operators. Even in the case of SQL, where the original test suite
was not mature enough and the percentage of strong mutants found by EMT
was not promising, the new method shows that EMT is able to quickly find
more useful mutants for the refinement of the test suite when compared to RS.

In broad terms, there exists a correlation between the percentages of strong
mutants found and mutants generated to reach certain improvement, that is,
the figures in Table 4 and Figure 7 are similar. Again, this fact suggests that the
real problem is not about finding a huge number of strong mutants but those
with the ability to induce new test cases. In other words, it is more important
the nature of the mutants selected than the number of strong mutants found,
and EMT shows ability at finding those subgroups of valuable mutants.

23

EMT vs RS

The overall results give evidence that the application of mutation testing
for test suite improvement can greatly benefit from the evolutionary approach.
In comparison to the random selection of mutants, EMT gets better results
in both the measurement of strong mutants and test suite improvement. This
situation becomes more evident with the proposed methodology, where we can
find significant differences between both techniques, especially in the programs
with a greater number of mutants. Beyond the average results, it is interest-
ing to analyze the standard deviation, which indicates that EMT is also more
stable overall. For instance, we can see in Table 4 that the standard deviation
associated to RS executions is 11.86 in TXM and P = 80%. This translates
into executions that range between 13.8% and 64.6% of mutants generated in
the best and worst case. EMT, however, is less prone to such great variations.

Figure 8 suggests that the benefits derived from the application of EMT
when compared to RS are greater when the desired improvement is high. Still, it
seems sometimes that EMT experiences some problems to achieve the complete
minimal adequate test suite, as in the case of DPH, MUP, KMY, KAT and SQL:
the difference with RS in those five programs tends to go down at some point.
This fact reveals that, in some cases, EMT may get stuck in local maxima and,
therefore, may find difficult to generate some valuable mutants which are either:

e Produced by seemingly low-quality mutation operators. This means that
some mutation operators can generate many mutants with a low fitness
function (weak mutants), but a few of them are contrarily strong.

e Created in some apparently well-covered areas of the code.

Comparison with other selection techniques

Selective mutation [13] works under the assumption that the mutants from
some operators can be discarded without losing much effectiveness. As it has
been commented previously, EMT should be more effective when a subset of
the operators concentrates many of the strong mutants. Therefore, repeating
the experiments using selective mutation can shed light on this fact.

Selective mutation requires adding all mutants from each selected operator
even if only a small number of its mutants are actually useful. In this experiment,
instead, we combine selective mutation with random selection (SM+RS) for a
fairer comparison with EMT. To this end, we follow the next two steps:

1. Select mutation operators at random until the subset of selected
operators reaches the termination condition (P) set.

2. Select mutants at random from the selected subset of mutation opera-
tors, again, until the selected mutants reach the same stopping condition.

Thanks to the first step, we ensure that the second step always comes to an
end (in the worst case, all mutants generated by the subset of operators will be
selected). Notice that SM+RS can perform worse than RS when operators with
a high ratio of useful mutants to mutants generated (H from now on) are left

24

out: this may decrease the probability to find a useful mutant for the second
step. The above process is repeated 30 times. Given that high values for P could
lead to the selection of all operators, we focus on P = 80% in this experiment.

Table 6: Statistics about the percentage of mutants generated by EMT and SM+RS (random
selection using a selective set of operators) with P = 80%. Results derived from 30 executions.

Avg Max Min SD

Program

EMT SM+RS EMT SM+RS EMT SM+RS EMT SM+RS
TCL 42.1 394 67.9 70.8 20.4 19.7 12.0 10.9
DPH 54.8 55.4 82.2 74.4 40.2 34.7 9.7 11.5
MUP 49.1 50.5 65.0 71.7 314 22.6 9.4 13.4
KMY 50.5 60.6 65.5 80.4 37.9 37.6 7.1 9.9
KAT 42.2 52.8 65.2 85.2 27.0 31.2 9.0 13.4
TXM 21.9 47.2 29.3 76.5 13.0 14.2 4.7 21.2
SQL 42.8 50.6 54.0 79.6 28.7 24.3 6.7 16.0
DOM 16.4 53.7 25.4 83.9 10.3 10.3 4.0 20.7

