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Subgraphs reveal information about the geometry and functionalities of
complex networks. For scale-free networks with unbounded degree fluctua-
tions, we obtain the asymptotics of the number of times a small connected
graph occurs as a subgraph or as an induced subgraph. We obtain these re-
sults by analyzing the configuration model with degree exponent τ ∈ (2,3)

and introducing a novel class of optimization problems. For any given sub-
graph, the unique optimizer describes the degrees of the vertices that together
span the subgraph. We find that subgraphs typically occur between vertices
with specific degree ranges. In this way, we can count and characterize all
subgraphs. We refrain from double counting in the case of multi-edges, es-
sentially counting the subgraphs in the erased configuration model.

1. Introduction. Scale-free networks often have degree distributions that follow power
laws with exponent τ ∈ (2,3) [1, 11, 22, 34]. Many networks have been reported to satisfy
these conditions, including metabolic networks, the internet and social networks. Scale-free
networks come with the presence of hubs, that is, vertices of extremely high degrees.

Another property of real-world scale-free networks is that the clustering coefficient (the
probability that two uniformly chosen neighbors of a vertex are neighbors themselves) de-
creases with the vertex degree [4, 10, 24, 31, 34], again following a power law. Thus, two
neighbors of a hub are less likely to connect. The triangle is the most studied network sub-
graph, because it not only describes the clustering coefficient, but also signals hierarchy and
community structure [29]. However, other subgraphs such as larger cliques are equally im-
portant for understanding network organization [2, 33]. Indeed, subgraph counts might vary
considerably across different networks [25, 26, 35] and any given network may have a set of
statistically significant subgraphs (also called motifs). Statistical relevance can be expressed
by comparing a real-world network to some mathematically tractable model. This compari-
son filters out the effect of the degree sequence and the network size on the subgraph count.
A popular statistic takes the subgraph count, subtracts the expected number of subgraphs in
a model, and divides by the standard deviation in the model [12, 25, 27]. Such a standardized
test statistic sheds light on whether a subgraph is overrepresented in comparison to the model.
This raises the question of what model to use. A natural candidate is the uniform simple graph
with the same degrees as the original network.

For τ > 3, when the degree distribution has a finite second moment, it is easy to generate
such graphs using the configuration model, a random graph model that creates random graphs
with any given degree sequence [5, 17]. For τ ∈ (2,3), however, the configuration model
fails to create simple graphs with high probability [21]. We therefore consider the erased
configuration model ([8] and [17], Chapter 7), which constructs a configuration model and
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FIG. 1. Optimal structures and asymptotic counts of induced subgraphs on 4 vertices. The vertex colors indicate
the typical degrees and the scaling of the number of subgraphs is given below the pictures. Our results do not apply
to the gray vertices.

then removes all self-loops and merges multiple edges. For an erased configuration model
with degree exponent τ ∈ (2,3), we count how often a small connected graph H occurs as a
subgraph or as an induced subgraph, where edges not present in H are also not allowed to be
present in the subgraph.

We find that every (induced) subgraph H , typically occurs between vertices in the erased
configuration model with degrees in highly specific ranges that depend on the precise sub-
graph H . An example of these typical degree ranges for subgraphs on 4 vertices is shown
in Figure 1 (which will be discussed in more detail in Section 2.4). In this paper we show
that many subgraphs consist exclusively of

√
n-degree vertices, including cliques of all sizes.

Hence, in such subgraphs, hubs (of degree close to the maximal value n1/(τ−1)) are unlikely
to participate in a typical subgraph. Hubs can be part, however, of other subgraphs. We define
optimization problems that find these optimal degree ranges for every subgraph.

We next define the model.

1.1. The erased configuration model. Let [n] = {1,2, . . . , n}. Given a degree sequence,
that is, a sequence of n positive integers D = (D1,D2, . . . ,Dn), the configuration model is a
(multi)graph with vertex set [n], where vertex v ∈ [n] has degree Dv . It is defined as follows
(see, e.g., [6] or [17], Chapter 7): given a degree sequence with

∑
v∈[n] Dv even, we start with

Dv free half-edges adjacent to vertex v, for v ∈ [n]. The configuration model is constructed
by successively pairing, uniformly at random, free half-edges into edges and removing them
from the set of free half-edges, until no free half-edges remain. Conditionally on obtaining
a simple graph, the resulting graph is a uniform sample from the ensemble of simple graphs
with the prescribed degree sequence [17], Chapter 7. This is why the configuration model is
often used as a model for real-world networks with given degrees. The erased configuration
model is the model where all multiple edges are merged and all self-loops are removed.

In this paper, we study the setting where the degree distribution has infinite variance. Then
the number of erased edges is large [20] (yet small compared to the total number of edges).
In particular, we take the degrees to be an i.i.d. copies of a random variable D such that

(1.1) P(D = k) = ck−τ (
1 + o(1)

)
as k → ∞,

where τ ∈ (2,3) so that E[D2] = ∞ and

(1.2) E[D] = μ < ∞.

When this sample constructs a degree sequence such that the sum of the degrees is odd,
we add an extra half-edge to the last vertex. This does not affect our computations. In this
setting, Dmax is of order n1/(τ−1), where Dmax = maxv∈[n] Dv denotes the maximal degree
of the degree sequence. Denote the erased configuration model on n vertices by ECM(n)

when the degrees are an independent and identically distributed (i.i.d.) sample of (1.1), and
ECM(n)(D) when the degree sequence equals D.
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1.2. Quenched and annealed. Note that the erased configuration model as defined above
has two sources of randomness: the independent and identically distributed (i.i.d.) degrees
and the random pairing of the half-edges in constructing the graph. Studying the behavior
of subgraphs in the erased configuration model once the degree sequence has been fixed
corresponds to the quenched setting, whereas the erased configuration model with random
degrees corresponds to the annealed setting. Our main result on the number of subgraphs in
the erased configuration model is in the annealed setting. However, in the proof of our results
we often study subgraph counts in the quenched setting. Throughout this paper, we denote
the probability of an event E in the quenched setting by

(1.3) Pn(E) = P
(
E | (Dv)v∈[n]

)
,

and we define En and Varn accordingly.

1.3. Subgraph counts. Let H = (VH ,EH) be a small, connected graph. We denote the
induced subgraph count of H , the number of subgraphs of ECM(n) that are isomorphic to H ,
by N(ind)(H). We denote the subgraph count, the number of occurrences of H as a subgraph
of ECM(n), by N(sub)(H).

Throughout this paper, we denote the sampled degree of a vertex v ∈ [n] in the erased
configuration model by Dv . Note that this may not be the same as the actual degree of a
vertex in the erased configuration model, since self-loops are removed and multiple edges are
merged. Since we study subgraphs H , we sometimes also need to use the degree of a vertex
in H inside the subgraph. We denote the degree of a vertex i of a subgraph H by di .

1.4. Paper outline. We present our main results in Section 2, including the theorems that
characterize all optimal subgraphs in terms of the solutions to optimization problems. We
also apply these theorems to describe the optimal configurations of all subgraphs with 4 and
5 vertices, and present an outlook for further use of our results. We provide an overview
of the proof structures in Section 3. We then prove the first part of the main theorems for
subgraphs in Section 4 and for

√
n-optimal subgraphs in Section 5. The proofs of some

lemmas introduced along the way are deferred to Section 6. The proof of the second part of
the main theorem can be found in Section 7. We finally show how the proofs for subgraphs
can be adjusted to prove the theorems on induced subgraphs in Section 8.

