
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Fall 2001

On performance analysis and implementation
issues of iterative decoding for graph based codes
Xuefei Wei
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Wei, Xuefei, "On performance analysis and implementation issues of iterative decoding for graph based codes" (2001). Dissertations.
520.
https://digitalcommons.njit.edu/dissertations/520

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/520?utm_source=digitalcommons.njit.edu%2Fdissertations%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON PERFORMANCE ANALYSIS AND IMPLEMENTATION ISSUES
OF ITERATIVE DECODING FOR GRAPH BASED CODES

by
Xuefei Wei

There is no doubt that long random-like code has the potential to achieve good

performance because of its excellent distance spectrum. However, these codes

remain useless in practical applications due to the lack of decoders rendering good

performance at an acceptable complexity. The invention of turbo code marks a

milestone progress in channel coding theory in that it achieves near Shannon limit

performance by using an elegant iterative decoding algorithm. This great success

stimulated intensive research on long compound codes sharing the same dec=iding

mechanism. Among these long codes are low-density parity-check (LDPC) code and

product code, which render brilliant performance. In this work, iterative decoding

algorithms for LDPC code and product code are studied in the context of belief

propagation.

A large part of this work concerns LDPC code. First the concept of iterative

decoding capacity is established in the context of density evolution. Two simulation-

based methods approximating decoding capacity are applied to LDPC code. Their

effectiveness is evaluated. A suboptimal iterative decoder, Max-Log-MAP algorithm,

is also investigated. It has been intensively studied in turbo code but seems to be

neglected in LDPC code. The specific density evolution procedure for Max-Log-MAP

decoding is developed. The performance of LDPC code with infinite block length is

well-predicted using density evolution procedure.

Two implementation issues on iterative decoding of LDPC code are studied.

One is the design of a quantized decoder. The other is the influence of mismatched

signal-to-noise ratio (SNR.) level on decoding performance. The theoretical capacities

of the quantized LDPC decoder, under Log-MAP and Max-Log-MAP algorithms, are

derived through discretized density evolution. It is indicated that the key point in

designing a quantized decoder is to pick a proper dynamic range. Quantization loss

in terms of bit error rate (BER) performance could be kept remarkably low, provided

that the dynamic range is chosen wisely. The decoding capacity under fixed SNR

offset is obtained. The robustness of LDPC code with practical length is evaluated

through simulations. It is found that the amount of SNR offset that can be tolerated

depends on the code length.

The remaining part of this dissertation deals with iterative decoding of product

code. Two issues on iterative decoding of product code are investigated. One

is, improving BER performance by mitigating cycle effects. The other is, parallel

decoding structure, which is conceptually better than serial decoding and yields lower

decoding latency.

ON PERFORMANCE ANALYSIS AND IMPLEMENTATION ISSUES
OF ITERATIVE DECODING FOR GRAPH BASED CODES

by
Xuefei Wei

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

January 2002

Copyright (1) 2002 by Xuefei Wei

ALL RIGHTS RESERVED

APPROVAL PAGE

ON PERFORMANCE ANALYSIS AND IMPLEMENTATION ISSUES
OF ITERATIVE DECODING FOR GRAPH BASED CODES

Xuefei Wei

Dr. Ali N. Akansu, Dissertation Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. George Elmasry , Committee Member 	 Date
Principle Member of Technical Staff. General 	 Gommunication Systems

.../.4.9,71015,011.10MXXVIMNIO.

Dr. Javier	 Committee Member	 i)ate
Assistant Professor of Electrical and Computer Engineering, Univ. of Delay; are

Dr. Richard Haddad, Committee Member	 Date
Professor	 Electrical and Computer Engineering, NJIT

Dr. Alexander M. Haimovich, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Mahalingam Ramkumar, Committee Member 	 Date
Chief Technology Officer, AVWAY, IDT Corp. Newark, NJ

BIOGRAPHICAL SKETCH

Author: 	 Xuefei Wei

Degree:	 Doctor of Philosophy

Date:	 January 2002

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2002

• Master of Science in Electrical Engineering,

Xi'an Jiaotong University, Xi'an, P.R.China, 1996

• Bachelor of Science in Electrical Engineering,

Xi'an Jiaotong University, Xi'an, P.R.China, 1993

Major: 	 Electrical Engineering

Presentations and Publications:

Wei, X. and Akansu, A.N.,
"Quantized decoding for low-density parity-check codes", to be submitted to
IEEE Communications Letters.

Wei, X. and Akansu, A.N.,
"Decoding capacity of low-density parity-check codes under SNR mismatch", to
be submitted to IEE Electronics Letters.

Wei, X. and Akansu, A.N.,
"Density Evolution for Low-Density Parity-Check Codes under Max-Log-MAP
Decoding", IEE Electronics Letters, vol. 37, pp 1225-1226, 2001.

Wei, X. and Akansu, A.N.,
"On parallel iterative decoding of product code", Proceedings of IEEE Vehicular
Technology Conference, Atlantic City,NJ, 2001.

Wei, X. and Akansu, A.N.,
"Iterative decoding of product code: approaching ML performance", Proceedings
of 5th World Multiconference on Systemics, Cybernetics and Informatics,
Orlando,FL, 2001.

Wei, X. and Akansu, A.N.,
"Iterative Decoding of Product Code: Correlated Extrinsic Information and Its
Impact", Proceedings of the 35th Annual Conference on Information Sciences
and Systems, Baltimore, MD, 2001

Wei, X. and Akansu, A.N.,
"An Improved Iterative Decoding Algorithm for Turbo Product Code",
Proceedings of the 38th Allerton Conference on Communications,Control,and
Computing, Univ. of Illinois at Urbana-Champaign,IL,2000.

In loving memory of my mother, Xiulan Zhu

vi

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my advisor, Dr. Ali N. Akansu.

His advice, guidance and insight helped me enormously throughout this research.

My gratitude is extended to Dr. Elmasry, Dr. Garcia-Frias, Dr. Haddad, Dr.

Haimovich and Dr. Ramkumar for serving as members on the dissertation committee

and for their comments.

I had the pleasure of working with my colleagues at the New Jersey Center

for Multimedia Research at NJIT. Their help arid suggestions are appreciated and

acknowledged.

I sincerely thank my husband Zhifang, my father and my sister for their

continuous support, encouragement and great love. This work could not have been

possible if it were not for them.

Finally, I would like to thank Dr. Ronald S. Kane and Ms. Clarisa

Gonzalez-Lenahan in the Office of Graduate Studies in NJIT for their time and assistance. I

also wish to express my appreciation to Mr. Bob Lazar, who made efforts to revise

this dissertation with respect to the language.

vii

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

	

1.1	 Motivations 	 1

	

1.2	 Outline of Dissertation 	 4

2 THEORETICAL FOUNDATIONS 	 6

2.1 Channel Capacity 	 6

2.1.1	 Channel Coding Bounds 	 7

2.2 Belief Propagation on Bayesian Network 	 11

2.2.1	 Probability Inference Problem 	 11

2.2.2	 Pearl's Belief Propagation Algorithm 	 12

2.3 Graphical Models for Error Correcting Codes	 15

2.4 Summary	 17

3 LOW-DENSITY PARITY-CHECK CODE:

DECODING CAPACITY 	 19

3.1 Low-Density Parity-Check Code 	 19

3.1.1	 Code Definition 	 19

3.1.2	 Iterative Decoding Algorithms 	 21

3.1.3	 Upper Bounds on ML Decoding 	 24

3.2 Iterative Decoding Capacity 	 25

3.2.1	 Density Evolution 	 27

3.2.2	 Parameter Evolution 	 27

3.3 Capacity of Log-MAP Decoding 	 28

viii

TABLE OF CONTENTS

(Continued)

Chapter	 Page

3.3.1 Assumptions 	 28

3.3.2 SNR Evolution 	 29

3.3.3 Mutual Information Evolution 	 31

3.3.4 Discussion 	 33

3.4 Capacity of Max-Log-MAP Decoding 	 35

3.4.1 Max-Log-MAP Decoding 	 35

3.4.2 Density Evolution Procedure for Max-Log-MAP Decoding . . 	 37

3.4.3 Numerical Results 	 41

3.5 Summary 	 42

4 QUANTIZED DECODING FOR LOW-DENSITY PARITY-CHECK CODE 45

4.1 Quantized Decoder Models 	 45

4.1.1 Log-MAP Decoder 	 47

4.1.2 Max-Log-MAP Decoder 	 50

4.2 Theoretical Capacity 	 51

4.2.1 Discretized Density Evolution Procedures 	 52

4.2.2 Numerical Results 	 54

4.3 Clipping Effects 	 56

4.3.1	 Convergence Speed 	 57

4.3.2 Clipping Effects in Practical Decoders 	 58

4.4 Quantization Effects 	 62

4.4.1 Dynamic Range Selection 	 62

4.4.2 Quantization Loss 	 66

4.5 Summary 	 69

ix

TABLE OF CONTENTS

(Continued)

Chapter	 Page

5 LOW-DENSITY PARITY-CHECK CODE: SENSITIVITY TO SNR

MISMATCH 	 71

5.1 Theoretical Capacity under SNR Offset 	 72

5.1.1 System Model 	 72

5.1.2 Theoretical Capacity 	 73

5.2 Simulation Studies 	 76

5.2.1	 Fixed Channel SNR Offset	 76

5.2.2 Fixed Eb /No 	 77

	

5.3 Summary 79

6 ITERATIVE DECODING OF PRODUCT CODE 	 81

6.1 Product Code 	 81

6.1.1	 Code Structure 	 82

6.1.2 Iterative Decoding Based on Belief Propagation 	 84

6.1.3 Log-MAP Extrinsic Information 	 87

6.2 Scaled Factor Decoding 	 89

6.2.1 Statistical Behavior of a Prior Information 	 91

6.2.2 Scaled Factor Decoding 	 94

6.2.3 Simulation Results 	 94

6.3 Discussion on SFD: How Good It Is 	 97

6.3.1 Simulated Lower Bound 	 97

6.3.2 Performance Comparisons 	 98

6.4 Parallel Iterative Decoding 	 100

6.4.1 Decoder Structure 	 101

6.4.2 Simulation Results 	 103

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.5 Summary 	 105

7 CONCLUSIONS 	 107

7.1 Conclusions 	 107

7.2 Contributions and Future Work 	 109

APPENDIX A EQUIVALENCE OF SUM-PRODUCT ALGORITHM
AND LOG-MAP ALGORITHM 	 111

REFERENCES 	 114

xi

LIST OF TABLES

Table 	 Page

3.1 Parity check matrix of a (3,4) LDPC code with N = 20 	 20

3.2 Threshold values of Log-MAP decoding for AWGN channel 	 33

3.3 Threshold values of Max-Log-MAP and Log-MAP decoding for AWGN
channel 	 42

xii

LIST OF FIGURES

Figure 	 Page

1.1 Shannon's model for reliable communication over unreliable channel . . .	 1

2.1 Minimum Eb /No vs. coding rate r 	 8

2.2 Bit error probability bounds for UC-AWGN channel 	 10

2.3 Bit error probability bounds for BI-AWGN channel 	 11

2.4 Summary of Pearl's belief propagation 	 14

2.5 Graphical models for: (a) and (b) (7,4) Hamming code (c) LDPC code 	 16

3.1 Graphical model for LDPC code 	 21

	

3.2 Upper bounds on block error rates of ML decoding 26

3.3 SNR evolution 	 30

3.4 EXIT chart for (3,6) LDPC code 	 33

3.5 The real pdf of extrinsic information in comparison with Gaussian

approximation 	 34

3.6 Average mutual information derived from real a priori information and

Gaussian approximation 	 35

3.7 pdf of extrinsic information e (1) 	 41

3.8 Visualized pdf evolution for Max-Log-MAP decoding 	 41

3.9 Theoretical capacity in comparison with simulated BER performance of

Max-Log-MAP decoding	 43

4.1 Threshold 7b* (q) for (3,6) LDPC code under AWGN channel 55

4.2 Convergence behavior predicted by density evolution 	 57

4.3 Convergence process of practical LDPC decoder:bit error rates 	 59

4.4 Convergence process of practical LDPC decoder: block error rates 	 60

LIST OF FIGURES

(Continued)

Figure	 Page

4.5 Effects of dynamic range Vlim on decoding errors (infinite precision) . . . 64

4.6 Effects of dynamic range Vlim on decoding errors (4-bit quantization) . . . 65

4.7 Quantization loss in Log-MAP decoding 67

4.8 Quantization loss in Max-Log-MAP decoding 	 68

5.1 Threshold values versus (E s /No)° (infinite precision) 	 74

5.2 Threshold values versus (E s/No)off (4-bit and 5-bit quantized implemen-

tation) 	 75

5.3 Simulation results in comparison with theoretical capacity 	 76

5.4 BER performance under fixed (E s/N0)off 	 77

5.5 BER versus channel SNR, offset for some fixed actual E b /No 	 78

6.1 Encoding process 	 83

6.2	 Graphical model for two-dimensional product code 83

6.3 BP-based iterative decoder structure 	 86

6.4 Statistical parameters for a priori information in BP-based algorithm 	 93

6.5 Correlation plane for a priori information 	 93

6.6 Scaled factor decoder structure 	 94

6.7 Statistical parameters of a priori information in SFD 	 95

6.8 BER performance comparison of SFD and BP-based algorithm 	 96

6.9 Block error rates comparison 	 99

6.10 Parallel and serial decoder structure 	 102

6.11 BER performance 	 104

6.12 Average number of decoding stages 	 104

x iv

CHAPTER 1

INTRODUCTION

1.1 Motivations

A basic scheme for communicating over unreliable channels is illustrated in Figure 1.1.

The message to be sent is encoded with a channel encoder before it is transmitted.

At the receiving end, the output from the channel is decoded back into a message,

hopefully the same as the original one. A fundamental property of such a system

was established by Shannon [1] more than 50 years ago, which states that reliable

communication can be achieved as long as the information rate does not exceed the

capacity of the channel, provided that the encoder and the decoder are allowed to

operate on long enough sequences of data.

The decoding problem can be solved, in principle, by searching through all

possible messages and comparing their corresponding codewords with the channel

output, selecting the message which is most likely to result in the observed channel

output. In general, this is called maximum likelihood (ML) decoding and the

performance obtained is called ML performance. A code set with large minimum

Hamming distance has the potential to achieve excellent performance. There exist

many good codes in this sense. However, ML decoding is generally impractical

because the number of messages is too large. Therefore, the problem of constructing

good code is actually constructing code that could be decoded with reasonable

complexity and still give sufficiently good performance.

Figure 1.1 Shannon's model for reliable communication over unreliable channel

1

2

Decoding methods can be roughly divided into two classes: algebraic and

`` probabilistic" . Algebraic decoders usually quantize the channel output to y, which

has the same alphabet as the transmitted codeword x. y is interpreted as a copy

of the codeword x, except that some of the coordinates are flipped. Decoding is a

matter of using linear algebra (in a finite field) to find the transmitted codeword x

that is closest to y in Hamming distance. Many typical block codes such as Hamming,

BCH, have built-in special structures to make algebraic decoding easier.

Probabilistic decoders make as much use as possible of the real-valued channel

output. The goal of probabilistic decoding is either maximum likelihood (ML)

information sequence detection or maximum a posteriori (MAP) information bit

detection:

A famous ML probabilistic decoder is the soft decision Viterbi algorithm for convo-

lutional code, which takes advantage of code trellis to make ML decoding feasible.

By using the iterative MAP decoder, turbo code claims a performance

approaching the Shannon limit [2_. The success should be attributed more to

the elegant iterative MAP decoder than to the code construction. It is not

surprising that good code spectrum could be achieved using random interleaver,

for even a randomly selected code offers near Shannon limit performance under ML

decoding _3]. Actually, with iterative decoding, many other compound codes such

as low-density parity-check (LDPC) code and product code, also claim excellent

performance. Being new and extremely powerful, iterative decoding algorithms

surely deserve further research efforts. This dissertation deals with the iterative

decoding of LDPC code and product code.

3

Interestingly enough, LDPC code was proposed as early as 1963 [4], together

with the probability decoding algorithm. It had been largely forgotten due to the

lack of computing power to demonstrate its excellent performance under longer code

length. Stimulated by success of turbo code, it was rediscovered in 1997 [5, 6_ . Soon

after that, the iterative decoding algorithm for LDPC code, turbo code and some

other compound codes were unified under the theoretical framework of Pearl's belief

propagation (BP) on Bayesian network [7, 8]. Meanwhile, newly constructed LDPC

codes were shown to approach the Shannon limit a step further [9, 10, 11], exceeding

what had been achieved by the original turbo code.

A large part of this dissertation deals with the iterative decoding of LDPC

code. The purpose of this study is to gain better understanding on several aspects

of the decoding algorithm, namely, its decoding capacity, quantized implementations

and robustness to channel estimation offset. Max-Log-MAP decoding, a suboptimal

algorithm well known in turbo code research but neglected in LDPC code, is also

examined.

The remaining part of this dissertation is devoted to iterative decoding of

product code. Product code was proposed in as early as 1954 [12]. Its large minimum

Hamming distance promises a good performance. However, due to lack of a powerful

decoding algorithm, it had been largely forgotten until 1993 when soft-in soft-out

iterative decoding was applied to it _13]. The purpose of this study is to gain

better understanding on the decoder and seek some further improvement on error

performance and decoding delay. The iterative decoding algorithm in the context

of belief propagation is examined. Through this study, it is found that for product

code a small modification on the original belief propagation algorithm would render

some improvement on bit error rate (BER) performance. An alternative decoding

structure, which has the potential to reduce decoding delays, is also investigated.

4

1.2 Outline of Dissertation

The dissertation is organized as follows:

Chapter 2 introduces two theoretical foundations for this work. One is

Shannon's channel coding theorem. The other is Pearl's belief propagation (BP) on

graphical models, which has been well known to artificial intelligence community but

is relatively new to the coding theory community. All of the work in the following

chapters are based on this newly established theoretical framework for iterative

decoding. That is why the name graph based code is used to represent LDPC code

and product code.