Table 6 shows the difference in performance of SM+RS with respect to EMT.
As it can be seen, EMT gets better results than the selective technique (ex-
cept for TCL again). Looking at the best results (Min), the fact that SM+RS
achieves a better result than EMT in several cases (highlighted in bold) suggests
that effectively some mutation operators are more fruitful than others: when
operators with high H are selected in first place, the probability to find useful
mutants at random increases. Contrarily, when those operators are not selected,
that probability decreases, leading to poor results (see column Maz). This fact
is also reflected by the great increase in the standard deviation. Therefore,
further research is needed in order to establish a general subset of mutation
operators. At this point, we have to remark that, if such subset exists, selec-
tive mutation could be integrated into EMT to improve its performance. This
study is completed with the repetition of the same statistical tests previously
applied, comparing the results of EMT and SM+RS. The results in Table 7 are
statistically significant for the complex programs and four of them show a large
effect size.

Recent papers have also proposed more sophisticated ways of selecting mu-
tants than pure random selection, such as selecting a statement or method at
random prior to selecting the mutant [22]. As explained in Section 3.1, EMT
selects a percentage N of mutants randomly in each generation. In further
experiments, it would be interesting to add these random techniques as an al-
ternative and assess the impact on the performance.

Answer to research questions

RQ1: Is EMT able to generate a lower percentage of mutants to find the
same percentage of strong mutants than RS?

Yes, EMT generated fewer mutants than RS in most case studies and per-
centages of strong mutants required. Differences around 10% between both

25

Table 7: Results of Mann-Whitney U and Vargha and Delaney’s Aj2 statistical tests based
on the results of EMT and SM+RS in each program and P = 80%.

80%

Program

p-value A1g D
TCL - - -
DPH 0.976 0.50 -
MUP 0.544 0.45 -
KMY 8.93e-5 0.21 L
KAT 6.73e-4 0.24 L
TXM 1.29e-6 0.14 L
SQL 0.044 035 M
DOM 1.37e-8 0.07 L

techniques could be observed in some cases, while these differences were not
significant in the programs with a high number of strong mutants.

RQ2: What percentage of mutants does EMT generate to reach different
percentages of the size of the minimal adequate test suite?

The percentage of mutants generated varies among programs and levels of
demand, from 11% in DOM with P = 70% to 89% in KMY to reach an adequate
test suite. In general, even with reduced subsets of mutants, EMT can lead
to notable improvements in the quality of test suites, especially in programs
with a considerable number of mutants (for instance, 31% of the mutants in
TXM can lead to design 90% of the test cases regarding the adequate test
suite). Interestingly, the percentage of strong mutants found to achieve such
improvements is not far from the percentage of mutants generated, which reveals
the importance of finding the appropriate strong mutants.

RQ3: Is EMT able to induce a greater refinement of the test suite than RS?

Yes, EMT shows a greater potential than RS to guide the tester on the test
suite improvement overall. Thanks to the new methodology, we found out that
the differences between both algorithms were more notable than when finding
a percentage of strong mutants. Overall these results have been shown to be
statistically significant. In some programs, the difference narrowed at some
point, which suggests that the evolutionary approach may find difficult to select
some interesting mutants when they are isolated from the rest of useful mutants.

5.5. Threats to validity

Algorithms. The performance of the genetic algorithm may vary depending on
the values given to different parameters (e.g., PS or N), but the best configura-
tion is unknown in practice. As such, we have used the same configuration that
Dominguez Jiménez et al. [16] found to be optimal in their experiments.

Assessing randomized algorithms requires several executions to minimize the
impact of their stochastic nature on the results. We run the techniques 30 times,
a common number of runs according to the guide by Arcuri and Briand [9)].

Methodology to evaluate performance. The experiments in this paper are in-
evitably affected by the nature of the test suites. The variability in the test

26

cases that can be designed for each of the case studies supposes a threat to the
validity of the proposed methodology. Nevertheless, this threat is countered
by the fact that we do not intervene in the simulation process of test suite
improvement, which prevents taking decisions that could introduce a bias.

