51,383 research outputs found

    Simple structures axiomatized by almost sure theories

    Full text link
    In this article we give a classification of the binary, simple, ω\omega-categorical structures with SU-rank 1 and trivial pregeometry. This is done both by showing that they satisfy certain extension properties, but also by noting that they may be approximated by the almost sure theory of some sets of finite structures equipped with a probability measure. This study give results about general almost sure theories, but also considers certain attributes which, if they are almost surely true, generate almost sure theories with very specific properties such as ω\omega-stability or strong minimality.Comment: 27 page

    Optimal subgraph structures in scale-free configuration models

    Get PDF
    Subgraphs reveal information about the geometry and functionalities of complex networks. For scale-free networks with unbounded degree fluctuations, we obtain the asymptotics of the number of times a small connected graph occurs as a subgraph or as an induced subgraph. We obtain these results by analyzing the configuration model with degree exponent τ∈(2,3)\tau\in(2,3) and introducing a novel class of optimization problems. For any given subgraph, the unique optimizer describes the degrees of the vertices that together span the subgraph. We find that subgraphs typically occur between vertices with specific degree ranges. In this way, we can count and characterize {\it all} subgraphs. We refrain from double counting in the case of multi-edges, essentially counting the subgraphs in the {\it erased} configuration model.Comment: 50 pages, 2 figure

    Marchenko-Pastur Theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors

    Get PDF
    The celebrated Marchenko-Pastur theorem gives the asymptotic spectral distribution of sums of random, independent, rank-one projections. Its main hypothesis is that these projections are more or less uniformly distributed on the first grassmannian, which implies for example that the corresponding vectors are delocalized, i.e. are essentially supported by the whole canonical basis. In this paper, we propose a way to drop this delocalization assumption and we generalize this theorem to a quite general framework, including random projections whose corresponding vectors are localized, i.e. with some components much larger than the other ones. The first of our two main examples is given by heavy tailed random vectors (as in a model introduced by Ben Arous and Guionnet or as in a model introduced by Zakharevich where the moments grow very fast as the dimension grows). Our second main example is given by vectors which are distributed as the Brownian motion on the unit sphere, with localized initial law. Our framework is in fact general enough to get new correspondences between classical infinitely divisible laws and some limit spectral distributions of random matrices, generalizing the so-called Bercovici-Pata bijection.Comment: 40 pages, 10 figures, some minor mistakes correcte

    Approximation Algorithms for the Joint Replenishment Problem with Deadlines

    Get PDF
    The Joint Replenishment Problem (JRP) is a fundamental optimization problem in supply-chain management, concerned with optimizing the flow of goods from a supplier to retailers. Over time, in response to demands at the retailers, the supplier ships orders, via a warehouse, to the retailers. The objective is to schedule these orders to minimize the sum of ordering costs and retailers' waiting costs. We study the approximability of JRP-D, the version of JRP with deadlines, where instead of waiting costs the retailers impose strict deadlines. We study the integrality gap of the standard linear-program (LP) relaxation, giving a lower bound of 1.207, a stronger, computer-assisted lower bound of 1.245, as well as an upper bound and approximation ratio of 1.574. The best previous upper bound and approximation ratio was 1.667; no lower bound was previously published. For the special case when all demand periods are of equal length we give an upper bound of 1.5, a lower bound of 1.2, and show APX-hardness
    • …
    corecore