1.5. Notation. We say that a sequence of events (En)n≥1 happens with high probabil-

ity (w.h.p.) if limn→∞P(En) = 1 and we use
P−→ for convergence in probability. We write

f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0, and f (n) = O(g(n)) if |f (n)|/g(n) is uniformly
bounded. We write f (n) = �(g(n)) if f (n) = O(g(n)) as well as g(n) = O(f (n)). We say
that Xn = OP(g(n)) for a sequence of random variables (Xn)n≥1 if |Xn|/g(n) is a tight se-

quence of random variables, and Xn = oP(g(n)) if Xn/g(n)
P−→ 0.

2. Main results. The key insight obtained in this paper is that the creation of subgraphs
is crucially affected by the following trade-off, inherently present in power-law networks:
On the one hand, hubs contribute substantially to the subgraph count, because they are well
connected, and therefore potentially contribute to many subgraphs. On the other hand, hubs
are by definition rare. This should be contrasted with lower-degree vertices that occur more
frequently, but typically take part in fewer connections and hence fewer subgraphs. Therefore,
one may expect every subgraph to consist of a selection of vertices with specific degrees that
“optimizes” this trade-off and hence maximizes the probability that the subgraph occurs.
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Let ECM(n) |v denote the induced subgraph of the erased configuration model on ver-
tices v. Write the probability that a subgraph H = (VH ,EH) with |VH | = k is created on k

uniformly chosen vertices v = (v1, . . . , vk) in ECM(n) as

(2.1) P
(
ECM(n)

∣∣
v ⊇ H

) = ∑
D′

P
(
ECM(n)

∣∣
v ⊇ H | Dv = D′)P(

Dv = D′),
where the sum is over all possible degrees on k vertices D′ = (D′

i )i∈[k], and Dv = (Dvi
)i∈[k]

denotes the degrees of the randomly chosen set of k vertices. We show that for every (induced)
subgraph, there is a specific range of D′

1, . . . ,D
′
k that gives the maximal contribution to (2.1),

large enough even to completely ignore all other degree ranges.
We show that when (2.1) is maximized by a unique range of degrees, there are only four

possible ranges of degrees that maximize the term inside the sum in (2.1). These ranges are
constant degrees, or degrees proportional to n(τ−2)/(τ−1), to

√
n or to n1/(τ−1).

2.1. An optimization problem. We now present the optimization problems that max-
imizes the summand in (2.1), first for subgraphs and later for induced subgraphs. Let
H = (VH ,EH) be a small, connected graph on k ≥ 3 vertices. Denote the set of vertices
of H that have degree one inside H by V1. Let P be all partitions of VH \ V1 into three
disjoint sets S1, S2, S3. This partition into S1, S2 and S3 corresponds to the following typical
orders of magnitude of the degrees of the vertices of H embedded in ECM(n): S1 denotes
the vertices with degree proportional to n(τ−2)/(τ−1), S2 the ones with degrees proportional
to n1/(τ−1), and S3 the vertices with degrees proportional to

√
n. The optimization problem

finds the partition of the vertices into these three orders of magnitude that maximizes the con-
tribution to the number of (induced) subgraphs. When a vertex in H has degree 1, its degree
in ECM(n) is typically small, that is, it does not grow with n.

Given a partition P = (S1, S2, S3) of VH \V1, let ESi
denote the set of edges in H between

vertices in Si and ESi
= |ESi

| its size, ESi,Sj
the set of edges between vertices in Si and Sj

and ESi,Sj
= |ESi,Sj

| its size, and finally ESi,V1 the set of edges between vertices in V1 and
Si and ESi,V1 = |ESi,V1 | its size. We now define the optimization problem for subgraphs that
optimizes the summand in (2.1) as

(2.2) B(sub)(H) = max
P

[
|S1| − |S2| − 2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
.

The first two terms in the optimization problem give a positive contribution for all vertices
in S1, which have relatively low degree, and a negative contribution for vertices in S2, which
have high degrees. Therefore, the first two terms in the optimization problem capture that
high-degree vertices are rare, and low-degree vertices abundant. The last term gives a negative
contribution for all edges between vertices with relatively low degrees in the subgraph. This
captures the other part of the trade-off: high-degree vertices are more likely to connect to
other vertices than low degree vertices. Note that B(sub)(H) ≥ 0, since putting all vertices in
S3 yields zero.

For induced subgraphs, we define the similar optimization problem

B(ind)(H) = max
P(ind)

[
|S1| − |S2| − 2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
,

s.t. {i, j} ∈ EH ∀i ∈ S2, j ∈ S2 ∪ S3,

(2.3)

where again P(ind) = (S1, S2, S3) is a partition of VH \ V1 into three sets. The constraint in
(2.3) ensures that edges that are not present in H are not present in the subgraph. Again,
B(ind)(H) ≥ 0 because S3 = VH \ V1 is a valid solution.
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Our main result shows that indeed the optimization problems (2.2) and (2.3) find the typ-
ical vertex degrees for any (induced) subgraph and determine the scaling of the number of
subgraphs. We then investigate a special class of subgraphs, where the optimal contribution
to (2.2) or (2.3) is S3 = VH , that is, (induced) subgraphs where all typical vertex degrees are
proportional to

√
n. For this class, which contains for instance cliques of all sizes, we present

sharp asymptotics.

2.2. General subgraphs. Let S
(sub)
1 , S

(sub)
2 , S

(sub)
3 be a maximizer of (2.2). Furthermore,

for any α = (α1, . . . , αk) such that αi ∈ [0,1/(τ − 1)], define

(2.4) M(α)
n (ε) = {

(v1, . . . , vk) : Dvi
∈ [ε,1/ε](μn)αi ∀i ∈ [k]}.

These are the sets of vertices (v1, . . . , vk) such that Dv1 is proportional to nα1 and Dv2 pro-
portional to nα2 and so on. Denote the number of subgraphs with vertices in M

(α)
n (ε) by

N(sub)(H,M
(α)
n (ε)). Define the vector α(sub) as

(2.5) α
(sub)
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(τ − 2)/(τ − 1) i ∈ S
(sub)
1 ,

1/(τ − 1) i ∈ S
(sub)
2 ,

1

2
i ∈ S

(sub)
3 ,

0 i ∈ V1.

For induced subgraphs, let S
(ind)
1 , S

(ind)
2 , S

(ind)
3 be a maximizer of (2.3), and define α(ind) as

in (2.5), replacing S
(sub)
i by S

(ind)
i . The next theorem shows that sets of vertices in Mα(sub)

n (ε)

or Mα(ind)

n (ε) contain a large number of subgraphs, and computes the scaling of the number
of (induced) subgraphs.

THEOREM 2.1 (General (induced) subgraphs). Let H be a subgraph on k vertices such
that the solution to (2.2) is unique.

(i) For any εn such that limn→∞ εn = 0,

(2.6)
N(sub)(H,M

(α(sub))
n (εn))

N(sub)(H)

P−→ 1.

(ii) Furthermore, for any fixed 0 < ε < 1,

(2.7)
N(sub)(H,M

(α(sub))
n (ε))

n
3−τ

2 (k2++B(sub)(H))+k1/2
≤ f (ε) + oP(1),

and

(2.8)
N(sub)(H,M

(α(sub))
n (ε))

n
3−τ

2 (k2++B(sub)(H))+k1/2
≥ f̃ (ε) + oP(1),

for some functions f (ε), f̃ (ε) < ∞ not depending on n. Here k2+ denotes the number of ver-
tices in H of degree at least 2, and k1 the number of degree-one vertices in the subgraph H .