Even though, in general, test cases are designed to test a specific function-
ality, sometimes it is required to set a test scenario that covers a broader area
of the code. That means that a test case could exercise and kill other mutants
different from those that are expected to cover. In such cases, it is unlikely
that all test cases that kill a mutant could be designed only by reviewing that
mutant. This fact poses a threat for the simulation process of test suite re-
finement: the selected matrix can suggest that the subset of mutants generated
could induce a subset of test cases, which might differ from those test cases that
would be actually designed after mutant inspection. We remark, however, that
the new and modified test cases were designed and completed with the utmost
care, seeking to address only a particular functionality of the program in each
test case. In any case, this fact affects the techniques used in this study evenly.

Recently, Chekam et al. [23] provided evidence that relying on the clean pro-
gram assumption (i.e., the program under test does not contain any faults) poses
a potential threat to validity in test assessments. Future evaluations should
consider the methodology proposed in that paper to avoid that assumption and
observe if the same results hold. That study also observes that increases in the
fault-revealing ability of a test suite are only achieved when reaching high levels
of coverage. In our study, we presented the percentage of mutants required to
obtain from 70% to 100% of the adequate test suite. Finally, test order has no
impact on these experiments because we used an exact algorithm for test suite
minimization (all available minimal test suites are of the same size).

The set of equivalent mutants was determined after carefully inspecting all
surviving mutants in these programs. There is the threat, however, that we
had classified some mutants as equivalent when new test cases could be actually
designed to kill them. On the contrary, all non-equivalent mutants are killable
with certainty since we added test cases to kill them.

Generalization. Representativeness of the programs under study is a common
threat to validity of the results. Nevertheless, we have selected eight applications
of different nature in terms of complexity, lines of code, number of mutants or
mutation operators applied. Their respective test suites are also quite different
among them regarding the size of the original set and the need for refinement
to reach an adequate test suite. Besides this, some of the test suites make
a more exhaustive use of the classes and their members than others. This
diversity minimizes the threat to the generalization because it avoids the partial
perspective of the individual case studies.

We have not computed the time of the executions: each of the programs has
a different mutant generation, compilation and test suite execution time. For
instance, while the execution of DPH is a matter of hours, the execution of SQL
requires several days because each mutation causes a full recompilation of the
project. This makes difficult to give an average measure of the time saved by

27

using EMT beyond the difference in the percentage of mutants generated.

In terms of cost, provided that not all mutants are generated, EMT reduces
the times of mutant generation, mutant compilation and execution, and mutant
review (when a subset of live mutants is indirectly discarded). Still, EMT
incurs two kinds of additional cost when compared to the conventional mutation
process: the execution of all test cases —required to obtain the execution matrix
and compute the fitness function— and the execution of the genetic algorithm.
By matching the code coverage of the test suite with the mutation locations,
we can greatly reduce the former [24]; as reported by Dominguez et al. [16], the
time taken by the latter is marginal when compared to the whole execution time,
especially in cases like SQL where the compilation time clearly predominates.

In terms of test suite improvement, EMT should induce the same level of
refinement than reviewing all mutants as long as all useful mutants are selected
by the genetic algorithm. However, the lower the percentage of mutants gener-
ated, the higher the risk that some of those test cases in the adequate test suite
are not designed.

We should remark that these experimental procedures were carried out using
a set of class mutation operators, which are known to produce many equivalent
mutants when compared to traditional operators [25]. Therefore, it is unknown
if the results hold in other contexts.

