14,291 research outputs found

    Noise enhanced spontaneous chaos in semiconductor superlattices at room temperature

    Full text link
    Physical systems exhibiting fast spontaneous chaotic oscillations are used to generate high-quality true random sequences in random number generators. The concept of using fast practical entropy sources to produce true random sequences is crucial to make storage and transfer of data more secure at very high speeds. While the first high-speed devices were chaotic semiconductor lasers, the discovery of spontaneous chaos in semiconductor superlattices at room temperature provides a valuable nanotechnology alternative. Spontaneous chaos was observed in 1996 experiments at temperatures below liquid nitrogen. Here we show spontaneous chaos at room temperature appears in idealized superlattices for voltage ranges where sharp transitions between different oscillation modes occur. Internal and external noises broaden these voltage ranges and enhance the sensitivity to initial conditions in the superlattice snail-shaped chaotic attractor thereby rendering spontaneous chaos more robust.Comment: 6 pages, 4 figures, revte

    Properties making a chaotic system a good Pseudo Random Number Generator

    Full text link
    We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generators are performed.Comment: 10 pages, 3 figures, new version, title changed and minor correction

    Entanglement, randomness and chaos

    Full text link
    Entanglement is not only the most intriguing feature of quantum mechanics, but also a key resource in quantum information science. The entanglement content of random pure quantum states is almost maximal; such states find applications in various quantum information protocols. The preparation of a random state or, equivalently, the implementation of a random unitary operator, requires a number of elementary one- and two-qubit gates that is exponential in the number n_q of qubits, thus becoming rapidly unfeasible when increasing n_q. On the other hand, pseudo-random states approximating to the desired accuracy the entanglement properties of true random states may be generated efficiently, that is, polynomially in n_q. In particular, quantum chaotic maps are efficient generators of multipartite entanglement among the qubits, close to that expected for random states. This review discusses several aspects of the relationship between entanglement, randomness and chaos. In particular, I will focus on the following items: (i) the robustness of the entanglement generated by quantum chaotic maps when taking into account the unavoidable noise sources affecting a quantum computer; (ii) the detection of the entanglement of high-dimensional (mixtures of) random states, an issue also related to the question of the emergence of classicality in coarse grained quantum chaotic dynamics; (iii) the decoherence induced by the coupling of a system to a chaotic environment, that is, by the entanglement established between the system and the environment.Comment: Review paper, 40 pages, 7 figures, added reference

    An optimization technique on pseudorandom generators based on chaotic iterations

    No full text
    International audienceInternet communication systems involving cryptography and data hiding often require billions of random numbers. In addition to the speed of the algorithm, the quality of the pseudo-random number generator and the ease of its implementation are common practical aspects. In this work we will discuss how to improve the quality of random numbers independently from their generation algorithm. We propose an additional implementation technique in order to take advantage of some chaotic properties. The statistical quality of our solution stems from some well-defined discrete chaotic iterations that satisfy the reputed Devaney's definition of chaos, namely the chaotic iterations technique. Pursuing recent researches published in the previous International Conference on Evolving Internet (Internet 09, 10, and 11), three methods to build pseudorandom generators by using chaotic iterations are recalled. Using standard criteria named NIST and DieHARD (some famous batteries of tests), we will show that the proposed technique can improve the statistical properties of a large variety of defective pseudorandom generators, and that the issues raised by statistical tests decrease when the power of chaotic iterations increase

    Self-balanced real-time photonic scheme for ultrafast random number generation

    Get PDF
    We propose a real-time self-balanced photonic method for extracting ultrafast random numbers from broadband randomness sources. In place of electronic analog-to-digital converters (ADCs), the balanced photo-detection technology is used to directly quantize optically sampled chaotic pulses into a continuous random number stream. Benefitting from ultrafast photo-detection, our method can efficiently eliminate the generation rate bottleneck from electronic ADCs which are required in nearly all the available fast physical random number generators. A proof-of-principle experiment demonstrates that using our approach 10 Gb/s real-time and statistically unbiased random numbers are successfully extracted from a bandwidth-enhanced chaotic source. The generation rate achieved experimentally here is being limited by the bandwidth of the chaotic source. The method described has the potential to attain a real-time rate of 100 Gb/s