For induced subgraphs the same statements hold, replacing (sub) by (ind) and the optimiza-
tion problem in (2.2) by that in (2.3).

Theorem 2.1(ii) only provides the scaling in n and some functions f (ε), f̃ (ε), which could
tend to ∞ when ε ↘ 0. For subgraphs with S3 = VH , we obtain more precise asymptotics in
the next section.
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2.3. Sharp asymptotics for
√

n-class of subgraphs. Now we study the special class of
subgraphs for which the unique maximum of (2.2) or (2.3) is S3 = VH . By the above inter-
pretation of S1, S2 and S3, we study (induced) subgraphs where the maximum contribution to
the number of such subgraphs comes from vertices that have degrees proportional to

√
n in

ECM(n). Examples of subgraphs that fall into this category are all complete graphs. Bipartite
graphs on the other hand, do not fall into the

√
n-class subgraphs, since we can use the two

parts of the bipartition as S1 and S2 in such a way that (2.2) results in a nonnegative solution.
The next theorem gives asymptotics for the number of

√
n-(induced) subgraphs.

THEOREM 2.2 ((Induced) subgraphs with
√

n degrees). Let H be a connected graph on
k vertices with minimal degree 2 such that the solution to (2.2) is unique, and B(sub)(H) = 0.
Then,

(2.9)
N(sub)(H)

n
k
2 (3−τ)

P−→ A(sub)(H) < ∞,

with

(2.10) A(sub)(H) = ckμ− k
2 (τ−1)

∫ ∞
0

· · ·
∫ ∞

0
(x1 · · ·xk)

−τ
∏

{i,j}∈EH

(
1 − e−xixj

)
dx1 · · ·dxk.

For induced subgraphs the same statements hold, replacing (sub) by (ind) and (2.2) by (2.3),
where

(2.11)

A(ind)(H) = ckμ− k
2 (τ−1)

∫ ∞
0

· · ·
∫ ∞

0
(x1 · · ·xk)

−τ
∏

{i,j}∈EH

(
1 − e−xixj

)

× ∏
{i,j}/∈EH

e−xixj dx1 · · ·dxk.

In the erased configuration model, the probability that a vertex with degree Dvi
connects to

a vertex with degree Dvj
can be approximated by 1−e−Dvi

Dvj
/Ln , where Ln = ∑

v∈[n] Dv de-
notes the sum of all degrees. When rescaling, and taking Dvi

≈ xi

√
n/μ and Dvj

= xj

√
n/μ,

this results in the factors 1 − e−xixj in (2.10) for all edges {i, j} ∈ EH in subgraph H . For
induced subgraphs, the fact that no other edges than the edges in H are allowed to be present
gives the extra factors e−xixj for {i, j} /∈ EH in (2.11).

2.4. Subgraphs on 4 and 5 vertices. We apply Theorem 2.1 to characterize the optimal
subgraph configurations on 4 or 5 vertices. We find the partitions that maximize (2.2) and
(2.3), and check whether this maximum is unique. If the maximum is indeed unique, then
we can use Theorem 2.1 to calculate the scaling of the number of such (induced) subgraphs.
Figures 1 and 2 show the order of magnitude of the number of induced subgraphs on 4 and
5 vertices obtained in this way, together with the optimizing sets of (2.3). For example, the
optimal values of S1, S2 and S3 for the subgraph in Figure 1(d) show that

(2.12) B(ind)(H) = 2 − 1 + 2 + 0 + 0 − 1

τ − 1
= 1 + 1

τ − 1
.

By Theorem 2.1, the scaling of the induced subgraph in Figure 1(d) then equals

(2.13) n(3−τ)(4−1/(τ−1))/2+ 1
2 = n7−2τ− 1

τ−1 .

The scaling of the other induced subgraphs are computed similarly.
Most induced subgraphs in Figures 1 and 2 satisfy the constraint in Theorem 2.1 that the

solution to the optimization problem (2.2) or (2.3) is unique. However, the gray vertices in
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FIG. 2. The scaling of the number of subgraphs in n for induced subgraphs on 5 vertices. The vertex colors
correspond to the typical degrees.

Figure 1 do not have unique optimizers, so that our theorems do not apply. Still, a similar
analysis as in Section 4.2 shows that there exist ranges of degrees that give the major contri-
bution to the rescaled number of such (induced) subgraphs. The only difference is that these
ranges are wider than for the vertices with unique maximizers. For example, for the diamond
subgraph in Figure 1(b) the major contribution is from vertices where the degrees of vertices
at each side of an edge {i, j} in the square around the diamond satisfy DiDj = �(n). Note
that having all degrees proportional to

√
n therefore is one of the main contributors. However,

contributions where the bottom left vertex and the top right vertex have degrees proportional
to nα and the other two vertices have degrees n1−α give an equal contribution for other val-
ues of α. Using that DiDj follows a power-law distribution with exponent τ with an extra
logarithmic factor ([19], equation (2.16)), then gives the extra factor log(n) in Figure 1(b).

The bow tie in Figure 2(i) has a unique optimal solution to (2.2), but it depends on τ . For
τ < 7/3, the maximum of (2.3) is uniquely attained at 0, so that the optimal composition is
with all vertices of degree �(

√
n). On the other hand, when τ > 7/3, S1 contains the degree

2 vertices while the middle vertex is in S2. This partition gives a contribution to (2.3) of

(2.14) 4 − 1 − 2 · 2

τ − 1
= 3τ − 7

τ − 1
,

which is larger than zero when τ > 7/3. Thus, for τ larger than 7/3, the major contribution is
when the middle vertex has degree n1/(τ−1), and the other vertices have degrees n(τ−2)/(τ−1).

When the maximal contribution to an induced subgraph comes from vertices with degrees
proportional to

√
n, then by Theorem 2.2, the number of such induced subgraphs converges
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to a constant when properly rescaled. When the maximal contribution contains vertices in S2
and S1, this may not hold. For example, counting the number of induced claws of Figure 1(e)
is similar to counting the number of sets of three neighbors for every vertex. The only sets of
neighbors that we do not count, are neighbors that are connected. This is a small fraction of
the pairs of neighbors ([15], equations (5)–(7)), thus the number of claws is approximately
equal to

(2.15)
∑

v∈[n]

1

6
Dv(Dv − 1)(Dv − 2) ≈ 1

6

∑
v∈[n]

D3
v.

Since the degrees are an i.i.d. sample from a power-law distribution,
∑

v∈[n] D3
v converges to a

stable law when normalized properly. Thus, when vertices of degrees proportional to n1/(τ−1)

contribute, the leading order of the number of (induced) subgraphs may contain stable random
variables, in contrast to the deterministic leading order for

√
n degrees of Theorem 2.2.

The scaling of the number of (noninduced) subgraphs can be deduced from Figure 1.
For example, we count the number of square subgraphs (the subgraph of Figure 1(c)) by
adding the contributions from the induced subgraphs in Figures 1(a), 1(b) and 1(c), that all
contain a square, which shows that a square occurs �(n6−2τ log(n)) times as a subgraph.
The major contribution to the number of square subgraphs is from the induced subgraphs in
Figure 1(b), which indeed contains a square, and occurs more frequently than the subgraphs
of Figures 1(a) and 1(c). In this manner we can infer the order of magnitude of the number
of subgraphs from the number of induced subgraphs.