6. Lessons learned and future development

Test suite

The design of the original test suite impacts the effectiveness of the genetic
algorithm in several ways:

e Firstly, an important aspect is how mature the initial test suite is, which
determines the percentage of strong mutants and how much information
is available to guide the search. Indeed, this factor was purposely assessed
with the inclusion of SQL in the study, since only 84 out of 683 mutants
were initially killed. The results in TXM (dead mutants = 274 out of 614)
lead us to think that EMT can be more helpful in cases where the current
test suite is at an advanced stage. However, the results in KAT and SQL
show that EMT is also effective even when the information is scarce.

e Secondly, another aspect to take into consideration is whether test cases
are specific (i.e., each of them tests a particular functionality) or general
(i.e., they test several functionalities at the same time or cover a broad
area of the code). The reason is that general test cases may unintentionally
hide valuable mutants. This would happen when the same functionality is
covered by several test cases: in that case, the mutant would be detected
by several test cases and the fitness function would attach it a low value.
We became aware of this possibility when experimenting with T'CL, as the
accompanying test suite was comprised of large test cases (in fact, some of
them were split for these experiments as they merged completely different

28

functionalities). This fact might also be the cause of the poor results for
this program. As a result of the above commented, the genetic algorithm
should be more effective with specific and well-designed test suites.

6.1. Mutants and mutation operators

In the light of the results in the more complex programs, it seems that the
genetic algorithm performs better with a wide search space, that is, when there is
a considerable number of mutants. It is unclear, though, whether the interesting
groups of mutants for the test suite improvement will be concentrated on certain
areas (or generated by a subset of the operators) or, conversely, will be spread
all over the code (and mutation operators). The experiments by Delgado-Pérez
et al. [12] suggest that all mutation operators can produce valuable mutants,
even if they are created by not very productive operators. This is the reason
why the search can have difficulties finding some strong mutants. This leads us
to think that, in the future, we could refine the algorithm to help it escape local
maxima and ease the selection of those concealed strong mutants. This could
be done by favoring the generation of mutants from all operators in the part of
mutants generated randomly in each generation (see Figure 1). The fact that all
operators can produce useful mutants could be extrapolated to the distribution
of mutants across the code: a valuable mutant could be generated anywhere.
As such, we could favor that all different areas of the code were covered by at
least one mutant. These improvements deserve further investigation.

Invalid mutants can also have an influence on the performance of EMT.
Invalid mutants do not lead to the refinement of the test suite and, therefore,
they are not assigned a fitness nor selected to produce new individuals. This
means that the genetic algorithm should be able to escape from places and
operators that produce several of these mutants. This can be one of the factors
for the good results obtained in DOM since most of the invalid mutants were
generated by a single mutation operator. As a result, avoiding the generation of
invalid mutants can be a further advantage of using this search-based approach.

6.2. Equivalent mutants

Despite the positive results shown in this paper, there is a major problem
that EMT does not directly address: the existence of equivalent mutants. Given
that we only generate a subset of the mutants, the number of equivalent mutants
consequently decrease. However, potentially-equivalent mutants still can turn
out to be equivalent, as this is an undecidable problem. Some techniques have
been proposed recently to alleviate the effect of this kind of mutants [26, 27].
In future refinements of the algorithm, we could integrate some of those tech-
niques to provide EMT with information that helps differentiate between non-
equivalent and equivalent mutants. In that way, we could avoid that mutants
flagged as equivalent (with certainty or high probability) are selected to breed
new mutants. We have to note, however, that it is currently unknown whether
there is a correlation among equivalent mutants (i.e., whether or not equivalent
mutants tend to appear in the same areas of the code or are produced by a

29

subset of the operators). Investigating this correlation is required to support
this possible improvement. Otherwise, we could be misleading the search.

7. Related work

Harman et al. [1] studied in 2009 the techniques applied in search-based
software engineering so far, classifying the works found in the literature by ar-
eas, including testing. Recently, Silva et al. [2] focused on research studies that
analyzed the use of search-based techniques in mutation testing. As it can be
seen from the works included in these review studies, search-based strategies
have been applied to reduce the cost with regard to several problems related
to software testing. However, the application of this kind of techniques for the
selection of mutants has mostly been addressed in recent years. Reducing the
high cost of mutation testing has been a key issue tackled by researchers in
this field [10]. As such, different cost reduction techniques have been proposed:
mutant sampling [28], mutant clustering [29], selective mutation [13], weak mu-
tation [30] or high order mutation [31] have been successfully applied in diverse
contexts. The novelty of the approach in this paper lies on the application of an
evolutionary strategy to select mutants for the improvement of the test suite.
Therefore, the technique uses the mutants as objectives for improving test suites
instead of using them as means for test assessment.