Chapter 3 is devoted to capacity evaluation of LDPC code. First the concept of

iterative decoding capacity is introduced in the context of density evolution, a newly

developed procedure based on certain idealized conditions. Then two simulation-

based methods approximating decoding capacity are applied to LDPC codes. Their

effectiveness is evaluated. A suboptimal decoder, Max-Log-MAP algorithm, which

has been intensively studied in turbo code but seems to be neglected in LDPC code,

is also investigated. The specific density evolution procedure for Max-Log-MAP

decoding is developed and the result is included in a recent paper [14].

Chapters 4 and 5 deal with two implementation issues for LDPC code, design

of quantized decoders and sensitivity to SNR mismatch. The capacity of quantized

LDPC decoder, under Log-MAP and Max-Log-MAP algorithms, is derived through

discretized density evolution. In addition, the influence of clipping limit on decoding

performance, is studied. It is an important design parameter in general LDPC

decoders but (to the best of the author's knowledge) has never been discussed in

particular. It is indicated that the key point in designing a quantized decoder is to

pick a proper dynamic range. Quantization loss in terms of bit error rate (BER)

performance could be kept remarkably low, provided that the dynamic range is

chosen wisely. In Chapter 5, the decoding capacity under some fixed SNR offset is

5

obtained. The robustness of LDPC codes with practical length is evaluated through

simulations. It is found that the amount of SNR offset that can be tolerated depends

on the code length. Two papers on this part of work have been completed [15, 16].

Chapter 6 investigates iterative decoding algorithms for product code. For the

first time, linear correlation coefficient is used to measure the dependency among

extrinsic information. Scaled factor decoding (SFD) is proposed, as a modified

version of BP, to overcome the impact of uniform short cycles. Simulation results

show that SFD offers a performance surprisingly close to optimum decoding. Parallel

iterative decoding is also investigated. The results in this chapter have been published

in several conference papers j17, 18, 19, 20].

Chapter 7 gives the conclusions for this research. The special contributions are

also summarized.

CHAPTER 2

THEORETICAL FOUNDATIONS

In this chapter, necessary theoretical foundations for this work are introduced. The

concept of channel capacity was proposed by Shannon in 1948. The recent wave of

research on turbo code and other random compound code was stimulated by the

fact that their performance approach the Shannon limit. Section 2.1 elaborates the

concept of Shannon limit and gives some channel coding bounds.

McEliece et.al. y, 8 established the theoretical framework for iterative

decoding by connecting it with Pearl's belief propagation on Bayesian network -_21j,

which has been well known in the artificial intelligence community but is relatively

new to the coding theory community. Many significant new results on iterative

decoding are derived in the context of graphical codes. The basic concepts and ideas

are introduced in Section 2.2 and 2.3.

2.1 Channel Capacity

In his famous paper, "A Mathematical Theory of Communication" _1], Claude

Shannon introduced the important concept of channel capacity C, which is the

average mutual information between channel input X and output Y maximized over

all channel input distributions:

Average mutual information /(X: Y) is defined as,

where conditional probability p(y x) or P(y x) represents channel characteristics.

For binary symmetric channel (BSC) with transition probability p(y x),

/(X; Y) is maximized when the input probability P(0) = P(1) = 0.5. Thus,

6

7

the capacity for BSC is,

For a waveform channel with N(0, 0/ 2) additive white Gaussian noise

(AWGN) and continuous unconstrained input alphabet x (UC-AWGN), the maximum

of /(X; Y) over the input pdf p(x) is obtained when x is zero-mean Gaussian random

variable, i.e.,

Then it follows that the channel capacity is,

measured in bits per transmission. E, is energy per channel symbol.

Shannon's noisy channel coding theorem states that: there exist channel

codes (and decoders) that make it possible to achieve reliable communication, with

as small an error probability as desired, if the transmission rate r < C, where C is

the channel capacity. If r > C, it is not possible to make the probability of error

tend toward zero with any code.

2.1.1 Channel Coding Bounds

Three types of channels are discussed. The first is the unconstrained AWGN (

UC-AWGN), where the coding alphabet is unconstrained and can assume any value. The

second is the binary input AWGN channel (BI-AWGN), where the input alphabet

is constrained to { —I, +1}. The third is the binary-input binary-output channel

(BIBO), where both the input and output are constrained to be binary. Since the

channel noise is assumed to be AWGN, BIBO is equivalent to a BSC.

8

2.1.1.1 Minimum Eb /No . Let Eb denote the average transmitted symbol energy

when channel coding is not used. Thus, when a rate r channel coding is applied, the

average symbol energy becomes Es = rEb . Substituting into equation (2.5),

• For UC-AWGN channel, with the constraint r < C, equation (2.6) implies

that,

• For BI-AWGN channel, the pdf of X is fixed to

so that the channel capacity is exactly

9

• For BIBO with AWGN, the binary channel symbol error probability is,

and equation (2.3) gives,

Taking equalities in equation (2.7), (2.10) and (2.12), the relationship between

the minimum Eb /No for error-free transmission and coding rate r can be found, as

shown in Figure 2.1

It is clear that for r < 1/3, the power requirement for BI-AWGN is approx-

imately the same as that for UC-AWGN. The difference increases significantly for

greater values of r. The gap between BIBO and BI-AWGN can be interpreted as

the difference of soft decision decoding and hard decision decoding. For most coding

rates employed in practice, there is a 1.5-2 dB gain realized in going from hard

decision decoding to soft decision decoding.

2.1.1.2 Pb (e) bounds. The lower bound for achievable Pb (e) under certain coding

rate and Eb /No is derived as follows. If the information bits are received with error

probability Pb (e), then the information capacity is 1 — Hb (e) _23], where

is the entropy of a binary source with error probability Pb (e). Given the channel

capacity C, it is bounded by ,

From this inequality, bounds for Pb (e) can be derived.

For UC-AWGN, the capacity is obtained in equation (2.5). Substituting it into

equation (2.14), the information capacity is obtained as,

10

Figure 2.2 Bit error probability bounds for UC-AWGN channel [22]

Pb (e) limits under some specific rate r are numerically calculated and plotted in

Figure 2.2.

When r 	 0, the transmission bandwidth approaches infinity. For this case,

the lowest possible SNR is reached if arbitrary low bit error rate is demanded.

When Pb (e) -> 0, 1 — Hb (e)	 1. This implies that to achieve reliable transmission,

the minimum power for all coding schemes is: E b /No = In 2, which is -1.6 in dB.

Similarly, for BI-AWGN channel, substitute equation 2.9 into equation (114)

to obtain,

Pb (e) limits under some specific rate r are numerically calculated and plotted in

Figure 2.3.

11

Figure 2.3 Hit error probability bounds for BI-AWGN channel

This figure is occasionally referred to in papers trying to demonstrate codes

with near Shannon limit performance. In this dissertation, rate 1/2 LDPC code over

BI-AWGN channel is considered. Correspondingly, the bound on E b /No for bit error

rate of 10 -5 is about 0.18 dB.

Similarly, let r	 0 and then 1 — Hb (e)	 1, the power limit of BI-AWGN is

found to be: Eb /No = In 2, identical to that of UC-AWGN.

2.2 Belief Propagation on Bayesian Network

2.2.1 Probability Inference Problem

Let X = {X1, X2, ... XN } be a set of N discrete random variables. Assume that the

marginal density p(x i) is also known, which represents a priori "belief" about the

random variable (r.v.). Suppose some of the r.v.'s are "observed", which means that

there is a subset J C {1, 2, ... , N} (the evidence set) such that for all j E J, the r.v.

Xi is known to have a particular value a1 ,

22)

12

The fundamental probabilistic inference problem is to compute the updated beliefs,

i.e. the a posteriori probabilities Bel(x i) = p(x i E) for all i J. Under the circum-

stance of decoding, a MAP decision is made by

A brute force approach to computing p(xi|ξ) is to sum over all the terms of p(x)

which do not involve either i or J. Unfortunately, the heavy computation burden

makes this approach impractical.

The idea behind the "Bayesian belief network" approach to inference problem is

to exploit any "partial independence" which may exist among X i 's to simplify belief

propagation. The partial "independence" can be described by a directed acyclic

graph (DAG). A DAG is a finite, directed graph, in which there are no directed

cycles. If there is a directed edge a b, then a. is called a "parent" of b and b is

called a "child" of a, Denote the set of parents of vertex v by pa(v). If X is a set of

r.v. in correspondence with the vertices of graph G, the joint density function p(x)

is factored according to G if

A DAG, together with the associated r.v. X, is called a Bayesian belief network. In

the 1980's, Kim and Pearl showed that if the DAG is loop-free, then there are efficient

algorithms for solving the inference problem. The exact a posteriori probability could

be obtained [21_.

2.2.2 Pearl's Belief Propagation Algorithm

Pearl's belief propagation (BP) algorithm is a decentralized "message passing"

algorithm, in which there is a processor associated with each vertex of the Bayesian

network. Each processor can communicate only with its parents and children.

The processor associated with a variable X knows the conditional density function

13

p(x u) Pr{X = x Ui = u l , . • • , = um}, where U 1 , ..., Um are the parents

of X. If pa(x) = 0, this knowledge degenerates to the marginal density function

p(x) = Pr{X = x}. When a processor is activated, it "reads" the messages from

its parents and children, updates its belief based on these messages, and then sends

new messages back to its parents and children.

The message node X receives from its parents Ui , denoted πUi,x(ui), is in the

form of a list of probabilities, one for each value ui E . Informally, πui,x(ui) is

the probability of the event Ui = u i , conditioned on the evidence in the tree already

"known" to Ui . Similarly, the message X receives from its child Y j , denoted by

λ yj,x(x) is in the form of a list of nonnegative real numbers, one for each value of

x E .Fx . Roughly speaking, λ yj,x(x) is the probability of the evidence Yj "knows",

given the event X = x.

Node X then computes the probability of X = x given the evidence from its

parents

If X is a root node, which means it has no parent, then πX(x) = p(x) (marginal

probability). The likelihood of X = x given the evidence known to its children is,

If X has no children then λX(x) = 1. These two quantities are then combined to

obtain the updated belief about the variable X

where a is a normalization factor.

After X has been activated, the message that X passes to its child Yj , denoted

πX,Yj (x), is a list of probabilities, one for each value of x. Roughly speaking, πX , Yj (x)

is the probability of the event X = x, given the evidence in the network already

Figure 2.4 Summary of Pearl's belief propagation

known to X, which now indicates any new evidence which may have been contained

in the incoming messages but excludes the information from Yj to X

Similarly, the message X passes to its parents Uk, denoted by λX,Uk(uk), is the

list of probabilities of the evidence it knows about, given the event Uk = Ilk for each

possible value u k

A summary of Pearl's belief propagation algorithm is shown in Figure 2.4. The

algorithm is initialized by setting all λX,U(u) to 1 unless X is observed to be x 0 ,

in which case λX,U(u) = p(x 0 u). For each source node X, set πX(x) to a priori

probability p(x). A node can be activated only if all of its incoming messages exist.

Usually, the source nodes and evidence nodes are the first to be activated. Once a

node is activated, it updates its own belief Bel(x), derives the messages λX,U and

πX,Y,, and passes them to its parents and children respectively. If the graph is a

tree, the algorithm will finally converge to a unique and exact solution—the exact a

posteriori probability (APP) of each variable.

14

15

2.3 Graphical Models for Error Correcting Codes

Under Pearl's belief propagation algorithm, the information originating from a

certain node would gradually spread to other nodes. Eventually, each node in the

network would have collected all the information available. At this point, if the

graph is loopless, a steady state is reached. The belief would stay the same even

if the procedure moves on. The final belief is nothing else but the exact APP.

However, if the graph is loopy, information would circulate in the network. The

algorithm is not guaranteed to converge. Of course, the results are no longer a

posteriori probability. Exact probability inference in a multiply-connected network

is in general NP-hard [24_.

As for Pearl's BP algorithm with application to error correcting codes, the bad

news is that most long compound codes, such as turbo code and LDPC code, are

loopy. So far, these long codes have no other good choices but to be decoded by

probability decoders. The good news is, exact APP is not required for decoding

applications. The objective is to infer whether the transmitted symbol is zero or

one.

Recently, it is shown that belief propagation for decoding a wide variety of long

random error correcting codes is likely to yield very good performance, even though

the corresponding Bayesian networks are loopy _7, 8]. Turbo decoding is an instance

of belief propagation in a loopy Bayesian network. It seems that the effect of cycles

tends to diminish if the cycles are long enough and random enough.

McEliece et.al. are the first to connect the iterative decoding algorithm with

Pearl's belief propagation [7,. However, the first to describe error correcting codes by

graphical models might be Tanner [25_ in 1981. Roughly speaking, graphical models

are basically identical to the underlying graphs in Bayesian network.

So far, the graphical symbol set for compound code has not yet been unified.

Tanner was the first to introduce bipartite graphs to describe families of codes which

16

Figure 2.5 Graphical models for: (a) and (b) (7,4) Hamming code (c) LDPC code

are generalizations of the LDPC codes [25_. In Tanner's original formulation, there

are two types of nodes/variables: nodes representing code digits and nodes for

subcodes (code constraint). Wiberg introduced "hidden" (latent) state variables,

which easily incorporate convolutional code _26 . Recently, the concept of factor

graph [27_ takes these theoretical graph models one step further, by adding a function

node and applying it to various functions. A wide variety of algorithms, including

turbo decoding, Kalman filter, and certain FFT are specified as an instance of sum-

product algorithm.

Basically, a simple graphical model just enough to describe the iterative

decoding algorithm is employed. The graphical model in this research is a combi-

nation of Tanner's bipartition graph and McEliece's Bayesian network :7_ . Three

types of nodes are defined: variable nodes, check nodes and evidence nodes. Variable

node X i represents a coded digit. Evidence node Yj represents a received noise-

corrupted symbol. Check node Ck corresponds to code constraint.

There could be more than one graphical model for the same code. Figure 2.5 (a)

shows a Bayesian network for (7,4) Hamming code. Probability propagation derived

in this context would yield a suboptimal iterative decoder, since it is loopy. Figure 2.5

(b) describes (7,4) Hamming code in a different form of graph. Here the check

node C 1 is equivalent to syndrome vector and it is viewed as an all-zero evidence

node in the context of belief propagation. Given the codeword set, C1 "knows"

17

the conditional probability p(c1| x). Based on this model, the belief propagation

algorithm is nothing else but the MAP decoder. For detailed performance comparison

of the two decoders, refer to [241. The loopless graphical model is used in product

code as subgraph for component code.

Graphical model for LDPC code is given in Figure 2.5 (c). If the evidence

nodes and edges connected to them are removed, a bipartition graph is obtained. It

is almost identical to Tanner's graph, except that the check node was called subcode

and was associated with a single parity check in the latter. In LDPC code, code

constraint equals parity check. But code constraint is preferred because this make it

easy to incorporate generalized LDPC code 128_ into this model.

Almost all iterative decoding schemes, including the sum-product algorithm

for LDPC code, BCJR for turbo code and MAP decoding for block code, were

developed well before BP was connected to probability decoding. Actually, BP has

not brought any significant BER performance improvement so far. Instead, it inspires

some alternative efficient implementation schemes for turbo decoding _29, 30, 31_, It

is the conclusion "belief propagation would converge to exact APP under loopless

condition" that results in a big step on iterative decoding theory. Setting out from

"loopless" assumption, several groups of researchers were able to derive capacity for

iterative decoding. Details are given in the next Chapter.

2.4 Summary

This chapter introduces some theoretical foundations for this work. First the noisy

channel coding theorem is presented. The error performance bounds for binary input

AWGN and unconstrained AWGN channels are given. In general, these bounds are

termed "Shannon limit" in research papers. Then the theory of belief propagation

on Bayesian network is introduced, which is well known in the artificial intelligence

community but is relatively new to the coding theory community. A simple graphical

18

model just enough to describe the iterative decoding process is adopted throughout

this dissertation. All of the work in the following chapters is based on belief propa-

gation on graphical model, the newly established theoretical framework for iterative

decoding.

CHAPTER 3

LOW-DENSITY PARITY-CHECK CODE:
DECODING CAPACITY

A brief introduction on LDPC code is given in Section 3.1, about its definition,

graphical model and Log-MAP decoding algorithm. Then the concept of iterative

decoding capacity is defined in the context of density evolution and parameter

evolution. Capacity of Log-MAP decoding is obtained using parameter-evolution,

namely SNR-evolution and mutual information evolution. Finally, Max-Log-MAP

decoding, a suboptimal algorithm is discussed. The most attractive advantage is its

universal most powerfulness (UMP), that is, no SNR estimation is required. Density

evolution procedure for Max-Log-MAP decoding is developed.

3.1 Low-Density Parity-Check Code

Low-density parity-check code was invented by Gallager in his thesis in 1963, along

with several iterative decoding algorithms including the famous "sum-product"

algorithm. However, LDPC code had been largely forgotten since the computing

power at that time was too limited to demonstrate its potential under large code

length. About five years ago, several groups of researchers rediscovered the power

of LDPC code and "sum-product" decoding algorithm. D. MacKay et. al showed

empirically that long LDPC code also offers near optimum performance [6], just as

turbo code does.

3.1.1 Code Definition

Low-density parity-check code is defined by a sparse Al x N parity check matrix H

with elements from {0, 1}. For a regular LDPC code, H has uniform column weight

j and uniform row weight k. It is denoted as regular (N,j,k) or (j,k) LDPC code.

Generally, it follows that the coding rate r satisfies r = (N —111)1N = 1 — j/k.

19

20

Table 3.1 Parity check matrix of a (3,4) LDPC code with N = 20

To derive the generator matrix, H is split into two sparse sub-matrices H =

_C 1 C 2], where C2 is a square M x Al matrix and C 1 , M x K matrix, K = N —1'f1

being the size of source block length. The generator matrix is,

where IT(is a K x K identity matrix. Source binary vector s of length K is encoded

into a vector x of length N by: x = GT S. x satisfies Hx = 0.

MacKay gives several construction schemes to produce the parity check matrix

H, and they yield similar BER performance. Basically Gallager's simple construction

is adopted throughout this research.

The matrix is divided into j 1V11 x N sub-matrices with M 1 = M/j, each

containing a single 1 in each column. The first of these matrices contains all its l's

in descending order; that is, the its, contains l's in columns (i — 1)k +1 to ik. The

other sub-matrices are merely random column permutations of the first sub-matrix.