2.5. Discussion and outlook.

2.5.1. Uniqueness of the optimum. Theorem 2.1 only holds when the optimum of (2.2),
respectively (2.3), is unique. Figures 1 and 2 show that for most subgraphs on 4 or 5 vertices,
this is indeed the case. In Section 4, we show that (2.2) and (2.3) can both be interpreted as
piecewise linear optimization problems over the optimal degrees of the vertices that together
form the subgraph. Thus, if the optimum is not unique, then it is attained by an entire range
of degrees. In Section 4 we show that in this situation the optimum is attained for vertices vi ,
vj with degrees Dvi

, Dvj
such that Dvi

Dvj
= �(n) across some edges {i, j} ∈ EH . One such

example is the diamond of Figure 1(b) discussed in Section 2.4. We believe that the number
of subgraphs where the optimum is not unique scales as in Theorem 2.1 with some additional
multiplicative factors of log(n). Proving this remains open for further research.

2.5.2. Automorphisms of H . An automorphism of a graph H is a map VH �→ VH such
that the resulting graph is isomorphic to H . In Theorems 2.1 and 2.2 we count automor-
phisms of H as separate copies of H , so that we may count multiple copies of H on one set
of vertices. Since |VH | is fixed, and Theorem 2.1 only considers the scaling of the number of
subgraphs, this does not influence Theorem 2.1. Because Theorem 2.2 studies the exact scal-
ing of the number of subgraphs, to count the number of subgraphs without automorphisms,
one should divide the results of Theorem 2.2 by the number of automorphisms of H .

2.5.3. Self-averaging. A random variable is called self-averaging if its coefficient of vari-
ation tends to zero, otherwise it is called non-self-averaging. When the degree distribution
follows a power-law with exponent τ ∈ (2,3), the number of subgraphs may be non-self-
averaging [28], so that

(2.16) lim sup
n→∞

Var(N(sub)(H))

E[N(sub)(H)]2 �= 0.
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One such example is the triangle. While the triangle subgraph satisfies the conditions of
Theorem 2.2, so that the rescaled number of triangles converges in probability to a constant,
it was shown in [28], the number of triangles is non-self-averaging in the annealed sense
when τ is close to 3. This indicates that most realizations of ECM(n)(D) will have a number
of triangles that is close to the value predicted by Theorem 2.2. However, since the number
of triangles is non-self-averaging making its standard deviation quite large, some realizations
will have a number of triangles that is much larger or smaller than the value predicted in
Theorem 2.2.

2.5.4. Other random graph models. An interesting question is whether Theorems 2.1
and 2.2 also apply to other models that create simple power-law random graphs. A very
natural model for simple power-law random graphs is the uniform random graph, which
samples a uniform graph from the ensemble of all simple graphs on a given degree sequence,
which we analyze for triangles using similar techniques as in this paper in [13].

Another random graph model that generates simple power-law random graphs is the rank-
1 inhomogeneous random graph [4, 9]. In this model, vertices have weights hi , where the
weights are an i.i.d. sample of a power-law random variable with exponent τ ∈ (2,3). Then,
two vertices are connected with probability fn(hi, hj ). Two standard connection probabil-
ity functions are fn(hi, hj ) = min(hihj/(μn),1) [9], and fn(hi, hj ) = 1 − e−hihj /(μn) [7].
Conditionally on the weight sequence, the edge statuses are independent, which is differ-
ent from the erased configuration model, where the edge statuses are not independent, even
when conditioning on the degree sequence. We prove Theorems 2.1 and 2.2 for the erased
configuration model by using the approximation Pn(Xij = 1) ≈ 1 − e−DiDj /Ln . Therefore,
Theorems 2.1 and 2.2 hold also for the rank-1 inhomogeneous random graph with these con-
nection probabilities instead [32].

A third model that creates simple power-law random graphs, is the hyperbolic random
graph where vertices are sampled in a disk, and connected if their hyperbolic distance is
sufficiently small [23]. The geometry in the hyperbolic random graph makes the presence of
triangles and other subgraphs containing cycles likely. By Theorem 2.2, a complete graph on

k vertices occurs �(n
k
2 (3−τ)) times as a subgraph in ECM(n). Interestingly, this is also true

for hyperbolic random graphs for k sufficiently large [3]. It would be interesting to investigate
the presence of other subgraphs in hyperbolic random graphs.

Another class of popular models, which create power-law random graphs dynamically,
are those that incorporate preferential attachment. In these models, subgraph counts scale
significantly differently from the erased configuration model and uniform random graphs
[14].

3. Overview of the proofs. We now provide an overview of the proof structure of The-
orems 2.1 and 2.2. Our main results study the annealed version ECM(n), with random degree
sequence. In the proofs of Theorems 2.1 and 2.2, we often first study the quenched version
of ECM(n)(D) instead, where the degree sequence D is fixed.

We relate Ln = ∑
v∈[n] Dv , the total number of half-edges before erasure, to its expected

value μn by defining the event
(3.1) Jn = {|Ln − μn| ≤ n2/τ }

.

By [16], Lemma 2.3, P(Jn) → 1 as n → ∞. When we condition on the degree sequence, we
will work on the event Jn, so that we can write Ln = μn(1 + o(1)). Similarly, when we work
with En and Varn, we condition on the event Jn. We do not include Jn into the notation of Pn,
since given D, Jn either happens with probability one, or with probability zero. This could
be treated more formally by denoting
(3.2) Pn(E) = 1JnP(E | D),

but keep notation light, when using Pn, we always assume the event Jn to hold.



510 R. VAN DER HOFSTAD, J. S. H. VAN LEEUWAARDEN AND C. STEGEHUIS

Denote the indicator that an edge is present between vertices u and v by Xu,v . To obtain
the probability that a specific subgraph is present on a given set of vertices, we investigate the
probability of a set of edges being present in the erased configuration model. In ECM(n)(D)

(see the proof of Lemma 4.1 for a more precise statement),

(3.3) Pn(Xu,v = 1) ≈ 1 − e−DuDv/Ln.

However, subgraphs often contain more than just one edge, and edges in ECM(n)(D) are
not present independently. In Section 4.1, we show that these dependencies are weak, so
that we can use the approximation (3.3) for all edges in a subgraph as if they were present
independently.

We then compute the probability that a subgraph is present on a specific set of vertices as
a function of their degrees, which shows that

(3.4) N(sub)(H,M(α)
n (ε)

) = �P

(
nk+(1−τ)

∑
i αi

∏
{i,j}∈EH :αi+αj<1

nαi+αj−1
)
.

To prove Theorem 2.1(ii) we optimize this over α = (α1, . . . , αk). Here ε does not appear
in the scaling, since it is independent of n. To prove Theorem 2.1(i) for εn ↓ 0, we analyze
N(sub)(H,M

(α)
n (ε)) in more detail in Section 7.

To prove the sharp asymptotics of Theorem 2.2, we compute the contribution to the ex-
pectation and the variance of the number of subgraphs in ECM(n)(D) from vertices with
degrees proportional to

√
n in Section 6. We use a second moment method to show that the

number of subgraphs concentrates around its expectation in ECM(n)(D). We then investigate
the asymptotic behavior of this expectation. A first moment method which shows that the
expected contribution to the number of subgraphs from vertices with other degrees is small
completes the proof of Theorem 2.2.

Theorem 2.2 for induced subgraphs can be proven similarly, the only difference being that
we have to take into account that to form an induced subgraph, some edges are not allowed
to be present in ECM(n). We explain how this changes the proof of Theorems 2.1 and 2.2 in
more detail in Section 8.