Adamopoulos et al. [32] were the first to propose a co-evolutionary approach
in order to evolve mutant population and test cases in parallel. Later, Oliveira
et al. [33] also applied a similar approach but using a new representation with
new genetic operators. Dominguez-Jiménez et al. [16] devised an evolutionary
algorithm for the refinement of the test suite at a lower cost by selecting a subset
of the mutants, which they called Evolutionary Mutation Testing. They devel-
oped a genetic algorithm [8] in the tool GAmera [18] and applied the algorithm
to test three WS-BPEL compositions. The same technique was later imple-
mented for C++ code with the development of the tool GiGAn [6]. Our work
supports the findings pointed out by Dominguez-Jiménez et al. [16] regarding
the ability of the technique to find strong mutants, but we go a step beyond
by measuring the improvement that can be achieved thanks to the mutants se-
lected in eight programs of varying nature. Swarchz et al. [34] also made use of
a genetic algorithm for the enhancement of the test suite based on mutations
spread throughout the code and that cause a high change in the program state.

The use of search-based techniques has shown to be especially useful to re-
duce the number of mutants generated in high order mutation testing since
there are many more high order mutants (HOMs) than first order mutants
(FOMs). More specifically, these techniques have been used to find subsuming
HOMs [35, 36], that is, HOMs that are more difficult to kill than their con-
stituent FOMs. Harman et al. [37] provided a more restrictive fitness function
to find strongly subsuming high order mutants (SSHOMs). Lima et al. [3§]
recently compared HOM-based strategies and traditional strategies, such as
random mutant selection, selective mutation and search-based mutant selection
(genetic algorithm). This comparison was based on the number of mutants,

30

the number of test cases and the mutation score. Randomly selecting 20% of
mutants (random mutant selection) and removing the five most prolific oper-
ators (selective mutation) were the best strategies overall, though most of the
strategies performed in a similar way.

While EMT follows a single-objective approach, several related works ap-
proach the selection of mutants as a multi-objective optimization problem. In
this category, we can cite the work by Banzi et al. [39], where a genetic algorithm
is used for the selection of mutation operators instead of individual mutants. The
authors of that study sought to maximize the mutation score and minimize the
number of mutants generated. The work by Lima and Vergilio [40] also follows
a multi-objective approach for the selection of second order mutants (SOMs).
They considered three different objectives: number of SOMs generated, ability
to reveal subtler faults and capacity to replace the constituent FOMs. Likewise,
Langdon et al. [41] tried to find hard to kill HOMs as similar as possible to
the original program based on a multi-objective approach, showing that these
HOMs could simulate complex faults beyond those modeled with FOMs.

Despite the above commented, most of the research regarding search-based
software testing has been focused on the problem of test case generation [14, 42].
Note that the term Evolutionary Mutation Testing was used in another work
but with a different purpose: their authors presented a fitness function based
on the information provided by mutants to find effective test cases for object-
oriented systems [43]. The problem of test data generation driven to kill mutants
for object-oriented programs has also been addressed by Shamshiri et al. [44].
They reported that there is no significant difference between guiding the test case
generation with a random or a genetic algorithm for this kind of applications.

8. Conclusion

The application of search-based techniques to solve software engineering
problems requires a deep evaluation that shed light on its benefits. In this
paper, we have addressed the use of a genetic algorithm to reduce the gener-
ation of mutants for test suite enhancement. To improve the understanding
about the effects of its application, we have proposed and assessed in depth an
evaluation method that takes into account the ability of each mutant to actually
refine the test suite and not only whether it is a strong mutant or not.

The experiments in this paper support the assumption that an evolutionary
approach can help reduce the cost of applying mutation testing. It is relevant
the potential shown by this technique to induce the improvement of the test
suite even with reduced subsets of mutants. Among other interesting results,
the evolutionary algorithm works better when we seek for great improvements
of the test suite, and with large sets of mutants —exactly when a cost reduction
technique becomes more necessary.