A 15 x 20 H matrix with j = 3 and k = 4 is shown in Table 3.1 as an example.

Figure 3.1 Graphical model for LDPC code

Following MacKay's scheme, a constraint is imposed on the permutation operation:

no two columns should have overlap greater than 1. It is addressed that Gallager's

code construction has an embedded random interleaver, very similar to turbo code's

interleaver.

Figure 3.1 displays the graphical model for LDPC code. It's almost a direct

mapping from the H matrix of LDPC code. The N coded digits are represented by

N variable nodes. M parity checks are represented by M check nodes. Each non-zero

element H„ in the H matrix corresponds to an edge that connects variable node

n and check node m . Using the graphical model, it is quite easy to describe the

decoding algorithms.

3.1.2 Iterative Decoding Algorithms

3.1.2.1 Sum-product algorithm. The earliest iterative decoding scheme for

LDPC code was proposed by Gallager in his Ph.D dissertation [4]. Later it was

generalized by Wiberg [26] and elaborated by MacKay under the name of sum-

product algorithm 16_. It is exactly Pearl's belief propagation (BP) except that

different sets of symbols are used.

The decoding process comprises three steps: initialization, horizontal pass and

vertical pass. The objective is to update the "pseudo-posterior probabilities" gn°

and g71, through iterations, where qn° + qn1 = 1. The quantity gna with a E {0, 1} is

22

meant to be the probability that x n = a, given the information from those check

nodes connected to variable node n. The initial a priori probability of xn is as,

pan = P(x n = a) = αp(yn xn = a) so that pn° + pn1 = 1. This pair of values is

equivalent to the concept of channel value or intrinsic information in Hagenauer's

paper. where log-likelihood ratio (LLR) symbol set is employed.

The set of bits Ti that participates in check m is denoted by N(m)	 {n : Hmn =

1}. Similarly, the set of checks in which bit n participates is denoted as M (n) = {m :

H = 1}. A set N(m) with bit n excluded is denoted by N (m)\n, and a set M (n)

with parity check m excluded, by 111(7-7) \7n. The iterative decoding algorithm has

two alternating parts, vertical pass and horizontal pass, in which certain quantities

qamnandrmna,associated with each non-zero element in the matrixH,are iteratively

updated. The quantity qmna is meant to be the probability that x„ is a, given the

information obtained via checks other than check m . The quantity rmna is meant to be

the probability that check in is satisfied if bit n is considered fixed at a while the other

bits have a separable distribution given by the probabilities {qmn ' : n' E N(m)\n}

The algorithm would produce the exact a posteriori probabilities (APP) for all the

coded bits if the bipartition graph contains no cycles. This conclusion is derived

from the fact that Pearl's belief propagation algorithm converges to exact APP if

the Bayesian network is loopless.

The sum-product algorithm for LDPC code consists of the following steps:

• Initialization: The variables	 andand gm are initialized to the values of pn° and

mil respectively.

• Horizontal pass: Run through all the checks in and compute for each n E N(m),

a = 0, 1:

Vertical pass: For each n and m, and for a = 0, 1, update:

• Decisions: For each bit n and a = 0, 1, update the "pseudo-posterior proba-

bilities":

such that FIX = 0, then the algorithm halts; otherwise, repeat the horizontal

and vertical pass until some maximal number of iteration is reached without a

valid decoding.

The sum-product algorithm is exactly the BP algorithm. The horizontal pass

is actually the message generation process in check nodes. The vertical pass is the

message generation process in variable nodes. The M check nodes are actually M

parallel component decoders activated simultaneously.

3.1.2.2 Log-MAP algorithm. Representing the messages in LLR symbol set,

sum-product algorithm could be proved to be equivalent to Log-MAP algorithm.

Detailed proof is given in Appendix A.

Define the log-likelihood ratio symbol set as follows: intrinsic value L, =A log 4p ,

a posteriori log-likelihood ratio for making final decisions L(±,) = log 4, extrinsic qn1

23

24

• Initialization: Set the input to check node In from variable node n as channel

value ai = L„.

• Horizontal pass:

The decision so far is given by X = [i n] such that in = 0 if L(7.) (in)> 0;

otherwise i n = I. If X is a valid codeword such that H5-c = 0, then the

algorithm halt; otherwise, repeat the horizontal and vertical pass until some

maximal number of iteration is reached without a valid decoding.

In Hagenauer's papers _32], MAP decoding refers to decoding using probability

symbol set. It is identical to sum-product algorithm. Log-MAP decoding is the same

as MAP decoding except that LLRs replace probabilities.

3.1.3 Upper Bounds on ML Decoding

LDPC code is a linear block code. Through studying the codeword distance

spectrum, one can easily upper bound the block error rate of LDPC code under

ML decoding. Gallager gave an upper bound on the ensemble distance spectrum of

(N,j,k) binary LDPC code [4]. Sason visualizes the codeword spectrum of (10000,j,2j)

LDPC for j = 3, 4, 5, 6 in his paper Z33_. The basic conclusion is, for relatively small

values of j and k, increasing the value of j and k with the ratio of j/k fixed (coding

25

rate kept constant) reduces the number of codewords of low Hamming weight, thus

lowers the error floor.

Using Gallager's distance spectrum, Sason was able to derive two upper bounds:

one is union bound in Q-form; the other is tangential sphere bound which is much

tighter than the union bound. For convenience of illustration, the results are shown

in Figure 3.2. Comparing the two error bounds for block length N = 1008 and

N = 10000 under identical j and k, it is found that increasing N would bring

about dramatic improvement. Under the same N and coding rate j/k, larger j

pulls the error bound towards the Shannon limit. This coincides with the intuitive

understanding: denser parity check should improve the code performance.

However, upper bounds derived from code weight spectrum represent the

performance achievable by ML decoding, which is impractical for long code such as

turbo code and LDPC code. Actually, simulations yield a totally different result.

For j > 3, denser parity check decreases BER performance. A concatenated code

with good distance spectrum does not guarantee a good BER performance under

iterative decoding. There exists a convergence threshold 	 Only. Only for Eb/No >

will the decoding algorithm render error-free performance. This threshold has no

direct connection with the code distance spectrum. Rather, it depends on the

iterative decoding algorithm itself. It represents iterative decoding capacity.

3.2 Iterative Decoding Capacity

Iterative decoding is actually belief propagation (BP) on graphical model. If the

graph is loopless, then BP algorithm would converge to the exact APP results for

each bit. Then an interesting question is: what would happen if the underlying graph

for turbo code or LDPC code is cycle-free? Several groups of researchers j34, 35, 36_

set out from this question. They take different approaches and finally arrive at a

common conclusion: there exists an iterative decoding capacity. This capacity has

Figure 3.2 Upper bounds on block error rates of ML decoding [33j

26

27

nothing to do with the code distance spectrum. Instead, it depends on the iterative

decoding algorithm itself.

3.2.1 Density Evolution

The idea behind density evolution is very simple. The decoder is viewed as a

signal processing system. Its input, L /in], are independent random variables

with Gaussian distributions. Its output, extrinsic informations is also a random

variable with certain pdf. Through iterations, the pdf of e) evolves. This pdf is

predictable since the signal processing system and the input pdf are known. Under

the cycle-free assumption, it is feasible to calculate the pdf of ξ(i), for the left sides

of both equation(3.6) and equation (3.7) are independent random variables. This

simple and clear method for determining the capacity of iterative decoder is called

density evolution. Exact threshold could be derived through this approach.

The threshold value, which represents a threshold channel parameter, defines

the boundary of error-free region. For an AWGN channel, this parameter could be

SNR per information bit denoted by 7b = Eb /No . By the general concentration

theorem _34], for almost all codes in a code ensemble and for almost all inputs,

the error probability approaches zero through iterations if Eb /No > 7b , where the

threshold value 7b* is derived by the density evolution procedures.

3.2.2 Parameter Evolution

The density evolution algorithm could be simplified by approximating the pdf of

extrinsic information by the normal distribution. The iteration of the decoding

algorithm is modeled as a simple one-parameter dynamical system. Quite accurate

performance predictions can be made with this technique. Currently, two approaches

are employed. One uses the mutual information as an evolving parameter while the

other uses SNR of extrinsic information. These two methods have been successfully

28

applied to turbo code. In the following section, their effectiveness with respect to

LDPC code is evaluated.

3.3 Capacity of Log-MAP Decoding

There exist two approximate approaches to estimate the capacity of turbo code.

They are developed independently by two groups of researchers _35, 37_ . They are

based on the same idea: convert the infinite-dimensional problem of iteratively calcu-

lating the pdf of extrinsic information, which is needed to find out the capacity, to

a one-dimensional problem of updating a parameter of the distribution. For the

convenience of description, they are termed SNR evolution and mutual information

evolution respectively.

For LDPC code, exact capacity could be achieved via density evolution.

However, for most other turbo-like codes, exact density (pdf) of the extrinsic infor-

mation is hard to be derived. Therefore, SNR evolution and mutual information

evolution, which are based on Monte Carlo simulations, might be good choices. In

this section, SNR evolution and mutual information evolution are used to estimate

the capacity of LDPC code and the results are compared with the exact thresholds

derived via density evolution. The basic conclusion is, although they are based on

some rough assumptions, the results are in good agreement with the exact threshold.

Mutual information evolution produces slightly better result.

3.3.1 Assumptions

• Cycle -free Assumption: So far, all methods for estimating the iterative decoder

capacity are based on cycle-free assumption, which means that the graphical

model is loopless. In density evolution, the cycle-free assumption makes it

feasible to calculate the exact pdf evolution. In Monte-Carlo-simulation-based

29

methods, it is equivalent to the assumption that the intrinsic information and

extrinsic values are pair-wise independent.

• Gaussian Distribution Assumption: In simulation-based methods, the extrinsic

information ξmn is assumed to be Gaussian distributed. Then, the estimation

of the exact pdf in density evolution is simplified to estimating the Gaussian

parameters: a and R.

• ,u = a-V2: It is observed that in Log-MAP decoding of turbo code and LDPC

code, the above equation stands. Later, it is revealed that in LDPC code,

symmetry condition is preserved under density evolution through iterations for

all extrinsic information, which is expressed as f(x) = ex f (—x), where f(x)

is the pdf. By enforcing this condition to Gaussian distribution, the equation

/A = aV2 is obtained.

• All-zero Codeword: Without losing any generality, it is assumed that all-zero

codeword is transmitted.

3.3.2 SNR Evolution

SNR evolution was first proposed by Gamal [35_. The main idea is to view the

essential action of the constituent decoders as enhancing the SNR of the extrinsic

information.

The input to a constituent decoder is written as,

where /IL, = o/2 and ,u, c(- 0 = a-2
)
/2. Therefore, it is easy to show that

,,ran 	 6-(1:

Actually, SNR of extrinsic information fully represents its statistical character since

SNR = R 2 / 0_ 2 = p12. By symmetry , SNR(mZ 7,) is the same for any m and n. Let's

Figure 3.3 SNR evolution

consider the sum of extrinsic information E rn , cm(,)\ ,,	 and denote its SNR at

the input of iteration i as Sn(i)(v), where v = SNR(Ln) denotes the decoder initial

condition. Then the sequence {Sg) (v)} evolves recursively

Li is identical for any n. The f„ depends on constituent decoder (in regular

LDPC code, the parameters j and k). It was proved in [35] that the sequence

{S,C,') (v)I i°1 0 either has an accumulation point T (v) < Do or is unbounded. T (v) is a

non-decreasing function of the initial SNR v. There exists a threshold v so that if

v < v, SiCi) (v) would converge to some T(11); otherwise, SV(v) approaches infinity. At

this point, it is possible to characterize the extrinsic information SNR input/output

relation of the basic decoder and to determine if the iterative decoding process will

converge or not at any Eb /No . Actually, it is possible to rely on simple Monte Carlo

simulations to estimate the threshold v.

31

In Figure 3.3, the relations between the extrinsic information SNR iTh and

S Row under different bit-energy-to-noise ratio Eb /No for regular (3,6) LDPC code

are demonstrated. Obviously,the SNR of decision variable would go to infinity

if and only if S goes to infinity. The bit error rate P e(i) is simply the Q-function

of SNR. To guarantee that PP) 0, the SNRin/SNRout characteristic should not

intersect with S N Rin = S N Rou t . In this way, the capacity of regular (j,k) LDPC

code under AWGN channel and BP-based MAP decoding is obtained, as shown in

Table 3.2.

3.3.3 Mutual Information Evolution

In this approach, mutual information is used as a parameter to characterize the

density distribution. Stephan Brink is the first to use the concept of mutual infor-

mation to describe convergence behavior of parallel concatenated convolutional codes

(PCCC) [37_. Here this method is used to evaluate the the capacity of LDPC code.

The a priori information to a check node m is defined as An(i),

To simplify notations, the symbol A is used for An(i) and x for xn . The information

contents of a priori knowledge could be measured by the average mutual information

With the assumption that A is Gaussian distributed and µA = σ2A/2, /A only depends

32

The output extrinsic information for stage i is actually the input to a check

node m for stage i + 1 ,

Similarly, the average mutual information I F = I(X; E) is written as,

Remember that in SNR evolution, both the a priori information and output extrinsic

information are assumed Gaussian so that it is quite easy to plot the SNR transfer

chart. Here, if the output extrinsic information is assumed to be Gaussian, the results

should be the same as that of SNR evolution. Actually, it is no longer assumed to

be Gaussian. pE is estimated by Monte Carlo simulations. To measure /E through

the actual histogram of pE is a more accurate approach.

Brink's original work deals with the iterative decoding of parallel concatenated

convolutional code, where two constituent decoders work in turn to update the

extrinsic information [37_. Accordingly, two IA/IE pairs, each corresponding to one

constituent decoder, are plotted in the same figure to demonstrate the decoding

trajectory. It is named Extrinsic Information Transfer Chart (EXIT chart). In

Log-MAP algorithm for LDPC code, each check node is associated with a decoder

and they are activated simultaneously. Therefore, the definitions of A and E are

different from Brink's concept. Here A is defined as a priori information and E,

output extrinsic information. The IA/IE relation is the same for every iteration. To

find out the decoding trajectory, IA /IE and IE/IA are plotted in the same figure and

a zigzag-path is drawn into the chart. As depicted in Figure 3.4, when the E b /No is

not high enough, the tunnel is closed at some point so that the zigzag-path ended

there. For the iterative decoder to converge, the E b /No must be high enough so that

the trajectory survives the bottleneck region. This threshold represents the capacity

of iterative decoding for regular LDPC code.

Figure 3.4 EXIT chart for (3,6) LDPC code

Table 3.2 Threshold values of Log-MAP decoding for AWGN channel

Table 3.2 compares the threshold derived from SNR evolution and mutual

information evolution. The threshold obtained through density evolution is used

as a benchmark to evaluate the two schemes.

3.3.4 Discussion

Considering the relatively rough assumptions for parameter-based evolution, the

results obtained are surprisingly close to the exact thresholds. Figure 3.5 shows

a real pdf of extrinsic information obtained from histogram and a Gaussian approx-

imation. The difference is obvious.

Mutual information evolution is more accurate than SNR evolution because it

is more robust against the changes in the shape of the a priori input distribution pA .

The following simulation demonstrates the robustness of average mutual information.

Let a priori information A be a Gaussian r.v. with parameters /1A = u2/2. E is the

output extrinsic information from regular (3,6) LDPC Log-MAP decoder. Let a priori

information A' be the exact output of decoding iteration 1. E' is the corresponding

33

34

Figure 3.5 The real pdf of extrinsic information in comparison with Gaussian
approximation

output of decoding iteration 2. Assume that J(σA) =	 (A'; X) stands. That is,

they have the same amount of information content on X.

IE (E; X) and /E , (E'; X) are compared in Figure 3.6. Although the distri-

butions of A and A' are different, as shown in Figure 3.5, IE (E; X)2-_ E , (E / ; X)

given that J(σA) = IA , (A'; X). That's why mutual information evolution yields a

quite accurate result in evaluating the capacity. Actually, A and E represent the

same expression, while A is assumed to be Gaussian and E is not. It seems like a

paradox, but this makes it possible to conveniently derive the EXIT chart with little

degradation in accuracy.

In Brink's work, EXIT chart is not limited to turbo decoding analysis. The

concept of mutual information is also used in iterative de-mapping and decoding,

iterative channel estimation and decoding. Given the effectiveness of EXIT chart

for LDPC code, it is expected to be an appropriate tool for "turbo system" with

applications on LDPC code.

35

Figure 3.6 Average mutual information derived from real a priori information and
Gaussian approximation

3.4 Capacity of Max-Log-MAP Decoding

3.4.1 Max-Log-MAP Decoding

As a simplified version of Log-MAP algorithm, the Max-Log-MAP algorithm is based

on the following approximation,

Annlying . this to horizontal pass.

the approximated extrinsic information is derived as follows,

This equation was suggested in Hagenauer's milestone paper [32]. Ping Li derived it

for single parity product code using a different approach [38_. An obvious advantage

36

of the Max-Log-MAP algorithm is that it reduces computation burden. Simple

operations such as " and "min" are used to replace "tank" and "tanh -1 ". Another

important feature lies in the fact that SNR estimation is not required. In the Log-

MAP algorithm, the initial input value Lim y, relies on both the channel value yn and

the channel estimation Li ch. A poorly estimated L ch may result in some performance

degradation.

For the convenience of description, the horizontal pass is re-written as,

and the vertical pass as,

It is easy to show that function g(•) and f (.) satisfy,

provided that a >= 0. Therefore, if ξo is initialized as L chy, ((i) and ξ(i) would be

proportional to Lai . The value of L ch does not affect the decoding results. Therefore,

in the Max-Log-MAP algorithm, SNR estimation is not required. The initial input

to decoder is simply set to the received channel values y.

The Max-Log-MAP algorithm is a typical suboptimal decoding algorithm. It

has been heavily analyzed and simulated in turbo decoding. However, for LDPC

code, most attention is focused on sum-product algorithm, which is equivalent to

Log-MAP algorithm. To the author's knowledge, there have been no publications

mentioning the Max-Log-MAP algorithm, though the derivation is quite straight-

forward. Fossorier proposed a reduced complexity decoding scheme for LDPC

code _39]. It does not require SNR estimation and is named universal most powerful

37

(UMP) BP-based algorithm. It is almost the same as the Max-Log-MAP, except

that o is set to y instead of y.

