7 research outputs found

    A common operator for FFT and FEC decoding

    Get PDF
    International audienceIn the Software Radio context, the parametrization is becoming an important topic especially when it comes to multistandard designs. This paper capitalizes on the Common Operator technique to present new common structures for the FFT and FEC decoding algorithms. A key benefit of exhibiting common operators is the regular architecture it brings when implemented in a Common Operator Bank (COB). This regularity makes the architecture open to future function mapping and adapted to accommodated silicon technology variability through dependable design

    Cooperating error-correcting codes and their decoding

    Get PDF

    On performance analysis and implementation issues of iterative decoding for graph based codes

    Get PDF
    There is no doubt that long random-like code has the potential to achieve good performance because of its excellent distance spectrum. However, these codes remain useless in practical applications due to the lack of decoders rendering good performance at an acceptable complexity. The invention of turbo code marks a milestone progress in channel coding theory in that it achieves near Shannon limit performance by using an elegant iterative decoding algorithm. This great success stimulated intensive research oil long compound codes sharing the same decoding mechanism. Among these long codes are low-density parity-check (LDPC) code and product code, which render brilliant performance. In this work, iterative decoding algorithms for LDPC code and product code are studied in the context of belief propagation. A large part of this work concerns LDPC code. First the concept of iterative decoding capacity is established in the context of density evolution. Two simulation-based methods approximating decoding capacity are applied to LDPC code. Their effectiveness is evaluated. A suboptimal iterative decoder, Max-Log-MAP algorithm, is also investigated. It has been intensively studied in turbo code but seems to be neglected in LDPC code. The specific density evolution procedure for Max-Log-MAP decoding is developed. The performance of LDPC code with infinite block length is well-predicted using density evolution procedure. Two implementation issues on iterative decoding of LDPC code are studied. One is the design of a quantized decoder. The other is the influence of mismatched signal-to-noise ratio (SNR) level on decoding performance. The theoretical capacities of the quantized LDPC decoder, under Log-MAP and Max-Log-MAP algorithms, are derived through discretized density evolution. It is indicated that the key point in designing a quantized decoder is to pick a proper dynamic range. Quantization loss in terms of bit error rate (BER) performance could be kept remarkably low, provided that the dynamic range is chosen wisely. The decoding capacity under fixed SNR offset is obtained. The robustness of LDPC code with practical length is evaluated through simulations. It is found that the amount of SNR offset that can be tolerated depends on the code length. The remaining part of this dissertation deals with iterative decoding of product code. Two issues on iterative decoding of\u27 product code are investigated. One is, \u27improving BER performance by mitigating cycle effects. The other is, parallel decoding structure, which is conceptually better than serial decoding and yields lower decoding latency

    Distributed Turbo Product Coding Techniques Over Cooperative Communication Systems

    Get PDF
    In this dissertation, we propose a coded cooperative communications framework based on Distributed Turbo Product Code (DTPC). The system uses linear block Extended Bose-Chaudhuri-Hochquenghem (EBCH) codes as component codes. The source broadcasts the EBCH coded frames to the destination and nearby relays. Each relay constructs a product code by arranging the corrected bit sequences in rows and re-encoding them vertically using EBCH as component codes to obtain an Incremental Redundancy (IR) for source\u27s data. Under this frame, we have investigated a number of interesting and important issues. First, to obtain, independent vertical parities from each relay in the same code space, we propose circular interleaving of the decoded EBCH rows before reencoding vertically. We propose and derive a novel soft information relay for the DTPC over cooperative network based on EBCH component codes. The relay generates Log-Likelihood Ratio (LLR) values for the decoded rows are used to construct a product code by re-encoding the matrix along the columns using a novel soft block encoding technique to obtain soft parity bits with different reliabilities that can be used as soft IR for source\u27s data which is forwarded to the destination. To minimize the overall decoding errors, we propose a power allocation method for the distributed encoded system when the channel attenuations for the direct and relay channels are known. We compare the performance of our proposed power allocation method with the fixed power assignments for DTPC system. We also develop a power optimization algorithm to check the validity of our proposed power allocation algorithm. Results for the power allocation and the power optimization prove on the potency of our proposed power allocation criterion and show the maximum possible attainable performance from the DTPC cooperative system. Finally, we propose new joint distributed Space-Time Block Code (STBC)-DTPC by generating the vertical parity on the relay and transmitting it to the destination using STBC on the source and relay. We tested our proposed system in a fast fading environment on the three channels connecting the three nodes in the cooperative network
    corecore