We have also hinted at possible future enhancements for the genetic algo-
rithm based on the lessons learned and recent studies. In this sense, we foresee
that the new evaluation method will be particularly useful. For instance, re-
ducing the probability of selecting equivalent mutants could result in a fewer

31

number of strong mutants found, which would be misleading. However, the new
evaluation method could detect a greater refinement of the test suite in case of
a reduction in the number of equivalent mutants selected.

9. Acknowledgement

This work was partially supported by the European Commission (FEDER)

and the Spanish Government projects DArDOS (TIN2015-65845-C3-3-R) and
the Excellence Network SEBASEnet (TIN2015-71841-REDT).

10.

[1]

2]

3]

14]

[5]

[6]

7]

References

M. Harman, S. A. Mansouri, Y. Zhang, Search based software engineering;:
A comprehensive analysis and review of trends techniques and applications,
Department of Computer Science, King’s College London, Tech. Rep. TR-
09-03.

R. A. Silva, S. do Rocio Senger de Souza, P. S. L. de Souza, A systematic
review on search based mutation testing, Information and Software Tech-
nology 81 (Supplement C) (2017) 19 — 35. doi:10.1016/j.infsof.2016.01.017.

M. Papadakis, N. Malevris, Automatically performing weak mutation with
the aid of symbolic execution, concolic testing and search-based testing,
Software Quality Journal 19 (4) (2011) 691. do0i:10.1007/s11219-011-9142-

y-

J. Kim, B. You, M. Kwon, P. McMinn, S. Yoo, Evaluating CAVM: A
New Search-Based Test Data Generation Tool for C, Springer International
Publishing, Cham, 2017, pp. 143-149. doi:10.1007/978-3-319-66299-2 12.

G. Fraser, A. Arcuri, EvoSuite: Automatic test suite generation for object-
oriented software, in: Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software En-
gineering, ESEC/FSE 11, ACM, New York, NY, USA, 2011, pp. 416-419.
doi:10.1145/2025113.2025179.

P. Delgado-Pérez, 1. Medina-Bulo, S. Segura, A. Garcia-Dominguez, J. J.
Dominguez-Jiménez, GiGAn: Evolutionary mutation testing for C-++
object-oriented systems, in: Proceedings of the Symposium on Applied
Computing, SAC ’17, ACM, New York, NY, USA, 2017, pp. 1387-1392.
doi:10.1145/3019612.3019828.

P. Delgado-Pérez, I. Medina-Bulo, M. Nunez, Using evolutionary muta-
tion testing to improve the quality of test suites, in: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC’17, 2017, pp. 596-603.
doi:10.1109/CEC.2017.7969365.

32

[8] K. Sastry, D. E. Goldberg, G. Kendall, Genetic Algorithms, Springer US,
Boston, MA, 2014, pp. 93-117. doi:10.1007/978-1-4614-6940-7 4.

[9] M. Dorigo, T. Stiitzle, Ant Colony Optimization, The MIT Press, 2004.

[10] M. Usaola, P. Mateo, Mutation testing cost reduction techniques: A survey,
Software, IEEE 27 (3) (2010) 80-86. doi:10.1109/MS.2010.79.

[11] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Transactions on Software Engineering 37 (5) (2011) 649-678.

[12] P. Delgado-Pérez, S. Segura, I. Medina-Bulo, Assessment of C++ object-
oriented mutation operators: A selective mutation approach, Soft-
ware Testing, Verification and Reliability 27 (4-5) (2017) el630-n/a.
doi:10.1002/stvr.1630.

[13] E. F. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, Toward the determi-
nation of sufficient mutant operators for C, Software Testing, Verification
and Reliability 11 (2) (2001) 113-136. doi:10.1002/stvr.226.

[14] R. P. Pargas, M. J. Harrold, R. R. Peck, Test-data generation us-
ing genetic algorithms, Software Testing, Verification and Reliability
9 (4) (1999) 263-282. doi:10.1002/(SICT)1099-1689(199912)9:4<263:: ATD-
STVR190>3.0.CO;2-Y.