Currently, all the capacity estimations, no matter for LDPC code or turbo code,

using Log-MAP decoder. There has not been any work on evaluating the capacity

of Max-Log-MAP algorithm.

It has been hoped that parameter-evolution would work for Max-Log-MAP

algorithm. In fact, the pdf of extrinsic information under Max-Log-MAP looks

even more like Gaussian. However, notice that symmetry condition is no longer

satisfied 34], ic y could no longer be approximated by q/ 2. To avoid working on

the actual pdf, some efforts were made to parameterize the pdf so that parameter

evolution might be employed to demonstrate the convergence behavior, just as in

Log-MAP decoding. Unfortunately, these efforts failed to yield any useful results.

There is no other way but to rely on the last resort-density evolution.

3.4.2 Density Evolution Procedure for Max-Log-MAP Decoding

Given the pdf of initial values ζ(0) as PM, and the decoding algorithm, theoretically,

it is possible to compute the pdf of C (') and ((z) for any i > 1, denoted as Q(i) and

P (i) respectively. Through observing the evolution of P(i) and Q(i) , it is easy to find

out if the algorithm would converge to the correct coded bit or not. The problem

focuses on developing a numerical procedure to compute Q@) and P (i) .

For vertical pass, it is quite easy to evaluate the pdf of ((i) given the pdf of o

Since o and fejiTI -1 are pair-wise independent, which is guaranteed by cycle-free

assumption, the pdf of (-(1) is nothing else but the convolution of the pdf of individual

random variables on the right side,

38

Note that as a function , Q (1). (x) can be denoted as Q ((x), sinceeit

independently distributed (i.i.d.) random variables.

Now the problem left to be solved is stated as: how to compute the pdf of

given that

If a random variable Z is defined as the function of several random variables Z =

g(X1 , X2 , • • • , Xn) and the joint pdf of X is known, the cumulative distribution

function (cdf) of Z is found by,

The pdf of Z is found by taking derivative of Fz (z) [40].

Here the actual joint pdf	 (x1, x 2 , • • • , x k _ 1) is simply the product of

individual pdf's	 (x1)Pζ2 (x 2) • • • Pζk-1(xk-1). Therefore, the cdf of	 denoted as

Fζ(z), is written as,

are identical

{(Kli
k-1 are i.i.d. random variables with known pdf,

In equation 3.27, variables x 1 ,x 2 ,• • •,x k _ i are equally positioned. Without losing any

generality, x1 is assumed to be the outermost integral variable,

39

To evaluate ψ-1 and 1/4 1 , it is convenient to define,

+1 and '0 -1 is written as,

40

In Figure 3.7, the pdf of extrinsic information (1) is demonstrated under input

Eb /No of 1.2dB and regular (3,6) LDPC code. Solid line represents pdf derived

from the density evolution algorithm. Dashed line represents pdf estimated from

histogram of Monte Carlo simulation. The two lines agree with each other. This

guarantees that the numerical procedure developed is correct.

Given the decision variable L(i) ,

it is easy to find out its pdf D (12 (x),

41

Figure 3.8 Visualized pdf evolution for Max-Log-MAP decoding.
left: Eb /No above the threshold; right: Eb /No below the threshold

3.4.3 Numerical Results

By convention, it is assumed that all-zero codeword is transmitted. Therefore,

positive P i) signifies correct decoding while negative L(i means errors. Define p(z)

as bit error probability at iteration i . Using density evolution, p(Z) is estimated as,

If Eb /No is higher than a threshold γb*, then the iterative decoder would

converge to the correct codeword such that lim i-->∞ pe(i) 	0;otherwise,	 pe(i) =

6 > 0.	 Figure 3.8 demonstrates a visualized evolution of pdf D (;) (x). It is a regular

42

Table 3.3 Threshold values of Max-Log-MAP and Log-MAP decoding for AWGN
channel

j k rate thresholds in dB
.-N/ ax-Log-MAP Log-MAP (sum-product)

3 6 0.5 1.7 1.11
4 8 0.5 2.5 1.62
5 10 0.5 3.1 2.04

(3,6) LDPC code, under Max-Log-MAP decoding and AWGN channel. When the

input Eb /No is higher than the threshold, which is 1.7 dB, the pdf would evolve

until the part below zero diminishes. If the input Eb /No is less than the threshold,

no matter how many iterations, the pdf D (/) (x) would never evolve to above zero.

The thresholds for regular (3,6), (4,8) and (5,10) LDPC codes under Max-Log-

MAP decoding are given in Table 3.3, in comparison with thresholds for Log-MAP

algorithm. Previous simulations on turbo code suggest a gap of 0.5 dB between

Max-Log-MAP and Log-MAP algorithm. Interesting enough, here for regular (3,6)

LDPC, the gap is approximately 0.5 dB!

In Figure 3.9, the threshold is compared with simulated BER performance

assuming information block length of 10080. Theoretically, if the information block

length approaches infinity, the threshold should be exactly the "waterfall" point.

The gap between theoretical capacity and simulation results is explained as: 1. the

block length is not large enough; 2. the code construction method could be further

improved.

3.5 Summary

So far, the approaches to estimate decoder capacity fall into two classes: parameter-

evolution which is simulation-based and yields approximate result, and density-

evolution which yields exact threshold but only applies to LDPC code. Using

density evolution as the benchmark, two approximate methods, SNR-evolution and

43

Figure 3.9 Theoretical capacity in comparison with simulated BER performance of
Max-Log-MAP decoding

mutual information evolution, are evaluated and found to be quite accurate. To

the author's knowledge, current researches on decoding capacity always assume

Log-MAP decoder. The Max-Log-MAP decoder, a suboptimal one with reduced

complexity, has never been considered. Density evolution procedure for Max-Log-

MAP decoding is derived. The following conclusions are established, based on this

work and the most recent research results , 34, 35, 36, 37],

For message-passing iterative decoding and memoriless channel, there exists a .

threshold -yb* determined by the decoder itself other than the code weight

spectrum. The threshold could be illustrated as the boundary channel

parameter for iterative decoding to yield error-free performance. Therefore, it

represents the capacity of iterative decoding. If the actual channel parameter

is "better" than the threshold (in AWGN channel, this means Eb /No high

enough), the probability of error would converge to zero as the number of

iterations tends to infinity. This explains why upper bounds derived from code

weight spectrum favor (5,10) regular LDPC code while simulation results favor

(3,6) regular LDPC code.

44

2. For Log-MAP decoding, parameter evolution offers quite an accurate capacity

estimation for LDPC code, despite the rough assumptions. Mutual information

evolution scheme is more accurate than SNR evolution.

3. Compared with Log-MAP algorithm, Max-Log-MAP decoding not only

reduces complexity, but also eliminates the requirement for channel parameter

estimation.

4. A numerical procedure for density evolution under the Max-Log-MAP decoding

is developed. Using this tool, the capacity of LDPC code could be easily

computed.

CHAPTER 4

QUANTIZED DECODING FOR LOW-DENSITY PARITY-CHECK
CODE

LDPC codes have certain advantages for implementations, such as fully parallelizable

decoder structures. When one deals with implementation problems on a general

purpose DSP or dedicated hardware, the performance loss due to finite precision must

be taken into consideration. Previous research work revealed that uniform quanti-

zation should be imposed on messages represented by log-likelihood ratio symbol

set rather than probability symbol set _41]. To the author's knowledge, no further

progress has been made on quantized implementation of LDPC decoder.

This chapter is organized as follows. Section 4.1 introduces the quantized

iterative decoding models, for both Log-MAP and Max-Log-MAP algorithms.

Section 4.2 describes the discretized density evolution procedure in detail. Note

that it is different from Richardson's original procedure [34]. The derived threshold

value represents the capacity of quantized iterative decoding under certain idealized

conditions. The capacity depends on quantization resolution as well as dynamic

range. In Section 4.3, general LDPC decoder with infinite precision is discussed.

The influence of clipping limit on convergence speed and BER performance is inves-

tigated. In Section 4.4, the issue of choosing a dynamic range for quantized iterative

decoder is discussed. Quantization loss under a fixed dynamic range is evaluated.

Some conclusions are summarized in Section 4.5.

4.1 Quantized Decoder Models

So far, the messages in decoding LDPC code could be in the form of probability,

probability ratio or log-likelihood ratio. In sum-product (SP) algorithm, the message

on a bit is a pair of probabilities p-1,p1 satisfying p-1 + p 1 = 1. Such a pair can

also be represented by the corresponding likelihood ratio (probability ratio) ; 1 1 or

45

46

log-likelihood ratio (LLR) In Pi 	 . Probability ratio symbol set was used by Ping [41]
P-1

and the equivalent decoding procedure was named parity likelihood ratio (PLR)

algorithm. The LLR, symbol set was adopted by the density evolution procedure [34].

The equivalent sum-product algorithm in LLR symbol set is termed as Log-MAP

algorithm.

SP, PLR and Log-MAP algorithms render the same BER performance under

infinite precision. However, concerning sensitivity to quantization effects, Log-MAP

algorithm is preferred. Quantized SP algorithm suffers severe BER performance

degradation. PLR algorithm was originally proposed to overcome this problem [41_,

where the quantization operation is imposed in the exponential domain and thus

results in non-uniform quantization levels s 1 , i = 0, ±1, ±2, • • •. If LLR symbol set

is employed, the messages would be uniformly quantized as i In s, i = 0, ±1, ±2, • - •.

In this sense, Log-MAP algorithm is a more natural choice for quantized imple-

mentations. In addition, in the logarithmic domain it is easy to apply the density

evolution technique to derive theoretical capacities, as detailed in the next section.

Log-MAP algorithm for LDPC code is conceptually identical to the famous

Log-MAP decoder for turbo codes. Each parity check node functions as a component

decoder extracting extrinsic information. Therefore, just as in turbo code, a

suboptimal algorithm named Max-Log-MAP decoding is derived by substituting each

"log-exponential" operation with "max" operation [14]. Max-Log-MAP decoding

not only reduces the computational burden, but it also eliminates the requirement

of channel parameter estimation. Both of these decoding procedures are considered

in this study.

In designing a quantized iterative decoder, one faces the problem of quanti-

zation scope. That is, to quantize only the received channel values and allow higher

precision for intermediate results, as Wu and Woerner did [42], or to use the same

number of bits to represent all quantities involved in the decoding process. Surely,

47

the latter models the fixed-point implementations more accurately. In addition,

the performance degradation due to limited internal precision is non-negligible.

Therefore, in this study, quantization is imposed on both external and internal

values.

4.1.1 Log-MAP Decoder

4.1.1.1 Basic notations. The notations are identical to that in the last chapter.

For clarity, they are repeated as follows. Let x = _x n] and H = be the

codeword and the parity check matrix, respectively, of an LDPC code, such that

Hx = 0, where xn E {0, 1}. The received normalized symbol yu = (1 — 2 * xn) + zn

is corrupted by an additive white Gaussian noise (AWGN) zn , with zero mean and

noise power a 2 . Then, the LLR of channel transition probability associated with

coordinate n is given as,

Similarly, the set of checks in which bit n participates is denoted as 1//(n) = {m :

Hmn, = 11. A set N(m) with bit n excluded is denoted by N(m)\n, and a set

M (n) with parity check 771 excluded by M (n) \m. The decoding process proceeds by

activating the check nodes and variable nodes in turns and updating messages e m,

and ζmn. ,Tim is defined as the extrinsic information extracted from the check node

m and to be passed to the variable node n. ("7„, is the message from the variable

node m to the check node n.

4.1.1.2 Decoding procedures under infinite precision. The Log-MAP

decoding algorithm involves the following steps.

Initialization: Initially, set the input to the check nodes as LLR of channel

(o)transition probability (nu, =

48

2. Horizontal pass: It is carried out in the check nodes to extract extrinsic infor-

mation ξmn .

3. Vertical pass: It is carried out in the variable nodes to prepare for the next

decoding cycle.

4. Decision stage: For each coordinate n, combine all extrinsic information from

neighboring check nodes 11(n) and channel value L, to get decision variable

D (1) (.±,),

xn = 1. If x is a valid codeword satisfying H* = 0, then the algorithm halts;

otherwise, the horizontal and vertical passes are repeated until some maximal

number of iterations is reached without a valid decoding.

4.1.1.3 Quantization. Consider applying the same quantization scheme to input

values L, and internal variables ern, and ξmn. Set the quantization levels to

i = 0, +1, ±2, • • • , ±(24-1 — 1), where q denotes the number of bits to represent a

value. Step width A depends on the dynamic range Vj jm and q,

Denote the quantization operation upon x as Q(x),

where [x] is the largest integer no greater than x. The operation Q(•) actually

consists of two operations, clipping and discretizing.

49

In real world fixed-point implementation, 1 1 is further converted to integer

representation, which essentially yields the same performance as the above model.

This research emphasizes the influence of quantization so that no further effort was

made toward integer representation.

Now one faces the problem of discretizing the four types of decoding operations.

In the initialization step, simply use quantized LLR, Lin = Q(Ln). Discretized

horizontal pass is described as follows. Define a two-input operator H2map as,

It is easy to show that the horizontal pass, which involves dc — 1 quantized inputs

In general, if a and b are quantized to / levels, H2map could fall on any of l(l + 1)/2

non-uniform levels. Hence Q(.) operation is indispensable,

Replacing 1-12
map by H'map in equation (4.8), the discretized horizontal pass is

derived as,

Note that generally e' e even though equations (4.10) and (4.8) take identical

inputs. Moreover, different nesting pattern might produce slightly different e'.

However, equation (4.10) still corresponds to some valid discretized decoding scheme

and e' would approach e as A 0. More significantly, all intermediate results in

equation (4.10) are quantized according to the rule Q(•) such that the implemen-

tation is simplified to recursive table-lookup. In contrast, intermediate results in

equation (4.8) fall on large number of levels. It makes table-lookup impractical.

50

In the vertical pass and decision stage, ζ andDare the sum of several

discretized values with the identical quantization rule Q(.) so that they themselves

are uniformly discretized. Still, a clipping operation, denoted as ζ = Q(() and

Di = Q(D), is required to prevent an overflow. If the summation is implemented by

a recursive pair-wise summation, say S2 (a, b) = a+ b, more bits have to be allowed for

representing intermediate variables. How much extra bit width is required depends

on the maximum variable node degree dv .

4.1.2 Max-Log-MAP Decoder

Max-Log-MAP decoding approximates the optimal Log-MAP algorithm by substi-

tuting each "log-exponential" operation with a "max" operation,

Max-Log-MAP algorithm for LDPC codes is summarized in four steps very similar

to Log-MAP algorithm, as described in the author's paper [14]. There are two

differences. One is, Max-Log-MAP algorithm directly takes channel value y n , instead

of Ln , as its input. Therefore, channel parameter estimation, such as noise level a,

is not required. The other is, horizontal pass is simplified as,

The remaining two steps are completely identical with that of Log-MAP decoding.

Similar to the Log-MAP decoding, the horizontal pass of Max-Log-MAP

decoding could be implemented by a nesting pair-wise computation,

/ mwhere the operation	 Max is defined as,

51

Note that here the quantization operation Q(.) is unnecessary. Similarly, discretized

horizontal pass could be implemented through a recursive table-lookup. The other

three types of operations are discretized in the same way as in the Log-MAP decoding.

4.2 Theoretical Capacity

The average behavior of a message-passing decoder for an LDPC code ensemble

is numerically computable using the newly developed technique called density

evolution _34_. Assuming the code length to be infinite and underlying graphical

model to be cycle-free, one could calculate a threshold value, that is, a threshold

channel parameter that defines the boundary of error-free region. For an AWGN

channel, this parameter could be SNR per information bit denoted by 7b Eb /No .

By the general concentration theorem _34], for almost all codes in a code ensemble

and for almost all inputs, the error probability approaches zero through iterations

if Eb /No > 7/1,*, where the threshold value is derived by the density evolution

procedure. γb* represents the capacity of iterative decoding.

In Richardson's original paper I34], the density evolution procedure for LDPC

code under Log-MAP decoding (belief-propagation based decoding) is developed in

the context of continuous message alphabets. As indicated in the paper, quantization

performance could be evaluated using discrete message alphabets. Therefore, the first

part of this section descibes the procedures for discretized density evolution.

In message-passing decoding with quantized messages, the threshold 7 b* depends

on two parameters, namely dynamic range and quantizing resolution q, as

denoted by γb*(Vlim, q). In other words, the capacity of quantized iterative decoder of

resolution q relies on the dynamic range V lim. In the remaining part of this section,

numerical results about capacity 7b* are reported.

52

4.2.1 Discretized Density Evolution Procedures

Discretized density evolution procedure was first proposed by Chung in his Ph.D

dissertation _431. It models the exact behavior of quantized iterative decoder for

LDPC code. The general procedure described below applies to both Log-MAP and

Max-Log-MAP decoding. For the latter, a more efficient procedure is available.

4.2.1.1 General procedure. Denote the probability mass function (pmf) of a

quantized message m' by pm, (k) = Pr[m' = kA_, where k = 0, +1, +2, • • , ±(2q -1 —

1). If the pmf of the initial message ((0) is known, the problem is reduced to how

to calculate the pmf of the output message, say IA' under horizontal pass and pc

under vertical pass. Let c' =R2(a ', b') denote the quantized message with the

same alphabet as a' and b', where , b') could be any of the pair-wise operations

Under the special case of c' = a'+b', the pmf pc' is exactly the convolution summation

of pa' and pb' .

For the horizontal pass, apply equation (4.15) recursively to get pξ' . For the

vertical pass, first find the pmf p(via multiple convolutions, then merge the bins

exceeding the dynamic range into the boundary bin as follows,

4.2.1.2 Procedure for Max-Log-MAP decoding. The general procedure

described above applies to Log-MAP and Max-Log-MAP decoding. To implement

it, the horizontal pass must be treated as nested pair-wise operations. For Max-Log-

MAP decoding, the pmf of e' in the horizontal pass could be derived in a. more straight

53

forward way. Similarly to the procedure for continuous alphabet in Section 3.4.2, the

pmf of e' is calculated by differentiation.