4. Maximum contribution: Proof of Theorem 2.1(ii).

4.1. The probability of avoiding a subgraph. The edges of a subgraph are not present
independently. The following lemma computes the probability that an edge is not present
conditionally on other edges not being present.

LEMMA 4.1. Fix m ∈ N and ε > 0. Let {{ui, vi}}i∈[m+1] be such that ui, vi ∈ [n] for all
i ∈ [m + 1] and {um+1, vm+1} �= {ui, vi} for all i ∈ [m]. Let

(4.1) E = {
Xui,vi

= 0 ∀i ∈ [m]}.
If Dui

,Dvi
≤ n1/(τ−1)/ε for i ∈ [m + 1], then

(4.2) Pn(Xum+1,vm+1 = 0 | E) = O
(
e−Dum+1Dvm+1/4Ln

)
.

Furthermore, when Dum+1Dvm+1 ≤ n/ε, for γ ∈ ( τ−2
2(τ−1)

, τ−2
τ−1),

(4.3) Pn(Xum+1,vm+1 = 0 | E) = e−Dum+1 Dvm+1
Ln

(
1 + O

(
Dum+1Dvm+1

Ln

n−γ

))
.
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Throughout the rest of the paper, we mainly use (4.2) to bound the probability that an edge
between two high-degree vertices is absent, whereas we use (4.3) to compute asymptotic
identities for the probability that a subgraph is present.

PROOF. For m = 0 the claim is proven in [18], eq (4.6) and (4.9), which states that for
two vertices u and v with Du > Dv ,

(4.4) Pn(Xu,v = 0) = e−DuDv/Ln + O
(
D2

uDv/L
2
n

)
,

and that, by using [18], equation (4.5), as well as Ln − 2i + 1 ≤ Ln and 1 − x ≤ e−x ,

(4.5) Pn(Xu,v = 0) ≤
Du/2∏
i=1

(
1 − Dv

Ln − 2i + 1

)
≤ e−DuDv/2Ln.

Thus we assume that m ≥ 1. Note that � := {{ui, vi}}i∈[m] may contain the same vertices
multiple times. Denote the number of distinct vertices in {{ui, vi}}i∈[m] by r , and denote
these distinct vertices by w1, . . . ,wr . Let um+1, vm+1 correspond to wr and wr−1 (if they are
present in w1, . . . ,wr at all). The ordering of the other vertices may be arbitrary.

We now construct ECM(n)(D) conditionally on the edges � not being present. We pair the
half-edges of the erased configuration model attached to w1, . . . ,wr . First we pair all half-
edges adjacent to w1. Since we condition on the edges � not being present, no half-edge from
w1 is allowed to pair to any of its neighbors in �. After that, we pair all remaining half-edges
from w2, conditionally on these half-edges not connecting to one of the neighbors of w2 in
�, and so on. We continue until all of the forbidden edges � have at least one incident vertex
whose half-edges have already been paired. Then, if we pair the rest of the half-edges, we
know that none of the edges in � are present.

Let B denote the number of vertices we have to pair before all of the forbidden edges �

have at least one incident vertex whose half-edges have already been paired. We never have
to pair half-edges adjacent to um+1 or to vm+1 (if they are present in {{ui, vi}}i∈[m]), since
they are last in the ordering, and {um+1, vm+1} is not present in {{ui, vi}}i∈[m]. Therefore,
the half-edges incident to all forbidden neighbors of um+1 and vm+1 in � have already been
paired before arriving at um+1 or vm+1. Let X̂u,v denote the number of half-edges between
u and v in the configuration model, so that the edge indicator of the erased configuration
model can be written as Xu,v = 1{X̂u,v > 0}. Furthermore, let F≤s = σ((X̂wi,j )i≤s,j∈[n]) be
the information about the pairings that have been constructed up to time s.

After pairing the half-edges incident to vertices in [B], denote

(4.6) L̃n = Ln − 2
∑

i∈[B]
(Dwi

− X̂wi,wi
),

which equals the remaining half-edges after pairing the half-edges incident to (wi)i∈[B]. Here
we subtract Dwi

twice, since the pairing of every half-edge removes one half-edge incident
to wi , and one other half-edge, unless it is paired to another half-edge incident to wi , giving
rise to the term X̂wi,wi

. Define D̃um+1 = Dum+1 −∑
i∈[B] X̂i,um+1 , and define Dṽm+1 similarly.

These quantities are all measurable with respect to F≤B . The probability that um+1 does not
pair to vm+1 is the probability that um+1 of degree D̃um+1 does not connect to vm+1 of degree
D̃vm+1 in a configuration model with L̃n half-edges. Thus, using (4.4),

(4.7) Pn(Xum+1,vm+1 = 0 | F≤B) = e−D̃um+1 D̃vm+1/L̃n + O
(
D̃2

um+1
D̃vm+1/L̃

2
n

)
,

where we have assumed w.l.o.g. that D̃um+1 ≥ D̃vm+1 .
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We now proceed to prove (4.3). The probability that the j th half-edge incident to wi pairs
to um+1 can be bounded as

(4.8)
Pn(j th half-edge pairs to um+1) ≤ Dum+1

Ln − 2j − 3 − 2
∑

s∈[i−1] Dws

≤ KDum+1/Ln,

for some K > 0. We have to pair at most Dwi
≤ n1/(τ−1)/ε half-edges, since some of the

half-edges incident to wi may have been used already in previous pairings. Therefore, we
can stochastically dominate X̂wi,um+1 by Ywi

, where Ywi
∼ Bin(n1/(τ−1)/ε,KDum+1/Ln), so

that E[Ywi
] = K1n

−βDum+1 for some K1, where β = (τ − 2)/(τ − 1).
Choose γ ∈ ( τ−2

2(τ−1)
, τ−2

τ−1). By the Chernoff bound, for some K̃ > 0,

P
(
Ywi

> K1n
−βDum+1

(
1 + nγ )) ≤ e−K̃n2γ−βDum+1 .(4.9)

Define the events

Bn,u = {∃i ∈ [B] : X̂wi,um+1 > K1n
−βDum+1

(
1 + nγ )}

,(4.10)

Bn,v = {∃i ∈ [B] : X̂wi,vm+1 > K1n
−βDvm+1

(
1 + nγ )}

,(4.11)

and let Bc
n,u and Bc

n,v denote their respective complements, so that, by a union bound,

P
(
Bc

n,u

) ≥ 1 − Be−K̃n2γ−βDum+1 .(4.12)

On the event Bc
n,u,

(4.13) D̃um+1 ≥ Dum+1

(
1 − ∑

i∈[B]
X̂wi,um+1

)
= Dum+1

(
1 + O

(
nγ−β))

.

Similarly, D̃vm+1 = Dvm+1(1 + O(nγ−β)) on Bc
n,v , where P(Bc

n,v) ≥ 1 − Be−K̃n2γ−βDvm+1 .
Then, when Dum+1Dvm+1 = O(n) as assumed for (4.3), (4.7) becomes

Pn

(
Xum+1,vm+1 = 0 | FB+1,Bc

n,u,Bc
n,v

)

= e−Dum+1 Dvm+1
Ln

(1+O(n−γ )) + O

(
D2

um+1
Dvm+1

L2
n

)
(4.14)

= e−Dum+1 Dvm+1
Ln

(
1 + O

(
Dum+1Dvm+1

Ln

n−γ

))
,

where we have used that Dum+1 = O(n1/(τ−1)). Furthermore, 2γ − β > 0, whereas by as-
sumption Dum+1Dvm+1/Ln = O(1), so that (4.12) together with (4.14) proves (4.3).

