3,867 research outputs found

    A characterization of graph properties testable for general planar graphs with one-sided error (it's all about forbidden subgraphs)

    Get PDF
    The problem of characterizing testable graph properties (properties that can be tested with a number of queries independent of the input size) is a fundamental problem in the area of property testing. While there has been some extensive prior research characterizing testable graph properties in the dense graphs model and we have good understanding of the bounded degree graphs model, no similar characterization has been known for general graphs, with no degree bounds. In this paper we take on this major challenge and consider the problem of characterizing all testable graph properties in general planar graphs. We consider the model in which a general planar graph can be accessed by the random neighbor oracle that allows access to any given vertex and access to a random neighbor of a given vertex. We show that, informally, a graph property P is testable with one-sided error for general planar graphs if and only if testing P can be reduced to testing for a finite family of finite forbidden subgraphs. While our presentation focuses on planar graphs, our approach extends easily to general minor-free graphs. Our analysis of the necessary condition relies on a recent construction of canonical testers in the random neighbor oracle model that is applied here to the one-sided error model for testing in planar graphs. The sufficient condition in the characterization reduces the problem to the task of testing H-freeness in planar graphs, and is the main and most challenging technical contribution of the paper: we show that for planar graphs (with arbitrary degrees), the property of being H-free is testable with one-sided error for every finite graph H, in the random neighbor oracle model

    A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs

    Full text link
    One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studies cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.Comment: 11 pages, 1 figure submitted to "The Electronic Journal of Combinatorics

    Induced subgraphs in sparse random graphs with given degree sequence

    Full text link
    For any S⊂[n]S\subset [n], we compute the probability that the subgraph of Gn,d\mathcal{G}_{n,d} induced by SS is a given graph HH on the vertex set SS. The result holds for any d=o(n1/3)d=o(n^{1/3}) and is further extended to Gd\mathcal{G}_{{\bf d}}, the probability space of random graphs with a given degree sequence d\bf d.Comment: 31 pages, 11 figure

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
    • …
    corecore