    Analysis and Design Security Primitives Based on Chaotic Systems for eCommerce

    Get PDF
    Security is considered the most important requirement for the success of electronic commerce, which is built based on the security of hash functions, encryption algorithms and pseudorandom number generators. Chaotic systems and security algorithms have similar properties including sensitivity to any change or changes in the initial parameters, unpredictability, deterministic nature and random-like behaviour. Several security algorithms based on chaotic systems have been proposed; unfortunately some of them were found to be insecure and/or slow. In view of this, designing new secure and fast security algorithms based on chaotic systems which guarantee integrity, authentication and confidentiality is essential for electronic commerce development. In this thesis, we comprehensively explore the analysis and design of security primitives based on chaotic systems for electronic commerce: hash functions, encryption algorithms and pseudorandom number generators. Novel hash functions, encryption algorithms and pseudorandom number generators based on chaotic systems for electronic commerce are proposed. The securities of the proposed algorithms are analyzed based on some well-know statistical tests in this filed. In addition, a new one-dimensional triangle-chaotic map (TCM) with perfect chaotic behaviour is presented. We have compared the proposed chaos-based hash functions, block cipher and pseudorandom number generator with well-know algorithms. The comparison results show that the proposed algorithms are better than some other existing algorithms. Several analyses and computer simulations are performed on the proposed algorithms to verify their characteristics, confirming that these proposed algorithms satisfy the characteristics and conditions of security algorithms. The proposed algorithms in this thesis are high-potential for adoption in e-commerce applications and protocols

    Cascading CMOS-Based Chaotic Maps for Improved Performance and Its Application in Efficient RNG Design

    Get PDF
    We present a general framework for improving the chaotic properties of CMOS-based chaotic maps by cascading multiple maps in series. Along with two novel chaotic map topologies, we present the 45 nmnm designs for four CMOS-based discrete-time chaotic map topologies. With the help of the bifurcation plot and three established entropy measures, namely, Lyapunov exponent, Kolmogorov entropy, and correlation coefficient, we present an extensive chaotic performance analysis on eight unique map circuits (two under each topology) to show that under certain constraints, the cascading scheme can significantly elevate the chaotic performance. The improved chaotic entropy benefits many security applications and is demonstrated using a novel random number generator (RNG) design. Unlike conventional mathematical chaotic map-based digital pseudo-random number generators (PRNG), this proposed design is not completely deterministic due to the high susceptibility of the core analog circuit to inevitable noise that renders this design closer to a true random number generator (TRNG). By leveraging the improved chaotic performance of the transistor-level cascaded maps, significantly low area and power overhead are achieved in the RNG design. The cryptographic applicability of the RNG is verified as the generated random sequences pass four standard statistical tests namely, NIST, FIPS, Diehard, and TestU01

    Chaos-based true random number generators

    Get PDF
    Random number (bit) generators are crucial to secure communications, data transfer and storage, and electronic transactions, to carry out stochastic simulations and to many other applications. As software generated random sequences are not truly random, fast entropy sources such as quantum systems or classically chaotic systems can be viable alternatives provided they generate high-quality random sequences sufficiently fast. The discovery of spontaneous chaos in semiconductor superlattices at room temperature has produced a valuable nanotechnology option. Here we explain a mathematical model to describe spontaneous chaos in semiconductor superlattices at room temperature, solve it numerically to reveal the origin and characteristics of chaotic oscillations, and discuss the limitations of the model in view of known experiments. We also explain how to extract verified random bits from the analog chaotic signal produced by the superlattice.This work has been supported by the Spanish Ministerio de Economía y Competitividad grants FIS2011-28838-C02-01 and MTM2014-56948-C2-2-P

    Synchronization of lai-chen (2016) chaotic system with active control

    Get PDF
    Most of the events in the real world show non-linear behavior. Such events are usually chaotic. Chaotic systems are highly sensitive to the initial conditions and parameters values, exhibit non-periodic properties, and some have a very broad frequency spectrum. Because of these features, chaotic systems are used in different branches of science such as encryption, communication, random number generators, prediction algorithms, computer games, biology, medicine. In this regard, a variety of chaotic and hyper-chaotic systems are introduced in the literature. However, because of chaotic systems are very sensitive to initial conditions and parameters, chaotic systems need to be synchronized in order to be used in chaos-based communication and encryption applications. In this study, a new chaotic system presented by Lai and Chen in 2016 was synchronized with active control method. Consequently, it is shown that the Lai-Chen chaotic system can be synchronized and used in chaos-based communication and encryption applications
    corecore