26,552 research outputs found

    Uniform test of algorithmic randomness over a general space

    Get PDF
    The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Loef), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. - We allow non-compact spaces (like the space of continuous functions, underlying the Brownian motion). - The uniform test (deficiency of randomness) d_P(x) (depending both on the outcome x and the measure P should be defined in a general and natural way. - We see which of the old results survive: existence of universal tests, conservation of randomness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as "deficiency of independence. - The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).Comment: 40 pages. Journal reference and a slight correction in the proof of Theorem 7 adde

    Computable de Finetti measures

    Full text link
    We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.Comment: 32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-23

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    Beyond cash-additive risk measures: when changing the num\'{e}raire fails

    Full text link
    We discuss risk measures representing the minimum amount of capital a financial institution needs to raise and invest in a pre-specified eligible asset to ensure it is adequately capitalized. Most of the literature has focused on cash-additive risk measures, for which the eligible asset is a risk-free bond, on the grounds that the general case can be reduced to the cash-additive case by a change of numeraire. However, discounting does not work in all financially relevant situations, typically when the eligible asset is a defaultable bond. In this paper we fill this gap allowing for general eligible assets. We provide a variety of finiteness and continuity results for the corresponding risk measures and apply them to risk measures based on Value-at-Risk and Tail Value-at-Risk on LpL^p spaces, as well as to shortfall risk measures on Orlicz spaces. We pay special attention to the property of cash subadditivity, which has been recently proposed as an alternative to cash additivity to deal with defaultable bonds. For important examples, we provide characterizations of cash subadditivity and show that, when the eligible asset is a defaultable bond, cash subadditivity is the exception rather than the rule. Finally, we consider the situation where the eligible asset is not liquidly traded and the pricing rule is no longer linear. We establish when the resulting risk measures are quasiconvex and show that cash subadditivity is only compatible with continuous pricing rules

    Measuring risk with multiple eligible assets

    Full text link
    The risk of financial positions is measured by the minimum amount of capital to raise and invest in eligible portfolios of traded assets in order to meet a prescribed acceptability constraint. We investigate nondegeneracy, finiteness and continuity properties of these risk measures with respect to multiple eligible assets. Our finiteness and continuity results highlight the interplay between the acceptance set and the class of eligible portfolios. We present a simple, alternative approach to the dual representation of convex risk measures by directly applying to the acceptance set the external characterization of closed, convex sets. We prove that risk measures are nondegenerate if and only if the pricing functional admits a positive extension which is a supporting functional for the underlying acceptance set, and provide a characterization of when such extensions exist. Finally, we discuss applications to set-valued risk measures, superhedging with shortfall risk, and optimal risk sharing

    Persistent Homology and String Vacua

    Get PDF
    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze N=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical informations. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.Comment: 32 pages, 12 pdf figure
    • …
    corecore