To prove (4.2), we use (4.5) and the fact that on the event Bc
n,u ∩ Bc

n,v , Dvm+1Dum+1 ≥
D̃vm+1D̃um+1/2 for n sufficiently large to obtain

Pn

(
Xum+1,vm+1 = 0 | FB+1Bc

n,u,Bc
n,v

) ≤ e−D̃um+1 D̃vm+1/2L̃n

≤ e−D̃um+1 D̃vm+1/2Ln(4.15)

≤ e−Dum+1Dvm+1/4Ln.

Combining this with (4.12) and the fact that 2γ − β > 0 completes the proof of (4.2). �
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4.2. An optimization problem. We now use Lemma 4.1 to study the probability that a
subgraph is present on vertices (v1, . . . , vk) of specific degrees. Assume that Dvi

∈ [ε,1/ε]nαi

with αi ∈ [0,1/(τ − 1)] for all i, so that Dvi
= �(nαi ).

Let H be a subgraph on k vertices labeled as 1, . . . , k, and with m edges labeled a
EH = {{i1, j1}, . . . , {im, jm}}. Furthermore, let ECM(n)(D)|v be the induced subgraph of
ECM(n)(D) on the vertices v = (v1, . . . , vk). We aim to study the probability that this oc-
curs.

When αi + αj < 1, by (4.4),

(4.16) Pn(Xvi,vj
= 1) = (

1 − e−�(n
αi+αj −1

))(1 + o(1)
) = �

(
nαi+αj−1)

.

Furthermore, by (4.4), Pn(Xvi,vj
= 1) = �(1) and Pn(Xvi,vj

= 0) = �(1) when αi +αj = 1.
When αi + αj > 1 instead, by (4.5),

(4.17) Pn(Xvi,vj
= 1) = 1 − O

(
e−n

αi+αj −1
/(4μ)),

so that it equals 1 minus a stretched exponentially small term. For vertices vi, vj ∈ [n] with
Dvi

∈ [ε,1/ε]nαi and Dvj
∈ [ε,1/ε]nαj , denote

(4.18) wi,j = nαi+αj−1−γ ,

with γ as in (4.3). By Lemma 4.1, for any set of m edges in [n], and Dup ∈ [ε,1/ε]nαip ,
Dvp ∈ [ε,1/ε]nαjp ,

Pn(Xu1,v1 = · · · = Xum,vm = 0) = ∏
p : αip+αjp<1

(
1 + O(wip,jp )

)(
1 − �

(
n

αip+αjp−1))

× ∏
p : αip+αjp=1

e
−Duip

Dvjp
/(μn)(

1 + O
(
n−(τ−2)/(τ−1)))(4.19)

× ∏
p : αip+αjp>1

O
(
e−n

αip
+αjp

−1
/(4μ)).

For ease of notation, we denote

(4.20) q(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 + O(wi,j )

)(
1 − �

(
nαi+αj−1))

if αi + αj < 1,

e−Dvi
Dvj

/(μn)(1 + O
(
n−γ ))

if αi + αj = 1,

O
(
e−n

αi+αj −1
/(4μ)) if αi + αj > 1.

We write the probability that H is present on a specified subset of vertices v = (v1, . . . , vk)

as

Pn

(
ECM(n)(D)|v ⊇ EH

)
= 1 −

m∑
l=1

Pn(Xvil
,vjl

= 0) + ∑
l �=p

Pn(Xvil
,vjl

= Xvip ,vjp
= 0)

− ∑
l �=p �=r

Pn(Xvil
,vjl

= Xvip ,vjp
= Xvir ,vir

= 0) + · · ·

+ (−1)mPn(Xvi1 ,vj1
= · · · = Xvim,vjm

= 0)(4.21)

= 1 −
m∑

l=1

q(il, jl) + ∑
l �=p

q(il, jl)q(ip, jp)



514 R. VAN DER HOFSTAD, J. S. H. VAN LEEUWAARDEN AND C. STEGEHUIS

− ∑
l �=p �=r

q(il, jl)q(ip, jp)q(ir , jr) + · · · + (−1)m
∏

l∈[m]
q(il, jl)

= ∏
l∈[m]

(
1 − q(il, jl)

) = �

( ∏
{i,j}∈EH : αi+αj<1

nαi+αj−1
)
.

Here we have used that, for αi + αj < 1,

(4.22) 1 − q(i, j) = 1 − (
1 − �

(
nαi+αj−1))(

1 + O(wi,j )
) = �

(
nαi+αj−1)

,

and that, for αi + αj > 1,

(4.23) 1 − q(i, j) = 1 − O
(
e−n

αi+αj −1
/(4μ)) = 1 + o(1).

Furthermore, for Dvi
∈ [ε,1/ε]nαi , Dvj

∈ [ε,1/ε]nαj and αi + αj = 1,

(4.24) 1 − q(i, j) = (
1 + O

(
n−γ ))(

1 − e−DiDj /(μn)) = �(1),

so that edges {i, j} with αi + αj ≥ 1 do not contribute to the order of magnitude of the last
term in (4.21). The degrees are an i.i.d. sample from a power-law distribution. Therefore,

P
(
D1 ∈ [ε,1/ε](μn)α

) =
(μn)α/ε∑

x=ε(μn)α

cx−τ (
1 + o(1)

)

= O(1)

∫ 1/ε(μn)α

ε(μn)α
cx−τ dx = K(ε)O

(
(μn)α(1−τ)),

(4.25)

for some K(ε) not depending on n. The number of vertices with degrees in [ε,1/ε](μn)α

is Binomial(n,P(D1 ∈ [ε,1/ε](μn)α)), so that the number of vertices with degrees in
[ε,1/ε](μn)α is �P(n

(1−τ)α+1) for α ≤ 1
τ−1 . Then, for M

(α)
n as in (2.4),

(4.26) # sets of vertices with degrees in M(α)
n = �P

(
nk+(1−τ)

∑
i αi

)
.

Combining (4.21) and (4.26) yields

(4.27) N(sub)(H,M(α)
n (ε)

) = �P

(
nk+(1−τ)

∑
i αi

∏
{i,j}∈EH :αi+αj<1

nαi+αj−1
)
.

The maximum contribution is obtained for α that maximizes

(4.28)

max(1 − τ)
∑
i

αi + ∑
{i,j}∈EH : αi+αj<1

(αi + αj − 1)

s.t. αi ∈
[
0,

1

τ − 1

]
∀i.

The following lemma shows that this optimization problem attains its maximum for specific
values of the exponents αi :

LEMMA 4.2 (Maximum contribution to subgraphs). Let H be a connected graph on
k vertices. If the solution to (4.28) is unique, then the optimal solution satisfies αi ∈
{0, τ−2

τ−1 , 1
2 , 1

τ−1} for all i. If it is not unique, then there exist at least 2 optimal solutions

with αi ∈ {0, τ−2
τ−1 , 1

2 , 1
τ−1} for all i. In any optimal solution αi = 0 if and only if vertex i has

degree one in H .
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PROOF. Defining βi = αi − 1
2 yields that (4.28) equals

(4.29) max
1 − τ

2
k + (1 − τ)

∑
i

βi + ∑
{i,j}∈EH : βi+βj<0

(βi + βj ),

over all possible values of βi ∈ [−1
2 , 3−τ

2(τ−1)
]. Then, we have to prove that βi ∈ {−1

2 , τ−3
2(τ−1)

,0,
3−τ

2(τ−1)
} for all i in the optimal solution. Note that (4.29) is a piecewise linear function in

β1, . . . , βk . Therefore, if (4.29) has a unique maximum, then it must be attained at the bound-
ary for βi or at a border of one of the linear sections. Thus, any unique optimal value of βi

satisfies βi = −1
2 , βi = τ−3

2(τ−1)
or βi + βj = 0 for some j . We ignore the constant factor of

(1 − τ)k
2 in (4.29), since it does not influence the optimal β values. Rewriting (4.29) without

the constant factor yields

(4.30) max
∑
i

βi

(
1 − τ + ∣∣{s ∈ [k] : {s, i} ∈ EH and βs < −βi

}∣∣).
The proof of the lemma then consists of three steps:

Step 1. Show that βi = −1
2 if and only if vertex i has degree 1 in H in any optimal solution.