Define the cumulative mass function (cmf) as,

where k corresponds to quantization levels k = 0, +1, +2, • • • , ±(2q -1 — 1). The pmf

is found by taking differentiation,

They are set to 0 for any k out of the region. Then the cmf Fe' is numerically

calculated as functions of 0 + and 0_. For k < 0,

54

Combining the above two equations, together with the case for k = 0, it is clear that,

Following equations (4.19),(4.22) and (4.18), the pmf of 	 which is the output

of the horizontal pass, could be computed. The procedure for the vertical pass is

exactly the same as the one in Section 4.2.1.1.

4.2.2 Numerical Results

Figure 4.1 (a) displays the capacities γb*(q) versus dynamic range V im under Log-

MAP decoding, where q = 4, 5, 6, 8. Generally, a lower quantization resolution q

renders higher threshold 7b , which means decreased decoding capacity. The higher

the quantizer resolution q, the less sensitive 76 is to the dynamic range V im . That

is, dynamic range tends to make little impact on -y b* under higher q, say q = 8.

In contrast, under q = 4, dynamic range V im must be chosen carefully in order to

maximize the capacity. The minimum threshold value under the 8-bit quantization

scheme is about 1.11 dB. It is virtually the same as what can be achieved under

infinite precision [34, 43_. When the quantization resolution is reduced to 4 bits, it is

still possible to achieve a minimum threshold value as low as 1.24 dB. This implies

that under infinite code length, quantized implementation with only 4 bits might

perform very well, given that the dynamic range is properly chosen.

The threshold γb* under Max-Log-MAP decoding is shown in Figure 4.1 (b).

Note that the decoding input is y n instead of l yn . It is different from Log-MAP

decoding in that the optimum dynamic range is around 1.3 for any q considered

and the minimum threshold derived is about 1.6 dB. This means that the capacity

is maximized if dynamic range V im is set to 1.3. Like the Log-MAP decoding, the

performance threshold 7r, depends more on dynamic range Vim, as the quantization

resolution q decreases. For q = 8, the line is rather smooth in the range V im > 1.5

Figure 4.1 Threshold γb*(q) for (3,6) LDPC code under AWGN channel

55

56

and shows a threshold of about 1.7 dB. a penalty of merely 0.1 dB over the lowest

threshold. For the case of q = 4, -4* goes up steeply as Vlim increases from 1.3. In

summary, in order to maximize the decoding capacity in low resolution quantized

decoders, dynamic range I i m must be chosen carefully.

4.3 Clipping Effects

It is shown, in the last section, that dynamic range plays an important role in

maximizing the decoding capacity when q = 4 or 5. However, it is not clear how

dynamic range affects BER performance for LDPC codes with practical length. In

this section, general unquantized Log-MAP decoder is investigated. To emphasize

the fact that is an important design parameter for general iterative decoder, the

term clipping limit is used instead of the term dynamic range.

As a matter of fact, the selection of clipping limit greatly influences the

decoding performance of LDPC codes. Unlike turbo code, where generally no clipping

operation is imposed on extrinsic information, LDPC decoder must be given a proper

saturation point in order to yield good performance. Previous investigations on

LDPC codes always used a good clipping limit for the decoder. However, this point

has never been addressed in research papers.

The motivations for this study are summarized as follows. First, the different

convergence behaviors of the density evolution procedure under different clipping

limits give a better explanation of the role of clipping limit in a practical LDPC

decoder. Second, quantization operation Q(.) could be viewed as a combination of

two operations, clipping and discretization. It is natural to first investigate clipping

effects. Third, the study of clipping effects would provide theoretical explanations

on dynamic range selection.

57

Figure 4.2 Convergence behavior predicted by density evolution

4.3.1 Convergence Speed

For infinite precision iterative LDPC decoder, increasing the clipping limit yields a

constant decoding capacity. However, the convergence speed depends on the clipping

limit. In fact, density evolution is also a power tool in describing the expected BER

through decoding iterations. Set the E b /No to a certain value, bit error rate at

decoding iteration i, denoted as p (ei) , is found out by equation (3.42). In an infinite

(i)precision decoder, I), depends cn	 and Eb /No . The basic conclusion from density

evolution is,

means that no matter what the 	 is set to, say 5, 25 or 100, the BER pe(i) would

eventually converge to 0, given that Eb /No > 1.1 dB.

However,	 does affect the convergence speed of Pe , as shown in Figure 4.2.

The dashed lines represent pe
(
i) with	 set to 5. The solid lines correspond to

= 25. The dash-dot lines correspond to Vl1im = 100. The p e(i) associated with

58

iterations i = 2, 6, 10, 14, 18, 25, 35, 48 are displayed in the Figure 4.2. It is quite clear

that a larger number of iterations is required for pe to converge below a certain value

under lower dynamic range. That is, the lower the clipping limit Vi i ,„ the slower

the the convergence of the decoder. For = 25 and Vim = 100, the convergence

speeds are almost the same, such that the dash-dot lines overlap with the dashed

lines.

4.3.2 Clipping Effects in Practical Decoders

Suppose that an LDPC code is of infinite length such that the cycle length is large

enough. In this case, pe(i) computed by the density evolution procedure represents

the exact BER convergence process. Clipping only affects the convergence speed.

Eventually, p(2) would approach zero provided that Eb /No > 1.1 dB. However,

practical LDPC codes are of limited code length. The convergence behavior is

expected to be the same as that predicted by density evolution only in the initial 1

iterations, if the graphical model defined by the code contains no loops of length up

to 2/. In order to find out the impact of cycles under different dynamic range V im ,

simulations are carried out on two (3,6) LDPC codes with the size of 1008/2016 and

10080/20160 respectively.

Figure 4.3 compares the convergence processes of actual LDPC decoding with

that of density evolution. The BER curves of iteration 2, 6, 10, 14, 25, 48 and

200 are plotted in the figure. The bit error rates in the first several iterations are

well predicted by density evolution, as expected. An apparent difference between

1008/2016 code and 10080/20160 code is, in the former the BER curve diverges from

that of density evolution at iteration 10, while in the latter, divergence occurs at as

late as iteration 25. In longer codes, the average loop length is longer such that cycle

effects occur in later iterations. The longer the code length, the steeper the final

BER curve is.

Figure 4.3 Convergence process of practical LDPC decoder:bit error rates

59

60

Figure 4.4 Convergence process of practical LDPC decoder: block error rates

61

A proper clipping limit is a must in designing the LDPC decoder. Clipping

limits which are too high or too low would result in severe BER performance degra-

dation. Since the decoding proceeds block by block, the block error rates with

respect to decoding iterations 2, 6, 10, 14, 18, 25, 35, 48 and 200 are compared in

Figure 4.4. Clearly, the decoder with clipping limitVlim= 25 outperforms the other

two decoders.

If the clipping limit is too low, say Vlim = 5, the bit error rate decreases slowly

through iterations, as shown in Figure 4.3. Cycle effects occur when bit error rate is

still relatively high. In addition, the low clipping limit makes it difficult to correct

some erroneous bits in following iterations. Therefore, the block error rate encounters

an error floor at about 10'. On average, each erroneous block only contains 2-4

flipped bits at the error floor, but these errors could no longer be corrected due to

the low clipping limit.

If the clipping limit is too high, say Vl im = 100, the block error rate converges

in the same way as that of decoder with = 25 up to iteration 14. After that,

some erroneous blocks converge in the wrong direction such that the bit error rate

could be hardly improved or could even rises up through iterations. High clipping

limit is even more detrimental at higher Eb /No , due to the severe dependency among

extrinsic information associated with different bits, which i5 revealed in Section 6.2.1.

Quite different from the case with V im = 5, almost all bits are flipped in an erroneous

block when error floor is reached.

If the clipping limit Il i , is set to +cc, that is, no clipping operation is imposed,

the BER performance would be even worse than that of V lim = 100. Therefore, it is

reasonable to draw the following conclusion, that clipping is indispensable in LDPC

decoder. Moreover, the clipping limit must be chosen carefully.

To the author's knowledge, iterative decoding for turbo codes generally does not

require any clipping operation, though range-limiting does yield a slight improvement

62

on BER performance 44. Note that LDPC decoder and turbo decoder are all based

on belief propagation. However, the value of extrinsic information rises up faster

in LDPC code. Theoretically speaking, in turbo code, soft input associated with

every coded bit is involved in generating extrinsic information (that is the forward-

backward algorithm). In contrast, for LDPC codes, extrinsic information is extracted

only from those soft inputs associated with the same parity check node. Intuitively,

turbo decoding is more stable.

4.4 Quantization Effects

The threshold derived through density evolution represents the pinch-off channel

parameter for the infinite code length. It is shown in Section 4.2, that the capacity

of quantized LDPC decoder depends on the dynamic range Li am . Certain low dynamic

ranges offer high capacity under low quantization resolution. However, as indicated

in Section 4.3, for LDPC codes of practical length, the dynamic range V lim offering

maximal decoding capacity is not preferable because the corresponding decoder

would suffer severe error floor. Therefore, choosing the dynamic range is an important

issue in designing a quantized decoder.

In this section, first, the issue of choosing the dynamic range is addressed.

Then, quantization loss is evaluated. In all simulations, a 1008/2016 regular (3,6)

LDPC code is assumed.

4.4.1 Dynamic Range Selection

4.4.1.1 Infinite precision. Dynamic range Vlim needs to be chosen carefully, even

in the case of no quantization. Most of the previous work on LDPC codes assumed

Vim to be around 25. This value is used as the high-end dynamic range to compare

with other possible choices suggested by the density evolution.

63

Figure 4.5 shows the influence of Vl im on block and bit error rates. Dashed

lines represent block error rates, while solid lines represent BER. Under the Log-

MAP decoding, a low dynamic range tends to yield a higher error floor, especially

on the block error rate. However, concerning the BER above 10', V lim = 8 yields a

performance almost as good as Vlim = 25.

The Max-Log-MAP decoder suffers similar error floor on block error rates, if

the dynamic range is low. However, for the region with BER above 10 -6 , the scheme

with ti l im = 1.3 outperforms the one with V im = 25 and yields a gain of 0.1 dB on

Eb/No.

4.4.1.2 Quantized implementation. Figure 4.6 displays the influence of

dynamic range in quantized schemes with q = 4. Similarly, dashed lines represent

block error rates, while solid lines represent BER. The error floor is very similar to

the that of unquantized schemes. This implies that error floor itself has nothing

to do with the quantization operation, rather it should be connected with the low

clipping limit.

For the Log-MAP algorithm, the capacity obtained through the density

evolution suggests that for q = 4 schemes, Viim = 5 is the optimum dynamic range

and Viim = 8 would suffer a penalty of 0.1 dB, while Vl im = 10 would suffer a further

penalty of 0.6 dB. The simulation results reflect this point for BER less than 10 -4 .

However, the bit error rate curves of -Vim, = 5 and Vl im = 8 intersect with each other

at Eb /No = 2.3. In order to achieve BER below 10 -6 , Vlim = 8 is preferable.

Similarly, in the Max-Log-MAP decoding, lower dynamic range offers better

performance under relatively low Eb /No. = 1.3, the optimum dynamic range

suggested by density evolution, outperforms Viim = 3 by about 0.2 dB at BER of

64

Figure 4.5 Effects of dynamic range 	 on decoding errors (infinite precision)

Figure 4.6 Effects of dynamic range Vlim on decoding errors (4-bit quantization

65

66

It is concluded that the threshold derived through the density evolution

technique could be used as a reference in selecting the dynamic range for short

LDPC code. However, the error floor effects due to low dynamic range must be

taken into consideration, especially in short LDPC codes. The selection of dynamic

range depends on the specific requirements of transmission quality, as well as time

code length.

4.4.2 Quantization Loss

The Eb /No penalty due to the quantization is evaluated under a fixed dynamic range.

It is clear that the dynamic range V lim plays an important role in the quantized

schemes. Some of the previous work _41, 44_ assumed different Vl im for the quantized

and unquantized schemes. Such comparisons are somehow unfair.

Figure 4.7 highlights the quantization effects in the Log-MAP decoding with

Vlim = 8. In order to achieve a BER of 10', q = 4 quantization only requires about

0.2 dB higher E b /No than the infinite precision scheme. For q = 5, the gap is reduced

to less than 0.1 dB.

An earlier research assumed to be about 14 for q = 4 and found a penalty

of up to 0.8 dB as well as a high error floor [41]. In contrast, this study reveals

that the penalty could be significantly reduced to merely 0.2 dB by adopting a lower

dynamic range.

Figure 4.8 displays the quantization effects under Max-Log-MAP decoding for

= 1.3. The gaps between quantized and infinite precision schemes are even

smaller than that of Log-MAP decoding. The penalty of q = 4 quantization over

infinite precision is merely 0.1 dB.

Throughout the simulations, all errors made are detectable. That is, the

decoder never converges to an incorrect but valid codeword. Generally, iterative

Figure 4.7 Quantization loss in Log-MAP decoding

67

Figure 4.8 Quantization loss in Max-Log-MAP decoding

68

69

decoder works to correct errors, such as turbo decoder. For LDPC codes, those

erroneous blocks beyond correction could be detected.

Discretized decoding avoids complicated computations by using a lookup table.

For a quantization scheme of q = 4, the size of the table is only 15 x 15. This study

shows that the price is remarkably small, only 0.1-0.2 dB higher Eb /No . It is found

that the decoding model under consideration is very simple, with identical internal

and external precision. Further optimizations are possible.

4.5 Summary

In this chapter, a systematic investigation on the design and analysis of the quantized

decoder for LDPC codes is presented. The capacity of quantized LDPC decoder

is numerically computed using density evolution. In addition, clipping effects and

quantization effects are discussed. In brief, the following conclusions are drawn:

1. The key point in designing a quantized LDPC decoder is to pick a proper

dynamic range Vim. In choosing the dynamic range, two issues must be taken

into consideration, theoretical capacity and clipping effects.

2. Unlike turbo code, where clipping operation is not required in the iterative

decoding algorithm, LDPC code requires a carefully-chosen clipping limit in

order to get good BER performance.

3. With an appropriate dynamic range, a 4-bit quantized scheme needs only 0.1-

0.2 dB higher Eb /No in order to achieve the same level of BER as the infinite

precision implementation. A 4-bit quantized implementation implies that every

quantity involved in the decoding process is represented by only 15 levels. The

computations could be carried out by looking up a 15 x 15 table. The price is

merely 0.2 dB extra Eb /No . This is quite an encouraging result for the practical

fixed-point implementations.

70

4. Message-passing decoding for LDPC codes is verifiable in the sense that it has

never been found to converge to an incorrect but valid codeword [6]. It only

makes detectable errors. This wonderful property is preserved in the quantized

decoding.

CHAPTER 5

LOW-DENSITY PARITY-CHECK CODE: SENSITIVITY TO SNR
MISMATCH

Iterative decoding of low-density parity-check (LDPC) codes, which normally uses

the maximum a posteriori (MAP) algorithm to estimate a posteriori probabilities,

requires knowledge of signal-to-noise ratio (SNR) of the channel. In practical imple-

mentations, these statistics are usually estimated from raw channel measurements. It

is not known how sensitive decoding error rate is to mismatch of channel SNR. In this

chapter, the performance of iterative LDPC decoder in presence of SNR mismatch

is investigated.

Theoretically speaking, it is necessary to estimate the SNR when using a MAP

constituent decoder in any concatenated coding schemes including the well known

turbo code. For turbo codes, the effects of an SNR mismatch on the bit error rate

have been intensively investigated for additive white Gaussian noise (AWGN) channel

and Rayleigh fading channels j45, 46, 47_ . Some channel estimators for turbo codes

are addressed by Summers and Valenti P45, 48] and they can be directly used in the

context of LDPC codes. The question is, for LDPC codes, how much SNR mismatch

can be tolerated? To the author's knowledge, there have been no papers published

on this.

Conventional studies on SNR mismatch are mainly based on simulation results.

In this research, the theoretical decoding capacity under a fixed level of channel SNR

offset is computed using density evolution, as discussed in Section 5.1. Section 5.2

focuses on the effects of SNR mismatch on bit error rate. Some conclusions are given

in Section 5.3.

71

72

5.1 Theoretical Capacity under SNR Offset

In this section, the capacity of Log-MAP decoding under a fixed SNR offset is

investigated. This represents the case where the estimated channel SNR contains

a constant bias.

5.1.1 System Model

Assume that binary phase-shift-keying (BPSK) transmission of coded bits is

performed over AWGN channel. Under coherent demodulation along with perfect

synchronization, the received data can be represented by

where xn, E {0, 1} is the coded bit, 7/, is a Gaussian random variable having zero

mean and variance a 2 = N0 /2, and the two-sided noise spectral density of the channel

noise process is N0 /2 W/Hz. The symbol energy Es is related to the energy per

information bit by Es = Eb R, where R is the code rate. Following the notation

used in the previous chapters, the normalized quantity yn = rn I N/E, is used as the

channel value.

As indicated in Section 3.1.2, Log-MAP algorithm requires a channel estimation

_Lich
2 /12 I 0_2 4E81 No to supply the proper combination of prior bit statistic in the

initialization and vertical pass. Overstating L eh has the qualitative effect of imbuing

the channel measurements with more value than they deserve, while understating

L ch uses the a priori information about bits in too strong a manner.

Suppose that E5 is known and the noise level N0 is to be estimated as a channel

parameter. Denote the estimated channel SNR in dB as,

where ES /N0 is the actual channel SNR and (Es /N0)°, the channel SNR offset.

As illustrated in Section 3.4.1, Max-Log-MAP decoding does not require

channel estimation. The performance of this suboptimal algorithm serves as a

73

bench mark to demonstrate to what extent the SNR mismatch affects the Log-MAP

decoding.

5.1.2 Theoretical Capacity

Throughout this study, a rate 1/2 regular (3,6) LDPC code is assumed. Set the

decoder input as 4((E s /No) + (Es/N0)off)yn. Follow the density evolution procedure

and the minimum Eb /No to achieve error free decoding is obtained as a threshold

γb*((Es/No)off). In other words, the threshold γb* represents the capacity of the

iterative decoder under infinite code length.

