58,738 research outputs found

    Random projections for linear programming

    Get PDF
    Random projections are random linear maps, sampled from appropriate distributions, that approx- imately preserve certain geometrical invariants so that the approximation improves as the dimension of the space grows. The well-known Johnson-Lindenstrauss lemma states that there are random ma- trices with surprisingly few rows that approximately preserve pairwise Euclidean distances among a set of points. This is commonly used to speed up algorithms based on Euclidean distances. We prove that these matrices also preserve other quantities, such as the distance to a cone. We exploit this result to devise a probabilistic algorithm to solve linear programs approximately. We show that this algorithm can approximately solve very large randomly generated LP instances. We also showcase its application to an error correction coding problem.Comment: 26 pages, 1 figur

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    Joint dynamic probabilistic constraints with projected linear decision rules

    Get PDF
    We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically

    Linear Superiorization for Infeasible Linear Programming

    Full text link
    Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup's repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653

    A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

    Full text link
    We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. Mor\'e and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations until either a candidate active set is identified or no reasonable progress is made, and an unconstrained minimization phase, which reduces the objective function in a suitable space defined by the identification phase, by applying either the conjugate gradient method or a recently proposed spectral gradient method. However, the algorithm differs from GPCG not only because it deals with a more general class of problems, but mainly for the way it stops the minimization phase. This is based on a comparison between a measure of optimality in the reduced space and a measure of bindingness of the variables that are on the bounds, defined by extending the concept of proportioning, which was proposed by some authors for box-constrained problems. If the objective function is bounded, the algorithm converges to a stationary point thanks to a suitable application of the gradient projection method in the identification phase. For strictly convex problems, the algorithm converges to the optimal solution in a finite number of steps even in case of degeneracy. Extensive numerical experiments show the effectiveness of the proposed approach.Comment: 30 pages, 17 figure
    • …
    corecore