[15] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, 2nd
Edition, Springer Publishing Company, Incorporated, 2015.

[16] J. J. Dominguez-Jiménez, A. Estero-Botaro, A. Garcia-Dominguez,
I. Medina-Bulo, Evolutionary mutation testing, Information and Software
Technology 53 (10) (2011) 1108-1123. doi:10.1016/j.infsof.2011.03.008.

[17] X. Yao, M. Harman, Y. Jia, A study of equivalent and stubborn mutation
operators using human analysis of equivalence, in: Proceedings of the 36th
International Conference on Software Engineering, ICSE’14, ACM, New
York, NY, USA, 2014, pp. 919-930. doi:10.1145/2568225.2568265.

[18] J. J. Dominguez-Jiménez, A. Estero-Botaro, A. Garcia-Dominguez,
I. Medina-Bulo, GAmera: an automatic mutant generation system for WS-
BPEL compositions, in: R. Eshuis, P. Grefen, G. A. Papadopoulos (Eds.),
Proceedings of the 7th IEEE European Conference on Web Services, IEEE
Computer Society Press, Eindhoven, The Netherlands, 2009, pp. 97-106.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st Edition, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1989.

[20] P. Delgado-Pérez, 1. Medina-Bulo, F. Palomo-Lozano, A. Garcia-
Dominguez, J. J. Dominguez-Jiménez, Assessment of class mutation opera-
tors for C++ with the MuCPP mutation system, Information and Software
Technology 81 (2017) 169-184. d0i:10.1016/j.infsof.2016.07.002.

33

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

A. Vargha, H. D. Delaney, A critique and improvement of the CL
common language effect size statistics of McGraw and Wong, Jour-
nal of Educational and Behavioral Statistics 25 (2) (2000) 101-132.
doi:10.3102/10769986025002101.

L. Zhang, M. Gligoric, D. Marinov, S. Khurshid, Operator-based and
random mutant selection: Better together, in: Proceedings of the
IEEE/ACM 28th International Conference on Automated Software Engi-
neering (ASE’13), 2013, pp. 92-102. doi:10.1109/ASE.2013.6693070.

T. T. Chekam, M. Papadakis, Y. L. Traon, M. Harman, An empirical study
on mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption, in: Proceedings of the IEEE/ACM
39th International Conference on Software Engineering (ICSE’17), 2017,
pp. 597-608. doi:10.1109/ICSE.2017.61.

P. R. Mateo, M. P. Usaola, Reducing mutation costs through uncovered
mutants, Software Testing, Verification and Reliability 25 (5-7) (2015) 464—
489. doi:10.1002/stvr.1534.

Y.-S. Ma, Y. R. Kwon, S.-W. Kim, Statistical investigation on
class mutation operators, ETRI Journal 31 (2) (2009) 140-150.
doi:10.4218/etrij.09.0108.0356.

M. Papadakis, Y. Jia, M. Harman, Y. Le Traon, Trivial compiler equiva-
lence: A large scale empirical study of a simple, fast and effective equiva-
lent mutant detection technique, in: Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE’15, IEEE Press,
Piscataway, NJ, USA, 2015, pp. 936-946. doi:10.1109/ICSE.2015.103.

M. Papadakis, M. Delamaro, Y. L. Traon, Mitigating the effects of equiv-
alent mutants with mutant classification strategies, Science of Computer
Programming 95, Part 3 (2014) 298 — 319, special Section: ACM SAC-
SVT 2013 + Bytecode 2013. doi:10.1016/j.scico.2014.05.012.

T. A. Budd, Mutation analysis of program test data, Ph.D. thesis, Yale
University (1980).

S. Hussain, Mutation clustering, Master’s thesis, King’s College London
(2008).

D. Gong, G. Zhang, X. Yao, F. Meng, Mutant reduction based on domi-
nance relation for weak mutation testing, Information and Software Tech-
nology 81 (C) (2017) 82-96. doi:10.1016/j.infsof.2016.05.001.