5.1.2.1 Infinite Precision. The capacity -y under (Es /N0)o ff ranging from -3 dB

to 3 dB is reported in Figure 5.1. The threshold γb* reaches the lowest point when

there is no SNR offset, as expected. A mismatch of —1 to dB renders about 0.1

dB Eb /No penalty. That is, under infinite code length, only 0.1 dB extra E b /No is

required to achieve error free transmission due to the ±1 dB gap between estimated

and actual channel SNR. Notice that overestimation of SNR is less detrimental than

underestimation. Log-MAP decoding outperforms Max-Log-MAP decoding unless

the channel SNR is underestimated by more than 2.25 dB.

5.1.2.2 Finite Precision Decoding. In finite precision implementations,

especially with low quantization resolutions, the threshold γb* also depends on

the dynamic range Vi m , as detailed in Chapter 4. Therefore, the robustness of

quantized Log-MAP decoder to SNR mismatch must be investigated in the context

of design parameters q and V im .

4-bit and 5-bit quantized decoders are used as examples. Two typical dynamic

ranges Vlim = 5 and Vim-, = 8, which were investigated in Chapter 4, are taken into

consideration. As for the Max-Log-MAP decoding scheme, V im = 1.3 is adopted to

74

Figure 5.1 Threshold values versus (E s /N0)o ff (infinite precision)

provide highest capacity. Note that the capacity of Max-Log-MAP is the same for

4-bit and 5-bit schemes, if Vhm is set to 1.3.

Given that Vhm = 5, an SNR mismatch of +1 dB fenders little loss in capacity,

as shown in Figure 5.2 (a). However, an overestimation exceeding 1.0-1.5 dB is

disastrous. Underestimation of 2.0 dB or more would yield a capacity lower than the

suboptimal Max-Log-MAP algorithm.

In contrast, under higher dynamic range = 8, overestimation brings about

little loss in capacity, while underestimation exceeding 1.5 dB (for 4-bit scheme)

or 2.25 dB (for 5-bit scheme) would yield a capacity below that of Max-Log-MAP

algorithm, as shown in Figure 5.2 (b). The 5-bit quantized decoder is less sensitive

to SNR mismatch than the 4-bit scheme. In fact, the 5-bit quantized decoder is as

robust as the infinite precision decoder.

In conclusion, the sensitivity of the quantized decoder to SNR mismatch

depends on resolution q and dynamic range Under very low dynamic ranges,

say Vim = 5, overestimation of SNR might be disastrous. As demonstrated in

Figure 5.2 (b), = 8 is a good dynamic range in general, for 4-bit and 5-bit

75

Figure 5.2 Threshold values versus (Es /No)o ff (4-bit and 5-bit quantized implemen-
tation)

Figure 5.3 Simulation results in comparison with theoretical capacity

quantized Log-MAP decoders. Actually, there is no obvious difference in sensitivity

to SNR mismatch between (q, 17 ;m) = (5, 8) quantized decoder and infinite precision

decoder.

5.2 Simulation Studies

The theoretical thresholds in Section 5.1.2 are obtained assuming infinite code length

and cycle-free underlying graphical model. However, practical LDPC codes are of

limited code length and contain cycles in the graphical model. It is necessary to

carry out simulation studies to find out the effects of SNR mismatch in the context

of relatively short code length. Actually, this is the first time that density evolution

is used in the investigation of SNR mismatch. Therefore, another purpose for

simulation studies is to confirm the effectiveness of the density evolution procedure.

BER performances under fixed SNR offset and fixed Eb /No are discussed below.

5.2.1 Fixed Channel SNR Offset

Figure 5.3 shows the simulation results of 10080/20160 regular (3,6) LDPC code, a

relatively long code, with fixed SNR offset of 0 dB, 1 dB, —2 dB and —3 dB. The

Figure 5.4 BER performance under fixed (Es/No)off

vertical dashed lines represent theoretical capacities obtained using density evolution.

The thresholds γb*((Es/N0)off) well predict the E b /No penalty due to channel SNR

offset.

Figure 5.4 shows the simulation results of 1008/2016 regular (3,6) LDPC code,

a shorter code, with fixed SNR offset of 0 dB, 1 dB, —1 dB, —2 dB and —3 dB.

The performance of Max-Log-MAP decoding is drawn in dashed line for comparison.

First, it is clear that Eb /No penalty due to SNR offset is not as big as that of longer

code. This implies that shorter LDPC code is less sensitive to SNR mismatch.

This point is also supported by simulations on several fixed Eb /No , as shown below.

Second, underestimation within 1dB might even improve BER performance in the

region of higher E b /No .

5.2.2 Fixed Eb /No

Figure 5.5 shows how mismatched SNR level affects BER performance when Eb /No

is fixed. The Eb /No under consideration correspond approximately to BER of 10 -3 ,

10 -4 and 10 -5 . For 1008/2016 LDPC code, Eb /No of 1.7 dB, 1.9 dB and 2.1 dB are

considered. The performance of Max-Log-MAP decoding is shown in dashed lines

(b) 10080/20160 regular (3,6) LDPC code

Figure 5.5 BER versus channel SNR offset for some fixed actual Eb/No

78

79

for comparison. For 10080/20160 LDPC code, Eb /No of 1.3 dB, 1.36 dB and 1.4 dB

are considered.

Note that in short LDPC code. minimum BER is not achieved under exact

channel SNR estimation. This effect, however, occurs only for the short code length

under consideration. For long codes, it is possible to prove, using density evolution,

that the minimum will indeed be obtained at 0 dB offset. The simulation results

confirm that longer LDPC code is more sensitive to SNR mismatch. The performance

of Max-Log-MAP decoding is comparable to that of Log-MAP only in short LDPC

codes. Generally, it is not difficult to design a channel estimator offering an SNR

offset with —3 < (Eb /N0)off < 3 in dB [45]. Therefore, when considering the BER

performance, Log-MAP decoding is a better choice.

5.3 Summary

in this chapter, the sensitivity of Log-MAP LDPC decoder to channel SNR mismatch

is investigated, on AWGN channel. It is found that:

1. As a tool to compute the decoding capacity of LDPC codes under fixed

SNR offset, the density evolution procedure works very well. The theoretical

thresholds obtained well predict the pinch-off Eb /No in presence of channel

SNR offset.

2. Log-MAP LDPC decoder would be extremely sensitive to SNR mismatch, if

the dynamic range is too low, say Vlim = 5. Considering the quantization effects

and robustness to SNR offset, the dynamic range of V im = 8 is a good choice

for 4-bit or 5-bit quantized decoders.

3. The amount of SNR offset that can be tolerated depends on the code length.

Generally, shorter LDPC code is less sensitive to SNR mismatch. Longer LDPC

80

code requires more accurate channel estimation. This conclusion is the same

as that for turbo code.

4. Although turbo codes and LDPC codes share similar elegant Log-MAP

decoding algorithms, some difference is observed concerning the robustness to

SNR mismatch. For turbo code of block length 600, the gap between Log-MAP

and Max-Log-MAP decoding eventually disappears when BER drops below

10 -5 [46_. Therefore, from a practical point of view, Max-Log-MAP decoding

is strongly recommended to eliminate the requirement of SNR estimation.

For LDPC codes, simulations were carried out on even shorter code such as

252/504. The gap between Log-MAP and Max-Log-MAP remains significant.

Therefore, to achieve good BER performance, using Log-MAP decoder with a

good SNR estimator is recommended.

CHAPTER 6

ITERATIVE DECODING OF PRODUCT CODE

In this chapter, two issues on iterative decoding of product code are investigated.

One is, improving BER performance by mitigating cycle effects. The other is,

parallel decoding structure. Traditional iterative decoding algorithm strictly follows

Pearl's belief propagation procedure. Satisfying BER performance has been achieved.

However, the performance could be further improved by scaling the extrinsic infor-

mation, as shown in Section 6.2. In the original SISO iterative decoder for turbo code

and product code, constituent decoders are activated in serial mode. Considering

the fact that in product code the component codes in each dimension are equally

positioned, parallel, decoding should be a conceptually better choice. The decoder

structure, BER performance and convergence speed of parallel and serial decoding

are compared in Section 6.4.

6.1 Product Code

Product code was introduced in as early as 1954 by Elias _12]. It is based on simple

and short linear block code. Its large minimum Hamming distance promises an

excellent BER performance under maximum likelihood (ML) decoding. However,

the huge codeword set makes ML decoding impractical. Elias suggested to decode

product code by sequentially decoding the rows and columns. Unfortunately, the

first iterative decoding algorithms gave rather poor results because they relied on

hard-input/hard-output component decoders _49, 50_ .

Since then, product code had been largely forgotten until 1993 when a break

through was made by applying soft-input/soft-output iterative decoding algorithm to

it 113]. Later Hagenauer unified all existing iterative decoding algorithms for product

code and turbo code into a well-established, harmonized theoretical framework [32].

81

82

Pyndiah proposed a suboptimal low-complexity soft-input/soft-output algorithm for

the component decoder to push product code a step further to practical implemen-

tation [51].

To compare product codes to turbo codes would be as hard as to compare

convolutional code to block code. They have their respective advantages, depending

on applications. Generally, product code has a much lower error floor due to the

large minimum Hamming distance. For higher rate applications, it outperforms

turbo code. It allows for shorter code length and lower complexity decoder. In fact,

commercialized products on product code have been put to market by AHA and

Efficient Channel Coding Inc..

6.1.1 Code Structure

Product code, based on simple and short linear block codes, allows the construction of

fairly long codes with low complexity as well as a simple iterative decoding algorithm.

Here the concept of D-dimensional product code is depicted.

Consider D systematic linear block codes C 1 with parameters (n i , k i , d i) where

k i and d i (i = 1, 2, • • • , D) stand for the codeword length, number of information

bits and minimum Hamming distance respectively. The D-dimensional product code

P = C 1 C 2 • • • C D is constructed in the following steps: 1) place information

bits in a hypercube of dimension D with the length in each dimension defined by

1, k2 , • • , kD; 2) encode the i th dimension with the linear block code C. For i = 1, all

the information bits are encoded. For i > 2, all the information bits together with

previously-obtained parity bits are encoded; 3) Repeat step 2 for i = 1, 2, • • • , D

until the n1 x n 2 x • nD hypercube, which is the array of coded bits, is filled up.

Viewed along the direction associated with any dimension i, the coded bits form

a codeword of C 1 . Figure 6.1 discribes the code construction process for a two-

dimensional product code.

The product code P obtained is a new linear block code with parameters

(n, k, d) where n = j LD n i , k = fr 1 k. 	 d = j	 Ii i di. The new minimal

Hamming distance d increases rapidly as the number of dimension increases.

Product code with check-on-check is sometimes named serially concatenated

code, for a component encoder takes in both parity bits and systematic bits from the

previous encoding stage. However, the order of component encoders does not affect

the final coding results. The D constituent encoders are equally positioned. From

this point of view, product code resembles PCCC except that the component codes

are linear block code and the interleaver is non-random.

In product codes, each row/column of coded bits is constrained by a short linear

block code. The graphical model for Hamming (7,4) x (7,4) two dimensional product

84

code is obtained by applying the polytree model given in Figure 2.5 (b) to each

row/column, as shown in Figure 6.2. Generally, for D-dimensional product code, the

nodes associated with coded bits are denoted by a vector X, and their corresponding

evidence noisy vector as Y. The check nodes for dimension i, where 1 < i < D, are

denoted by vector C. Although each constitute subgraph is a polytree, the whole

network is loopy. Since a uniform block interleaves is embedded, the graphical model

is highly uniform.

6.1.2 Iterative Decoding Based on Belief Propagation

Iterative decoding proceeds by recursively updating the probability estimations for

each coded bits. That's why it was easily connected to Pearl's belief propagation

algorithm [7], a procedure to solve probability inference problem. Iterative decoder

structure was depicted in the original turbo code paper [2_ as serially concatenated

(component) decoders. This decoder structure was later adopted in most turbo and

turbo-like codes.

Hagenauer presented the method of iterative decoding in a unified framework [32

He also tried to define what is meant by the various soft values. When being

connected with the probability inference problem [7], the theoretical framework for

iterative decoding is finally explicit and complete. In this thesis, the author basically

follows Hagenauer's symbol set. However, with the new concepts clarified in the

milestone paper _7], the author is able to re-explain the meaning of soft values.

The objective of iterative decoding is to estimate the probability distribution

of each coded bits, conditioned on the received channel values y and code constrains

C 1 and C 2 , which is similar to the concept of belief Bel(x), as discussed in chapter

2. According to belief propagation, the final Bel(x) is computed by equation (2.23),

as follows,

85

Expressed in log likelihood ratio symbol set, Bel(x) is associated with the final

decision variable L(x),

L ap corresponds to 71-x the a priori probability. Since xn is equally likely to be 0 or 1,

the term L ap is generally omitted. As depicted in equation (2.22), A x (x) represents

information from X's child. It's the probability of the evidence that the children

nodes "know" , conditioned on x. In the graphical model of two-dimensional product

code, any coded bit xn has 3 children, received value y n , code constraint C 1 and C 2 .

Correspondingly, the messages they submit to x n, are denoted as Ly(xn), LeC1 (xn),

and LeC2(xn). Assuming an AWGN channel with noise power N0 /2 = a 2 , L y (x n) is

written as,

Like Ly(xn), extrinsic information LeC1 and LeC2 are also associated with probabilities

conditioned on x, except that they are extracted with respect to code constraint C 1

and C 2 . There have been numerous algorithms for calculating extrinsic information.

They will be detailed in Section 6.1.3.

Node X compute its belief by combining the messages collected from its children

nodes. To proceed with the belief propagation, node X would pass some messages

back to its children. As indicated in equation (2.24), X would pass the new belief

to its child C i but excluding the information from C'. (Since Y is a leaf node

with a single parent, L y (x),the message to X, is unchanged throughout the decoding

process. Therefore the message from X to Y is omitted). Specifically, the information

to C 1 is,

and the information to C 2 is,

(6.5)

Figure 6.3 BP-based iterative decoder structure

This rule prevents the information originating from a node to flow back to it.

Repeat the message passing process. Finally the information from each node would

spread to the whole network. If there is no loop in the graph, exact a posteriori

probability (APP) of X on the evidence could be obtained. For loopy network, the

information would circulate such that the algorithm would not render an exact APP.

However, if the loop girth is long enough and the loop pattern random enough, the

final results are still good enough for making decisions. That is the reason why

long random codes such as LDPC codes and turbo codes yield surprisingly good

performance under BP-based iterative decoding. In product codes, the loops are

short and highly uniform. Some modifications on decoding structure would lead to

better performance. This will be discussed in the next section.

Figure 6.3 shows the decoder structure for two dimensional product code.

The same scheme is also adopted by the original turbo code (parallel concatenated

convolutional code) with two constituent encoders, except that here in product

code, the block interleaver/deinterleaver is embedded. The operations in component

decoder exactly correspond to the calculations in code constraint nodes C. The

decision unit generates the belief L(±) to make hard decisions. This serially

concatenated decoding structure represents one of many possible node activation

schedules, X, C 1 , X, C 2 , X, C 1, An alternative node activation schedule leads to

parallel iterative decoding, which would be detailed in Section 6.4.

86

87

To highlight results from different decoding stages, the extrinsic information

from decoding stage i is denoted as = 0, 1, 2, • • •, omitting the specific column or

row code constraint C, as shown in the figure. The decoder structure fits perfectly

into the belief propagation framework, though the former had been developed

without the knowledge of probability inference. The term BP-based iterative

decoding is used.

6.1.3 Log-MAP Extrinsic Information

Within the decoder structure specified above, there have been numerous algorithms

to compute the extrinsic information. They could be classified into two types,

optimal and suboptimal. The former generates soft output resulting in minimized

bit error rate. The latter usually trades BER performance off for lower complexity.

Suboptimal extrinsic information extraction for block codes is discussed in several

papers[52, 51, 53]. This research focuses on the optimum performance that could he

achieved. Therefore, optimum decoding models are preferable. They are associated

with MAP decoding, as detailed below.

Let x 	 (x 1 , x 2 ,	 , T N), in E GF(2) = { +1, —1}, denotes a codeword of a

linear block code C and x' E GF(2) N a codeword of the corresponding dual code C I .

A symbol-by-symbol maximum a posteriori (MAP) decoder is written as,

which minimizes the bit error probability of sequence x.

Therefore, the key point in MAP decoding is to evaluate the a posteriori proba-

bility p(xn|y). For binary code, the soft output of MAP decoder is usually in the

form of log a posteriori probability ratio,

The MAP decision	 is obtained by	 = sign[L(xn)]

88

There exists several algorithms to calculate L(xn). The well known BCJR

algorithm, originally proposed for convolutional codes, can be applied to any code

where a trellis can be drawn. Linear block code has an irregular trellis as opposed

to the regular trellis. It is possible to compute the extrinsic information using BCJR.

algorithm. However, straightforward implementations using the whole codeword set

C or dual codeword set C ┴ are often more preferable, for the codeword set of short,

block code is not that big.

Let's state the problem of MAP decoding as, finding out the exact a posteriori

probability distribution p(xn| y) for each bit of a codeword, given the probability

p(xn ; yn) = p(yn| x n)Pa (xn), 1 < n < N. Roughly speaking, Pa (xn) represents the

current probability information on x, extracted from sources other than the channel

value yn and code constraint C. Following Hagenauer's notations, the corresponding

log-likelihood ratio is denoted as,

Using the definition of equation (6.7) and the codeword set C. the soft output

is written as,

89

= Ly (xn) + L a (xn) + L e (x n) (6.9)

Note that before the decoding operation, all the available information about xn is

L(xn; yn). With the knowledge of code constraint C, a new term L e(xn) is generated.

It is an estimated reliability value independent of L(xn ;yn). Rather, it utilizes

the code constraint and input values other than L(xn; yn). In the case of multiple

constituent decoders, extrinsic information L e will be used as a priori information for

other decoders. Further examination of the term L e would reveal that it is exactly

equivalent to message passed to parent, that is, λX,Uk of equation (2.25).

Hartmann and Rudolph [54] found another way to calculate the probability

P(xn = +11y) using the codewords of the dual code C'. In coding systems where

the dual code has fewer codewords than the original code C, this implementation is

preferable. Let x' denotes the codeword of dual code C -1- , the soft output is

Equation (6.10) is adopted in the simulations. In either of the two algorithm,

L e (x n) depends on the input vector {L(x j ; yj)} 31Y__ 1,,n, denoted as,

6.2 Scaled Factor Decoding

When extracting the extrinsic information, as depicted in equation (6.9), P a (x) is

assumed to be separable,

90

That is, previous probability estimations on xj and x k are independent for any j k.