Step 2. Show that any unique solution does not contain i with |βi | ∈ (0, 3−τ
2(τ−1)

).
Step 3. Show that any optimal solution that is not unique can be transformed into two
different optimal solutions with βi ∈ {−1

2 , τ−3
2(τ−1)

,0, 3−τ
2(τ−1)

} for all i.

Step 1. Let i be a vertex of degree 1 in H , and j be the neighbor of i. Let Nj denote
the number of edges in H from j to other vertices v not equal to i with βv < −βj . The
contribution from vertices i and j to (4.30) is

(4.31) βj (1 − τ + Nj) + βi(1 − τ + 1{βi>−βj }) + βj1{βi<−βj }.

For any value of βj ∈ [−1
2 , 3−τ

2(τ−1)
], this contribution is maximized when choosing βi = −1

2 .

Thus, βi = −1
2 in the optimal solution if the degree of vertex i is one.

Let i be a vertex in VH , and recall that di denotes the degree of i in H . Let i be such that
di ≥ 2 in H , and suppose that βi < τ−3

2(τ−1)
. Because the maximal value of βj for j �= i is

3−τ
2(τ−1)

, the contribution to the ith term of (4.30) is

(4.32) −1

2
(1 − τ + di) < 0,

irrespective of the values of the βj , j �= i. Increasing βi to τ−3
2(τ−1)

then gives a higher contri-

bution. Thus, βi ≥ τ−3
2(τ−1)

when di ≥ 2.
Step 2. Now we show that when the solution to (4.30) is unique, it is never optimal to have

|β| ∈ (0, 3−τ
2(τ−1)

). Let

(4.33) β̃ = min
i:|βi |>0

|βi |.

Let Nβ̃− denote the number of vertices with their β value equal to −β̃ , and Nβ̃+ the number

of vertices with value β̃ , where Nβ̃+ + Nβ̃− ≥ 1. Furthermore, let Eβ̃− denote the number

of edges from vertices with value −β̃ to other vertices j such that βj < β̃ , and Eβ̃+ the

number of edges from vertices with value β̃ to other vertices j such that βj < −β̃ . Then, the
contribution from these vertices to (4.30) is

(4.34) β̃
(
(1 − τ)(Nβ̃+ − Nβ̃−) + Eβ̃+ − Eβ̃−

)
.
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Because we assume β to be optimal, and the optimum to be unique, the value inside the
brackets cannot equal zero. The contribution is linear in β̃ and it is the optimal contribu-
tion, and therefore β̃ ∈ {0, 3−τ

2(τ−1)
}. This shows that βi ∈ { τ−3

2(τ−1)
,0, 3−τ

2(τ−1)
} for all i such that

di ≥ 2.
Step 3. Suppose that the solution to (4.30) is not unique. Suppose that β∗ appears in one

of the optimizers of (4.30). In the same notation as in (4.34), the contribution from vertices
with β-values β∗ and −β∗ equals

(4.35) β∗
[
(1 − τ)(Nβ+∗ − Nβ−∗ ) + Eβ+∗ − Eβ−∗

]
.

Since this contribution is linear in β∗, the contribution of these vertices can only be nonunique
if the term within the square brackets equals zero. Thus, for the solution to (4.30) to be
nonunique, there must exist β̂1, . . . , β̂s > 0 for some s ≥ 1 such that

(4.36) β̂j

(
(1 − τ)(N

β̂+
j

− N
β̂−

j
) + E

β̂+
j

− E
β̂−

j

) = 0 ∀j ∈ [s].

Setting all β̂j = 0 and setting all β̂j = 3−τ
2(τ−1)

are both optimal solutions. Thus, if the solution

to (4.30) is not unique, at least 2 solutions exist with βi ∈ { τ−3
2(τ−1)

,0, 3−τ
2(τ−1)

} for all i ∈ VH .
�

PROOF OF THEOREM 2.1(ii) FOR SUBGRAPHS. Let α(sub) be the unique optimizer of
(4.28). By Lemma 4.2, the maximal value of (4.28) is attained by partitioning VH \ V1 into
the sets S1, S2, S3 such that vertices in S1 have α

(sub)
i = τ−2

τ−1 , vertices in S2 have α
(sub)
i =

1
τ−1 , vertices in S3 have α

(sub)
i = 1

2 and vertices in V1 have α
(sub)
i = 0. Then, the edges with

α
(sub)
i + α

(sub)
j < 1 are edges inside S1, edges between S1 and S3 and edges from degree 1

vertices. Recall that the number of edges inside S1 is denoted by ES1 , the number of edges
between S1 and S3 by ES1,S3 and the number of edges between V1 and Si by ES1,V1 . Then we
can rewrite (4.28) as

(4.37)

max
P

[
(1 − τ)

(
τ − 2

τ − 1
|S1| + 1

τ − 1
|S2| + 1

2
|S3|

)
+ τ − 3

τ − 1
ES1

+ τ − 3

2(τ − 1)
ES1,S3 − ES1,V1

τ − 1
− τ − 2

τ − 1
ES2,V1 − 1

2
ES3,V1

]
,

over all partitions P = (S1, S2, S3) of VH \ V1. Using that |S3| = k − |S1| − |S2| − k1,
ES3,V1 = k1 − ES1,V1 − ES2,V1 , where k1 = |V1| and extracting a factor (3 − τ)/2 shows that
this is equivalent to

(4.38)

1 − τ

2
k + max

P

(3 − τ)

2

(
|S1| − |S2| + τ − 2

3 − τ
k1 − 2ES1 + ES1,S3

τ − 1

− ES1,V1 − ES2,V1

τ − 1

)
.

Since k and k1 are fixed and 3 − τ > 0, we need to maximize

(4.39) B(sub)(H) = max
P

[
|S1| − |S2| − 2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
,

which equals (2.2). By (4.27), the contribution of the maximum is then given by

(4.40) n
3−τ

2 (k+B(sub)(H))+ τ−2
2 k1 = n

3−τ
2 (k2++B(sub)(H))+k1/2,

which proves Theorem 2.1(ii) for subgraphs. �
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5. Proof of Theorem 2.2. Define the special case of M
(α)
n (ε) of (2.4) where αi = 1

2 for
all i ∈ VH = [k] as

(5.1) Wk
n (ε) = {

(v1, . . . , vk) : Dvs ∈ [ε,1/ε]√μn ∀s ∈ [k]},
and let W̄ k

n (ε) denote the complement of Wk
n (ε). Denote the number of subgraphs H with all

vertices in Wk
n (ε) by N(sub)(H,Wk

n (ε)).