Y. Jia, M. Harman, Higher order mutation testing, Infor-
mation and Software Technology 51 (10) (2009) 1379-1393.
doi:10.1016/j.infsof.2009.04.016.

34

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

K. Adamopoulos, M. Harman, R. M. Hierons, How to overcome the equiv-
alent mutant problem and achieve tailored selective mutation using co-
evolution, in: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO’04, 2004, pp. 1338-1349. d0i:10.1007/978-3-540-
24855-2 155.

A. A. L. de Oliveira, C. G. Camilo-Junior, A. M. R. Vincenzi, A coevolu-
tionary algorithm to automatic test case selection and mutant in mutation
testing, in: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC’13, 2013, pp. 829-836. d0i:10.1109/CEC.2013.6557654.

B. Schwarz, D. Schuler, A. Zeller, Breeding high-impact mutations, in:
Proceedings of the 4th IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW’11, 2011, pp. 382-387.
do0i:10.1109/ICSTW.2011.56.

Y. Jia, M. Harman, Constructing subtle faults using higher order mu-
tation testing, in: Fighth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM’08, 2008, pp. 249-258.
doi:10.1109/SCAM.2008.36.

E. Omar, S. Ghosh, D. Whitley, Homaj: A tool for higher order mutation
testing in AspectJ and Java, in: IEEE Seventh International Conference
on Software Testing, Verification and Validation Workshops, ICSTW’14,
2014, pp. 165-170. doi:10.1109/ICSTW.2014.19.

M. Harman, Y. Jia, P. Reales Mateo, M. Polo, Angels and monsters: An
empirical investigation of potential test effectiveness and efficiency improve-
ment from strongly subsuming higher order mutation, in: Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 14, ACM, New York, NY, USA, 2014, pp. 397-408.
doi:10.1145/2642937.2643008.

J. A. P. Lima, G. Guizzo, S. R. Vergilio, A. P. C. Silva, H. L. J. Filho, H. V.
Ehrenfried, Evaluating different strategies for reduction of mutation testing
costs, in: Proceedings of the 1st Brazilian Symposium on Systematic and
Automated Software Testing, SAST, ACM, New York, NY, USA, 2016, pp.
4:1-4:10. doi:10.1145,/2993288.2993292.

A. S. Banzi, T. Nobre, G. B. Pinheiro, J. C. G. Arias, A. Pozo,
S. R. Vergilio, Selecting mutation operators with a multiobjective ap-
proach, Expert Systems with Applications 39 (15) (2012) 12131-12142.
doi:10.1016/j.eswa.2012.04.041.

J. A. P. Lima, S. R. Vergilio, A multi-objective optimization approach
for selection of second order mutant generation strategies, in: Proceed-
ings of the 2nd Brazilian Symposium on Systematic and Automated Soft-
ware Testing, SAST, ACM, New York, NY, USA, 2017, pp. 6:1-6:10.
doi:10.1145/3128473.3128479.

35

[41]

[42]

[43]

[44]

W. B. Langdon, M. Harman, Y. Jia, Efficient multi-objective higher or-
der mutation testing with genetic programming, Journal of Systems and
Software 83 (12) (2010) 2416 — 2430, TAIC PART 2009 - Testing: Aca-
demic and Industrial Conference - Practice And Research Techniques.
doi:10.1016/j.jss.2010.07.027.

X. Yao, D. Gong, G. Zhang, Constrained multi-objective test data gen-
eration based on set evolution, IET Software 9 (4) (2015) 103-108.
d0i:10.1049 /iet-sen.2014.0058.

M. B. Bashir, A. Nadeem, A fitness function for evolutionary mu-
tation testing of object-oriented programs, in: IEEE 9th Interna-
tional Conference on Emerging Technologies ICET’13, 2013, pp. 1-6.
doi:10.1109/ICET.2013.6743531.

S. Shamshiri, J. M. Rojas, G. Fraser, P. McMinn, Random or genetic
algorithm search for object-oriented test suite generation?, in: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ’15, ACM, New York, NY, USA, 2015, pp. 1367-1374.
doi:10.1145/2739480.2754696.

36