This condition equals the cycle-free assumption in Pearl's belief propagation. For

two dimensional product code, the a. priori probability would be independent to each

other only at decoding stage 1 and 2.

Ever since turbo code was proposed, it has been realized that the dependency

of extrinsic information decreases the BER improvement through iterations [32].

However, to the author's knowledge, little has been done on its impact on decoding

results. So far, there has been no measure on the degree of dependency among

extrinsic information. In this study, linear correlation coefficients are used to reflect

the dependency.

Recall that in previous chapters, the decoder for LDPC cede was viewed as a

signal processing system with Gaussian distributed inputs. Statistical parameters of

extrinsic information, such as SNR, mutual information, were used to describe the

convergence behavior of iterative decoder. The graphical model was assumed to be

cycle-free such that the extrinsic information for each bit were independent. The

results of parameter evolution or density evolution well predict the performance of

long random codes. In contrast, the graphical model of product code contains many

uniform short cycles. The mutual dependency between a priori information L (az) (x i)

and L (az) (xn) must be taken into considerations for any n 1. Linear correlation

coefficient is used to measure dependency.

Studies show that a priori information would be heavily correlated merely after

decoding stage 3. Adding a scaling factor at the initial several stages would mitigate

cycles effects and improve the performance. This modified BP-algorithm is termed

scaled factor decoding(SFD).

91

6.2.1 Statistical Behavior of a Prior Information

6.2.1.1 Dependency Analysis. For the convenience of description, the notations

are changed slightly in this section. Two dimensional coordinate is adopted to

highlight the decoding operations on rows and columns. At decoding stage i, the

input associated with coordinate (1, in) is written as,

The intrinsic information 7 ,,,, = Lch	 is a Gaussian random variable

unchanged throughout decoding stages. Generally, L (az) (37 /0.„), is set to the extrinsic

value extracted from the previous decoder,

Denote the whole set of input channel values as Y = {y /00, where 1 < 1, rn <

N Divide Y into row vectors, Y1 = fy i ,,,j,„N _ I with 1 = 1, 2, • • , N, and column

vectors Ym = 1 ,, 1N_, with m = 1, 2, • • • , N. View the decoder as a non-linear

signal processing system. The a priori information L (o') (x im) relies on the input Y.

At stage 1, L (a,1) (x /0„) = 0. Without losing any generality, suppose that the first

decoding stage deals with columns. Then at stage 2, the a priori information would

depend on column vector,

The a priori information L (2) associated with coded bits of the same column, let's say

L ci (x i.,) and L a (xk ,„,), would be dependent to each other, for they rely on overlapped

information source, {Y1,,Ay/) ,} and {Y!,-„\yon }. However, the next decoding stage

processes information row by row such that only the dependency within the same

row is concerned. L (2) (x / ,,n) and L (2) (x i , m) depend on non-overlapping set of channel

inputs, say {Y 177, \y / ,,,} and {Y ln \y/ ,n} respectively. Therefore, at decoding stage 2,

the independency requirement is still fulfilled.

92

At decoding stage 3, a priori information Lai) (r, 712) is connected with channel

value set Y excluding the row vector

Now the a priori information in the same column, LP) (x ,m) and L (a3) (.27 k ,„,) for any

k, are mutually dependent, since they share some common information source.

L (a,1) (x i ,,) for any i > 4 would rely on the whole input set Y, showing that

information circulate within the loopy graphical model. The dependency among a

priori information becomes more and more severe through decoding stages.

6.2.1.2 Statistical parameters. It's hard to measure the dependency among

a priori information, for the decoder is a non-linear signal processing system. One

simple approach is to view 1, (a2) (.r a random variable and observe the evolution

of its statistical parameters through decoding stages.

Assuming all-zero codeword, L (:) (x i ,„,) could be denoted as L (a2) , for the a

priori information for any coordinate (1 7n) has very similar statistical parameters.

The statistical parameters are estimated by Monte Carlo simulations, where (16, 11) 2

extended Hamming code on AWGN channel is assumed.

The decoder of stage i takes in two random signal for each coordinate, L thy

and L (c,i) . The former is a random variable unchanged throughout the decoding

process. L (ai) is Gaussian-like whose mean and variance depend on i , as illustrated in

Figure 6.4. At stage 2, the extrinsic information L (2) is almost as "powerful" as the

channel value.

To measure the dependency among the a priori information, the linear

correlation coefficient between a certain coordinate and all other coordinates are

estimated. Figure 6.5 shows the correlation coefficients of a priori information from

stage 2 to stage 4 at Eb /No of 2 dB. At decoding stage 2, a priori information in the

same column are strongly correlated, since they are derived from the same column

93

Figure 6.4 Statistical parameters for a priori information in BP-based algorithm.
From left to right: mean , standard deviation a and correlation coefficients.
Dashdot line: random variable L ch y; plus, x-mark, circle and star: decoding stage 2
to 5

Figure 6.5 Correlation plane for a priori information at Eb /No of 2 dB From left
to right: decoding stage 2 to 4

decoder. As predicted in dependency analysis, the information in the same row are

uncorrelated. At decoding stage 3, the correlation surface is lifted to about 0.2. At

decoding stage 4, it is up to 0.7. The surface is almost smooth, showing that they

are equally correlated. The ridge is out of concern since the next decoding step

always proceeds along the other direction.

The concerned correlation coefficient for decoding stage 3, 4 and 5 is given in

Figure 6.4. It varies on different Eb/N0 and decoding stages. At high Eb /N0 it is

up to 0.36 merely at stage 3, which means dependency is not negligible. Through

iterations, the linear correlation coefficient goes up first and then drops. Definitely,

the a priori values become more and more dependent. However, after saturation,

some a priori value reaches infinity, the dependency tends to be nonlinear so that

the correlation coefficient decreases.

94

Figure 6.6 Scaled factor decoder structure

6.2.2 Scaled Factor Decoding

Following Pearl's belief propagation procedure, the extrinsic information extracted

from the previous decoder is directly used as a priori probability for the next

decoder, as shown in equation (6.14). Such algorithms are adopted by most iterative

decoders _32].

Definitely, ignoring the dependency or equivalently the loops would result in a

degraded BER performance. For product code, the dependency among a priori values

should not be neglected because it is rather severe at as early as decoding stage 3.

The initial several decoding stages are crucial since they determine the approximate

convergence direction. It is proposed to pass scaled extrinsic information to the next

decoding stage,

where ,3 (1) is the scaling coefficient for decoding stage i and 0 <= β(i) <=1. It is termed

scaled factor decoding (SFD). The decoder structure is displayed in Figure 6.6.

6.2.3 Simulation Results

The evolution of scaling coefficient is set as follows, unless otherwise specified,

95

Figure 6.7 Statistical parameters of a priori information in SFD. From left to right:
mean ,u, standard deviation a and correlation coefficients. Dashdot line: random
variable y'; plus, x-mark, circle, star,square, diamond and triangle: decoding stage 2
to 8

6.2.3.1 Statistical parameters. Comparing with that of BP-based algorithm,the

mean value and standard deviation increases much more slowly, as shown in

Figure 6.7. The correlation coefficient goes up gradually and reach saturation

at decoding stage 7. In contrast, for BP-based algorithm, it reaches saturation at

stage 3. The dependency among input L-values at the first several decoding stages

is very low.

6.2.3.2 BER performance. The simulated BER performance is given in

Figure 6.8. The solid line plus diamonds represents scaled factor decoding. The

solid line with x-marks, BP-based algorithm. The BER improvement increases as

Eb /N0 goes up. To achieve a BER of 10 -5 , scaled factor decoding requires Eb /N0 of

0.35 dB less.

It is found that as long as scaling is introduced before saturation, improvement

is always guaranteed. However, a set of "good" coefficients for a certain range of

Eb /N0 might be "not-so-good" for other Eb /N0 . It is highly probable that a "

good-for-all-SNR" scaling factor sequence does not exist.

Basically, the conclusion is two-folded: uniform short cycles degrade the BER

performance of BP-based algorithm. SFD is quite effective in mitigating the impact

of short cycles. Although the simulations are based on two dimensional Hamming

96

Figure 6.8 BER performance. Circle: BP-based algorithm; diamond: scaled factor
decoding;

product code, SFD could be extended to product codes with higher dimension and

any other component code. Section 6.4 gives results on three dimensional product

code and again BER performance improvement is observed.

Improving performance by scaling the extrinsic information is not unique to

Log-MAP decoding or any specific component code. Other researchers have applied

it to product codes with BCH code [51] or single parity code [55_ as component code.

The decoding algorithm for component decoders could be suboptimal. This work is

unique in that it is carried out in the theoretical framework of belief propagation. It

is revealed that the improvement is due to the uniform short cycles in the underlying

graphical model. This explains why scaling brings about no improvement in LDPC

code and turbo code.

97

6.3 Discussion on SFD: How Good It Is

At this point, one interesting question is, how far away it is from the optimum results,

for example, in maximum likelihood (ML) sense?

6.3.1 Simulated Lower Bound

One easy way to answer this question is to compare the decoding results to some

upper bounds. However, current upper bounds are so loose that they give block

error rate higher than the BP-based iterative decoding results. This means that

the existing upper bound could not be used to demonstrate how close the iterative

decoding algorithms are to optimum results.

Lucas proposed a simulated soft decision maximum likelihood (SDML) [52_.

The main idea is to estimate the SDML performance via Monte Carlo simulations.

Suppose all-zero codeword is transmitted. If the received sequence y is more close to

a. non-zero codeword in Euclidean distance, an error occurs. Repeat the experiment

for N times and count the number of errors and denote is as n,. If N is big enough,

n e /N approaches the block error rate under ML decoding. However, the problem is,

the codeword set is so big that exhaustive search for closest codeword is impractical.

Lucas only considers the received sequence that is not correctly decoded by the

decoderIn [52 . . The search scope only includes two codewords, all-zero and the

estimated codeword. The error count derived, denoted as ne', is less than n e , and a

simulated SDML lower bound is obtained as ne'/N.

The simulated SDML lower bound relies on the specific decoder. Generally, it

is still not tight enough to evaluate decoding algorithm. A tighter simulated lower

bound is proposed. It is based on exhaustive search for ML solutions. The searching

scope is restricted to low-weight codewords. This simple algorithm renders a rather

tight bound at high Eb /N0 , since a real ML decoder's output falls within low-weight

codewords scope with very high probability. The procedure is as follows: 1) search

98

the code set C for low weight codeword. If the Hamming weight is less than a certain

threshold, include this codeword in the subset Cc , Cc C C. 2) Assuming all-zero

codeword transmitted and sequence y received, search in CL for the codeword closest

to y,

If X 0, count it as an error event. 3) Repeat step 2 for N times and get the number

of error event ne'. Use ne'/N as a simulated lower bound for block error probability.

6.3.2 Performance Comparisons

The decoding of two-dimensional Hamming (7,4) check-on-check product code is

simulated. The non-zero codeword weight ranges from 9 to 49. The decoding

performance of SFD and BP-based algorithm are compared in Figure 6.9 (a). The

lower bound is derived through searching the low weight code set CE, which includes

all the codewords whose Hamming weight is below 17.

At higher Eb /N0 , the gap between SFD and simulated lower bound is extremely

small. This again demonstrates the powerfulness of SFD. It is addressed that the

simulated lower bound is tighter at high Eb /N0 because the received sequence is less

likely to fall near a high-weight codeword.

For two dimensional (16,11) extended Hamming code, which was used for

simulations in the previous section, the codeword set is much bigger. The simulated

ML decoding could only use the subset with minimum Hamming weight, which is

16. This lower bound derived is much looser. However, the results in Figure 6.9 (b)

still confirms that SFD offers near-optimum performance.

In iterative decoding process, the MAP component decoders work in turns

to minimize the bit error rate. If the underlying graph is cycle-free, MAP results

could be achieved. SFD was proposed to mitigate the impact of short cycles. It is

quite impressing that a result approaching the ML performance is obtained, which

99

(b) (16,11) extended Hamming code

Figure 6.9 Block error rates comparison

100

minimizes the block error rate. The result strongly implies that as a modified version

of BP-based algorithm, SFD offers near optimum performance, especially under high

Eb /N0 .

6.4 Parallel Iterative Decoding

Like turbo code, the first SISO iterative decoder for product code activates the

constituent decoders in serial mode. The industry implementations on software

or hardware also follow this structure. Later it is found that traditional iterative

decoding is an instance of Pearl's belief propagation on graphical model. There

exists more than one node activation mode in belief propagation. Correspondingly,

alternative decoder structure should also work well. So far, studies on generalized

turbo decoding have been focused on parallel concatenated convolutional code.

(PCCC). In _30_, three alternative node activation schedules other than traditional

turbo decoding were proposed. Simulations based on PCCC with two constituent

encoders show that they lead to approximately the same residual BER as traditional

turbo decoding algorithm. Parallel iterative decoding was proposed in - 29, 56],

where constituent decoders are activated simultaneously. Some BER performance

improvement was observed on PCCC with three constituent encoders.

In this section, parallel iterative decoding is extended to product code. Given

the parallel encoding structure in PCCC and product code, parallel decoding is

conceptually better in that the constituent decoders for each dimension make equal

contributions to the final decoding results. In addition, parallel processing generally

renders lower latency, at the price of more processors or hardware. The bit error

rate performance of serial and parallel decoding on three dimensional product code

with (16,11) extended Hamming code is compared. Decoding delays are compared

in terms of average decoding stages.

101

6.4.1 Decoder Structure

It is interesting to notice an important principle in Pearl's belief propagation. The

information flowing out of a node will not be passed back to it by its direct parents or

children, as shown in equations (2.25) and (2.24). This principle is well reflected in

traditional iterative decoding. The extrinsic information from a component decoder

always exclude the input portion obtained from the parent, as depicted in equation

(6.9). The a priori information to a component decoder always excludes the infor-

mation extracted from this decoder in previous iteration. If this principle is strictly

followed, Pearl's belief propagation on cycle-free graphical model renders exact a

posteriori probability for each coded bit. In iterative decoding, the graphical model

usually contains cycles. However, satisfying BER performance would he obtained,

as long as the principle is followed.

Take D-dimensional product code as an example. 	 Traditional iterative

decoding represents the node activation schedule of,

Activate all the code constraint nodes simultaneously as,

a fully parallel decoder is obtained.

Let's describe serial and parallel decoding by formulas. In serial decoding,

each decoding stage contains only one component decoder corresponding to certain

component encoder. At decoding stage i, the decoder takes in a channel value Ly (xn)

and a priori log probability ratio of xn , denoted as La (i)(xn), n)1

Generally, La(i)(xn) is associated with extrinsic information derived in the previous

(b) parallel mode

102

Figure 6.10 Parallel and serial decoder structure

103

where L(') is initialized to 0 for i < 0. An example of three dimensional product code

decoder in serial mode is shown in Figure 6.10 (a).

In a fully parallel decoding structure, D component decoders work simulta-

neously at every decoding stage. At decoding stage i, decoder j (1 < j < D) takes

in the a priori log probability ratio Laj(i) and outputs extrinsic information L,

is associated with previous extrinsic information by,

Figure 6.10 (b) shows the parallel decoder structure.

Scaled factor decoding could also be extended to multi-dimension product code.

The a priori information is set to

for parallel decoding, where 3 (1) is the scaling coefficient for decoding stage i and

6.4.2 Simulation Results

Parallel and serial decoding of three dimensional product code, with (16,11) extended

Hamming code for each dimension, are simulated. Both SFD and belief propagation

based algorithm are taken into consideration. Scaling coefficient 3(i) is set to 0.5 for

1 < i < 20; otherwise, OW = 1.

i)

Figure 6.11 BER performance

104

Figure 6.12 Average number of decoding stages

105

BER performance on AWGN channel is given in Figure 6.11. For both

decoding procedures, with and without scaling, parallel decoding offers a slight BER

improvement over traditional serial decoding. Set the stopping criteria as: converge

to a valid codeword or maximum number of decoding cycles is reached. In this

way, the average decoding stages are estimated and shown in Figure 6.12. Parallel

decoder converges faster than serial decoder in terms of decoding stages.

It is noticed that in two dimensional codes, parallel decoding yields no BER

performance improvement for either PCCC or product code. While in three dimen-

sional codes, some improvement is achieved for both PCCC 29, 56] and product code.

It seems that only in three or higher dimensional compound codes would the inherent

bias effect in serial decoding significantly degrades BER performance. Although

parallel decoding can hardly offer any improvement in t o rms of BER performance,

parallelism does reduce decoding delays by 20-30%.

6.5 Summary

In this chapter, the author makes the efforts to depict the iterative decoding of

product code in the framework of belief propagation. The elegant soft-in soft-

out iterative decoding algorithm yields excellent BER performance. However, it

is found that further BER performance improvement is achievable by scaling the

extrinsic information. Parallel decoding, an alternative decoder structure within

the framework of belief propagation, is investigated. The following conclusions are

drawn,

1. The graphical model of product codes contains short uniform cycles. This

makes it somewhat different from LDPC codes and turbo codes, which have

long random cycles. Although BP-based algorithm achieves great success in

decoding product codes, the short uniform cycles have detrimental effects

106

on BER performance because they make the a priori information severely

dependent on each other at very early decoding stages.

2. Scaled factor decoding (SFD) set the a priori information to scaled extrinsic

information, instead of the exact extrinsic information. Simulation results

prove that this simple modification make the a priori information less

dependent on each other. Some improvement on BER performance over the

BP-based algorithm is observed. This means the scaling operation mitigates

the negative impact of uniform short cycles in BP-based decoding.

3. A comparison between simulated lower bound, BP-based decoding and SFD

shows that SFD offers near-optimum performance.

4. Parallel iterative decoding is conceptually better in that the constituent

decoders for each dimension make equal contributions to the final decoding

results. However, the improvement over traditional serial decoding is merely

0.05 dB on Eb /N0 . Indeed the average number of decoding stages is reduced

by 20-30%.

CHAPTER 7

CONCLUSIONS

7.1 Conclusions

Through the studies in Chapters 3, 4 and 5, it is found that the density evolution

procedure is a powerful tool in estimating the capacity of iterative decoding for LDPC

codes. In Chapter 3, the capacity of Max-Log-MAP decoding is derived using density

evolution. Interestingly enough, it is about 0.5-0.6 dB away from that of Log-MAP

decoding, almost the same as the gap in turbo code. In Chapter 4, discretized density

evolution is developed for quantized Log-MAP and Max-Log-MAP decoding. The

theoretical capacities obtained reflect the quantization loss very well. In chapter 5,

density evolution is used in the presence of mismatched channel SNR. Again it works

very well. The theoretical thresholds obtained predict well the E b /N0 penalty due

to mismatched channel SNR.

LDPC codes have certain advantages for implementation, such as fully paral-

lelizable decoder structures. Chapters 4 and 5 deal with two implementation issues,

the influences of quantization and SNR mismatch. It is indicated that the key point

in designing a decoder under low quantization resolution is to pick a proper dynamic

range. The quantization loss of a 4-bit decoder over infinite precision scheme could

be kept remarkably low, if the dynamic range is chosen wisely. This is quite an

encouraging result for practical fixed-point implementations. In general, the amount

of SNR offset that can be tolerated depends on the code length. Longer LDPC

codes require more accurate channel estimations. In turbo code, Max-Log-MAP

decoding is recommended to replace Log-MAP decoding if accurate SNR estimation

is not available. In contrast, for LDPC codes, Log-MAP decoding still outperforms

Max-Log-MAP decoding even if an SNR offset of -2 to +3 dB is involved.

108

Chapter 6 discusses iterative decoding for product codes. Linear correlation

coefficients are used to measure the dependency among extrinsic information. It

is found that for product code, which contains many uniform short cycles in its

graphical model, the extrinsic information (or a priori information, for the next

decoding stage) becomes heavily dependent on each other only after two or three

decoding stages. Scaling the extrinsic information would mitigate the dependency at

early decoding stages and eventually improve BER performance. The modified

algorithm is termed scaled factor decoding (SFD). Compared with BP-based

decoding, SFD requires about 0.3 dB less Eb /N0 to achieve a BER of 10 -5 , in

two and three dimensional product code with (16,11) extended Hamming code as

its component code.

Parallel iterative decoding for product code is also presented in Chapter 6. It

is observed that in three dimensional product code, parallel decoding only brings

about a very slight improvement, say 0.05 dB, over serial decoding, though parallel

decoding is conceptually better than serial decoding. However, parallel decoding

reduces the average number of decoding stages by about 20-30%.

It is known that belief propagation renders optimum decoding results only when

the graphical model is loop-free. In the context of compound codes, such as turbo

code, LDPC code and product code, the graphical models contain many cycles. A

direct application of Pearl's algorithm may work well for some of these codes, such

as turbo code and product code. For LDPC code, a range-limiting operation must

be included in the decoding algorithm. For product code, a scaling operation on

extrinsic information further improves the BER performance. Therefore, scaling and

clipping could be viewed as operations mitigating the negative cycle effects in belief

propagation.

109

7.2 Contributions and Future Work

This dissertation documents the research that has been done to date. In summary,

the following contributions have been made:

1. Performed a thorough survey on the most recent research on capacity of

the iterative decoding algorithm. Two approximate schemes were evaluated,

namely SNR-evolution and mutual information evolution on LDPC code.

Despite the rough assumptions, they offer quite accurate capacity estimation.

2. Derived the procedures for Max-Log-MAP decoding on LDPC code. This

suboptimal algorithm not only reduces the computation burden, but also

eliminates the requirement for SNR estimation.

3. Developed a numerical procedure for density evolution under Max-Log-MAP

decoding. Using this tool, the capacity of LDPC codes on any memoriless

channel could be easily computed.

4. Derived the decoding capacity of LDPC codes under quantized implemen-

tations, The most important design parameter in quantized decoder is the

dynamic range. Simulation results indicate that a 4-bit quantized implemen-

tation only requires 0.1-0.2 dB higher Eb /N0 in order to achieve the same level

of BER as the infinite precision implementation.

5. Investigated the influence of clipping limit on general Log-MAP decoder for

LDPC codes.

6. Investigated the sensitivity of Log-MAP LDPC decoder to channel SNR

mismatch. The theoretical decoding capacity in presence of fixed channel SNR

offset was derived.

110

7. Studied product code as an extreme case of graphical code, which contains

uniform short cycles. Proposed to use linear correlation coefficient to measure

the dependency among extrinsic information.

8. Improved the BP-based decoding algorithm by scaling the extrinsic information

(scaled factor decoding).

9. Studied parallel iterative decoding for product code.

As a new and active research area, iterative decoding deserves much more

research efforts. Further research is suggested as.

1. Quantization issues on turbo codes. Current research is based on simulation

results 44, 57, 58 . Given that density evolution has been extended to turbo

code [59], it would be quite interesting to find out the capacity of quantized

turbo decoders. Note that currently the quantization schemes for turbo code

employ higher dynamic ranges than those that have been suggested for LDPC

code. It would be interesting to investigate if lowering the dynamic range would

bring about any improvements for turbo code.

2. Clipping and scaling operations mitigate the negative cycle effects in LDPC

code and product code, respectively. However, it is not clear if they work for

general graph based codes. Further survey and investigations are suggested.

APPENDIX A

EQUIVALENCE OF SUM-PRODUCT ALGORITHM
AND LOG-MAP ALGORITHM

In this appendix, it will be shown that sum-product algorithm for LDPC code is

identical to Hagenauer's iterative decoding schedule executed in parallel mode, where

the component decoder is nothing else but the optimum "symbol-by-symbol" LOG-

MAP decoder using dual code.

For the convenience of proving, the sum-product algorithm for decoding LDPC

code with parity check matrix H = [H,-„] is repeated as below. Denote the set of

bits n that participate in check m by N(m) {n : Hmn = 1}. Similarly, the set of

checks in which bit Ti participates is denoted as Al (n) = {m : Hmn = 1}. Denote

a set N (rn) with bit n excluded by N(m)\n , and a set 111 (n) with parity check m

excluded by M(n)\m. The sum-product algorithm for LDPC code consists of the

following steps:

• Initialization: The variables	 andand q7,1 are initialized to the values of p °7, and

pn1 respectively.

• Horizontal pass: Run through all the checks m and compute for each n E N(m),

a = O. 1:

where

• Vertical Pass: For each n and m, and for a = 0, 1, update:

where am, is a normalizing parameter such that

111

112

• Decisions: For each bit n and a = 0, 1, update the "pseudo-posterior proba-

bilities"

where αn is chosen such that q 7,° +qn1 --= 1. The decision so far is given by X = [x n :

such that xn = 1 if qn1 > 0.5; otherwise = 0. If X is a valid codeword such

that HX = 0, then the algorithm halts; otherwise, the horizontal and vertical

pass are repeated until some maximal number of iteration is reached without

a valid decoding.

Define the log-likelihood ratio symbol set as follows: intrinsic value I, =A log p4,

a posteriori log-likelihood ratio for making final decisions L(,-,) n,
= log (4, extrinsic(in

information in log measure e„n =A log -1.7 	and the input to check node (mn = log 9- ,P- .-T,
n 	 (11, „

Then the horizontal pass of iteration i in log-likelihood domain could be represented

Similarly, the vertical pass is simply,

and the decision variable,

113

The variable nodes collect extrinsic information from the check nodes and combine

them to prepare for the next decoding iteration. Comparing the horizontal pass with

Hagenauer's equation (13) in his paper [32], it is quite clear that they are exactly

identical. The only difference is that here parallel/distributive decoding procedure

is employed while Hagenauer uses serial decoding fashion.

REFERENCES

1 Shannon, C.E., "A mathematical theory of communication," Bell Sys. Tech. J., 1948.

2 Berrou, C. and Glavieux, A., "Near-optimum error correcting coding and decoding:
Turbo-codes," IEEE Transaction on Communications, vol. 44, pp. 1261-1271,
Dec. 1996.

[3_ Proakis, J.G., Digital Communications. McGraw-Hill, 1995,

4 Gallager, R.G., Low-Density Parity-Check Codes. MIT Press, 1963.

[5] MacKay, D.J.C. and Neal, R.M., "Near shannon limit performance of low density
parity check codes," Electronics Letters, pp. 457-458, Mar. 1997.

[6] MacKay, D.J.C., "Good error-correcting codes based on very sparse matrices," IEEE
Transactions on Information Theory, pp. 399-431, Mar. 1999.

_7] McEliece, R.J., MacKay, D.J.C., and Cheng, J., "Turbo decoding as an instance
of pearl's 'belief propagation' algorithm," IEEE Journal on Selected Areas in
Communications, vol. 16. pp. 140-152, Feb. 1998.

_8] Kschischang, F.R. and Frey, B.J., "Iterative decoding of compound codes by proba-
bility propagation in graphical models," IEEE Journal on Selected Areas in
Communications, vol. 16, pp. 219-230, Feb. 1998.

[9] Richardson, T.J., Shokrollahi, M.A., and Urbanke, R.L., "Design of capacity-
approaching irregular low-density parity-check codes," IEEE Transactions on
Information Theory, pp. 619-637, Feb. 2001.

[10] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., and Spielman, D.A., "Improved
low-density parity-check codes using irregular graphs," IEEE Transactions on
Information Theory, pp. 585-598, Feb. 2001.

_11] Chung, S., "On the design of low-density parity-check codes within 0.0045 db of the
shannon limit," IEEE Communications Letters, Feb. 2001.

_12] Elias, P., "Error-free coding," IRE Trans. Information Theory, vol. 4, pp. 29-37,
Sept. 1954.

13 Lodge, J., Young, R.and Hoeher, P., and Hagenauer, J., "Separable map 'filters' for
the decoding of product and concatenated codes," in International Communi-
cation Conference, 1993.

14 Wei, X. and Akansu, A.N., "Density evolution for low-density parity-check codes
under max-log-map decoding," IEE Electronics Letters, pp. 1225-1226, Aug.
2001.

114

115

[15] Wei, X. and Akansu, A.N., "Quantized decoding for low-density parity-check codes,"
submitted to IEEE Communications Letters.

[16_ Wei, X. and Akansu, A.N., "Decoding capacity of low-density parity-check codes
under snr mismatch," submitted to IEE Electronics Letters.

[17] Wei, X. and Akansu, A.N., "An improved iterative decoding algorithm for turbo
product code," in Proceedings of 38th Allerton Conference on Communi-
cations, Control, and Computing, 2000.

[18] Wei, X. and Akansu, A.N., "Iterative decoding of product code: Correlated extrinsic
information and its impact," in The 35th Annual Conference on Information
Sciences and Systems, 2001.

_19] Wei, X. and Akansu, A.N., "Iterative decoding of product code: approaching ml
performance," in Proceedings of 5th World Multiconference on Systemics, Cyber-
netics and Informatics, 2001.

[20_ Wei, X. and Akansu, A.N., "On parallel iterative decoding of product code," in
Proceedings of IEEE Vehicular Technology Conference, 2001.

[21] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[22] Wu, Y., Design and Implementation of Parallel and Serial Concatenated Convolu-
tional Codes. Ph.D Proposal Report, 1999.

[23] Cover, T. and Thomas, J., Elements of Information Theory. New York: Wiley
Interscience, 1991.

[24] Frey, B.J., Graphical Models for Machine Learning and Digital Communication. MIT
Press, 1998.

[25] Tanner,R.M., "A recursive approach to low complexity codes," IEEE Transactions
on Information Theory, pp. 533-547, Sept. 1981.

[26] Wiberg, N., Codes and Decoding on General Graphs. Linkoping Studies in Science
and Technology Dissertation No. 440, 1996.

27 Kschischang, F.R., Frey, B.J., and Loeliger, H., "Factor graphs and the sum-product
algorithm," IEEE Transactions on Information Theory, pp. 498-519, Feb. 2001.

_281 Lentmaier, M. and Zigangirov, K.S., "On generalized low-density parity-check codes
based on hamming component codes," IEEE Communications Letters, Aug.
1999.

[29_ Kim, S. and Wicker, S.B., "Improved turbo decoding through belief propagation,"
in Proceeding of GLOBECOM, 1999.

116

[30] Meshkat, P. and Villasenor, J.D., "Generalized version of turbo decoding in the
framework of bayesian networks and pearl's belief propagation algorithm," in
International Communication Conference, 1998.

[31_ Yoon, S. and Bar-Ness, Y., "Parallel decoding of turbo codes using blocked belief
propagation algorithm," in Proceedings of 39th Allerton Conference on Commu-
nications, Control, and Computing, 2001.

_32] Hagenauer, J., Offer, E., and Papke, L., "Iterative decoding of binary block and
convolutional codes," IEEE Transactions on Information Theory, pp. 429--445,
Mar. 1996.

[331 Sason, I. and Shamai, S., "Improved upper bounds on the ensemble performance
of ml decoded low density parity check codes," IEEE Communications Letters,
Mar. 2000.

[34j Richardson, T.J. and Urbanke, R.A., "The capacity of low-density parity check codes
under message-passing decoding," IEEE Transactions on Information Theory,
pp. 599-618, Feb. 2001.

[35] Gamal, H.E. and Hammons, A.R.Jr., "Analyzing the turbo decoder using the
gaussian approximation," IEEE Transactions on Information Theory, pp. 671-
686, Feb. 2001.

[36] Chung, S., Richardson, T.J., and Urbanke, R.L., "Analysis of sum-product decoding
of low-density parity-check codes using a gaussian approximation," IEEE Trans-
actions on Information Theory, pp. 657-670, Feb. 2001.

_37] Brink, S.T., "Convergence behavior of iteratively decoded parallel concatenated
codes," IEEE Transaction on Communications, pp. 1727--1737, Oct. 2001.

l38] Ping, L., Chan, S., and Yeung, K.L., "Iterative decoding of multi-dimensional
concatenated single parity check codes," in International Communication
Conference, 1998.

_39] Fossorier, M.P.C., Mihaljevic, M., and Imai, H., "Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation," IEEE
Transaction on Communications, May 1999.

_40] Leon-Garcia, A., Probability and Random Processes for Electrical Engineering.
Addison Wesley, 1994.

_41] Ping, L. and Leung, WA., "Decoding low density parity check codes with finite
quantization bits," IEEE Communications Letters, pp. 62-64, Feb. 2000.

[42] Wu, Y. and Woerner, B.D., "The influence of quantization and fixed point arithmetic
upon the ber performance of turbo codes," in Proceedings of IEEE Vehicular
Technology Conference, 1999.

117

43 Chung, S., On the Construction of Some Capacity-Approaching Coding Schemes.
Ph.D Dissertation, 2000.

_44: Michel, H., Worm, A., and Wehn, N., "Influence of quantization on the bit-error
performance of turbo-decoders," in Proceedings of IEEE Vehicular Technology
Conference, pp. 581-585,2000.

45] Summers, T. A. and Wilson, S.G., "Snr mismatch and online estimation in turbo
decoding," IEEE Transaction on Communications, pp. 421-423, Apr. 1998.

46] Worm, A., Hoeher, P., and Wain, N., "Turbo-decoding without snr estimation,"
IEEE Communications Letters, pp. 193-195, June 2000.

47] Jordan, M. and Nichols, R., "The effects of channel characteristics on turbo code
performance," in Proc. Milcorn'96, pp. 17-21, Oct. 1996.

Valenti, M.C. and Woerner, B.D., "Performance of turbo-codes in interleaved flat
fading channels with estimated channel state information," in Proceedings of
IEEE Vehicular Technology Conference, pp. 66-70, May 1998.

[49] Reddy, S.M., "On decoding iterated codes," IEEE Transactions on Information.
Theory, pp. 624-627, Sept. 1970.

_50] Reddy. S.M. and Robinson. J.P., "Random error and burst correction by iterated
codes," IEEE Transactions on Information Theory, pp. 182--185, Jan. 1972.

[51] Pyndiah, R.M., "Near-optimum decoding of product codes: Block turbo codes,"
IEEE Transaction on Communications, vol. 46, pp. 1003-1010, Aug. 1998.

[52] Lucas, R., Bossert, M., and Breitbach, M., "On iterative soft-decision decoding of
linear binary block codes and product codes," IEEE Journal on Selected Areas
in Communications, vol. 16, pp. 276-296, Feb. 1998.

[53_ Fang, J., Buda, F., and Lemois, E., "Turbo product code: A well suitable solution
to wireless packet transmission for very low error rates," in 2nd International
Symposium on Turbo Codes 6 Related Topics, 2001.

[54] Hartmann, C.R.P. and Rudolph, L.D., "An optimum symbol-by-symbol decoding
rule for linear codes," IEEE Transactions on Information Theory, vol. 22,
pp. 514-517, Sept. 1976.

,55_ Hunt, A., Hyper-codes: high-performance low-complexity error-correcting codes.
Master's thesis, 1998.

:56] Heegard, C. and Wicker, S.B., Turbo Coding. Kluwer Academic, 1998.

[57] Michel, H. and Wehn, N., "Turbo-decoder quantization for umts," IEEE Communi-
cations Letters, pp. 55-57, Feb. 2001.

118

58] Montorsi, G. and Benedetto, S., "Design of fixed-point iterative decoders for
concatenated codes with interleavers," IEEE Journal on Selected Areas in
Communications, vol. 19, pp. 871-882, May 2001.

59] Divsalar, D., Dolinar, S., and Pollara, F., "Iterative turbo decoder analysis based
on density evolution," IEEE Transactions on Information Theory, pp. 891-907,
May 2001.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 2001

	On performance analysis and implementation issues of iterative decoding for graph based codes
	Xuefei Wei
	Recommended Citation

	Copyright Warning & Restriction
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Theoretical Foundations
	Chapter 3: Low-Density Parity-Check Code: Decoding Capacity
	Chapter 4: Quantized Decoding for Low-Density Parity-Check Code
	Chapter 5: Low-Density Parity-Check Code: Sensitivity to SNR Mismatch
	Chapter 6: Iterative Decoding of Product Code
	Chapter 7: Conclusions
	Appendix A: Equivalence of Sum-Product Algorithm and Log-Map Algorithm
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