LEMMA 5.1 (Major contribution to subgraphs). Let H be a connected graph on k ≥ 3
vertices such that (2.2) is uniquely optimized at S3 = [k], so that B(sub)(H) = 0. Then:

(i) the number of subgraphs with vertices in Wk
n (ε) satisfies

N(sub)(H,Wk
n (ε))

n
k
2 (3−τ)

= (
1 + oP(1)

)
ckμ− k

2 (τ−1)
∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · ·xk)

−τ

× ∏
{i,j}∈EH

(
1 − e−xixj

)
dx1 · · ·dxk + fn(ε),

(5.2)

for some function fn(ε) such that, for any δ > 0,

(5.3) lim
ε↘0

lim sup
n→∞

P
(
fn(ε) > δ | Jn

) = 0;

(ii) A(sub)(H) defined in (2.10) satisfies A(sub)(H) < ∞.

The proof of Lemma 5.1 can be found in Section 6. We now prove Theorem 2.2 using this
lemma.

PROOF OF THEOREM 2.2. We start by studying the expected number of subgraphs with
vertices outside Wk

n (ε). First, we investigate the expected number of subgraphs in the case
where vertex 1 of the subgraph has degree smaller than ε

√
μn. Similar to (4.21), we can use

Lemma 4.1 to show that the probability that H is present on a specified subset of vertices
v = (v1, . . . , vk) can be written as

Pn

(
ECM(n)(D)|v ⊇ EH

) = �

( ∏
{i,j}∈EH : Dvi

Dvj
<Ln

(
1 − e−Dvi

Dvj
/Ln

))

= �

( ∏
{i,j}∈EH

(
1 − e−Dvi

Dvj
/Ln

))
.

(5.4)

Furthermore, by (1.1), there exists C0 such that P(D = k) ≤ C0k
−τ for all k. Let

I (sub)(H,v) = 1{ECM(n)(D)|v⊇EH }, so that N(sub)(H) = ∑
v I (sub)(H,v). Then, the expected

number of subgraphs in the case where vertex 1 of the subgraph has degree smaller than
ε
√

μn is bounded by

(5.5)

∑
v

E
[
I (sub)(H,v)1{Dv1<ε

√
μn} | Jn

]

≤ �(1)nk
∫ ε

√
μn

1

∫ ∞
1

· · ·
∫ ∞

1
(x1 · · ·xk)

−τ
∏

{i,j}∈EH

(
1 − e−xixj /(μn)) dx1 · · ·dxk

= �(1)nk(μn)
k
2 (1−τ)

∫ ε

0

∫ ∞
0

· · ·
∫ ∞

0
(t1 · · · tk)−τ

∏
{i,j}∈EH

(
1 − e−ti tj

)
dt1 · · ·dtk

= O
(
n

k
2 (3−τ))h1(ε),
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where h1(ε) is a function of ε. By Lemma 5.1(ii), h1(ε) → 0 as ε ↘ 0. We can bound the
situation where one of the other vertices has degree smaller than ε

√
n, or where one of the

vertices has degree larger than
√

n/ε, similarly. This yields

(5.6) E
[
N(sub)(H,W̄k

n (ε)
) | Jn

] = O
(
n

k
2 (3−τ))h(ε),

for some function h(ε) not depending on n such that h(ε) → 0 when ε ↘ 0. Then, by the
Markov inequality, conditionally on Jn,

(5.7) N(sub)(H,W̄k
n (ε)

) = h(ε)OP

(
n

k
2 (3−τ)).

Therefore, for any δ > 0,

(5.8) lim sup
ε↘0

lim sup
n→∞

P

(
N(sub)(H, W̄ k

n (ε))

nk(3−τ)/2 > δ
∣∣∣ Jn

)
= 0.

Combining this with the fact that P(Jn) → 1 and Lemma 5.1(i) gives

N(sub)(H)

n
k
2 (3−τ)

P−→ckμ− k
2 (τ−1)

∫ ∞
0

· · ·
∫ ∞

0
(x1, . . . , xk)

−τ

× ∏
{i,j}∈EH

(
1 − e−xixj

)
dx1 · · ·dxk.

(5.9)

�

6. Major contribution to subgraphs: Proof of Lemma 5.1. We first prove Lem-
ma 5.1(i). We compute the expected value of the number of subgraphs in the quenched sense
in Lemmas 6.1 and 6.2. Then, we study the variance of the number of subgraphs in the
quenched sense in Lemma 6.3. Together, these lemmas prove Lemma 5.1(i).

6.1. Conditional expectation. In this section, we study the expected number of subgraphs
in ECM(n)(D). Let H be a subgraph on k vertices, labeled as [k], and m edges, denoted by
e1 = {i1, j1}, . . . , em = {im, jm}.

LEMMA 6.1 (Conditional expectation of subgraphs). Let H be a subgraph such that
(2.2) has a unique maximum, attained at S

(sub)
3 = [k] so that B(sub)(H) = 0. Then, on the

event Jn defined in (3.1),

(6.1) En

[
N(sub)(H,Wk

n (ε)
)] = ∑

(v1,...,vk)∈Wk
n (ε)

∏
{i,j}∈EH

(
1 − e−Dvi

Dvj
/Ln

)(
1 + o(1)

)
.

PROOF. Let v = (v1, . . . , vk) and ECM(n)(D)|v again be the induced subgraph of
ECM(n)(D) on v. We first derive a more detailed expression for the probability that a sub-
graph is present on v than (4.21) which holds when v ∈ Wk

n (ε). Because v ∈ Wk
n (ε), we may

use (4.3) for all edge probabilities to obtain

(6.2) Pn(Xvi1 ,vj1
= · · · = Xvim,vjm

= 0) =
m∏

l=1

Pn(Xvil
,vjl

= 0)
(
1 + O

(
n(τ−2)/(τ−1))).
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When Dvi
,Dvj

∈ [ε√n,
√

n/ε], Pn(Xvi,vj
= 0) = �(1) and Pn(Xvi,vj

= 1) = �(1). There-
fore, similarly to (4.21), for v ∈ Wk

n (ε),

(6.3)

Pn

(
ECM(n)(D)|v ⊇ EH

)
= 1 −

m∑
l=1

Pn(Xvil
,vjl

= 0) + ∑
l �=p

Pn(Xvil
,vjl

= Xvip ,vjp
= 0)

− ∑
l �=p �=r

Pn(Xvil
,vjl

= Xvjp ,vip
= Xvir ,vjr

= 0) + · · ·

+ (−1)mPn(Xvi1 ,vj1
= · · · = Xvim,vjm

= 0)

= (
1 + o(1)

) m∏
l=1

(
1 − Pn(Xvil

,vjl
= 0)

)
.

Thus, the conditonal expected value satisfies

En

[
N(sub)(H,Wk

n (ε)
)] = ∑

v∈Wk
n (ε)

Pn

(
ECM(n)(D)|v ⊇ EH

)

= (
1 + o(1)

) ∑
v∈Wk

n (ε)

m∏
l=1

(
1 − Pn(Xvil

,vil
= 0)

)
.

(6.4)

Because Dvi
Dvj

= O(n) and Ln = μn(1 + o(1)) under Jn, by (4.4),

(6.5) Pn(Xvi,vj
= 1) = 1 − e−Dvi

Dvj
/Ln + O

(
D2

vi
Dvj

L2
n

)
= (

1 + o(1)
)(

1 − e−Dvi
Dvj

/Ln
)
.

This results in

(6.6) En

[
N(sub)(H,Wk

n (ε)
)] = (

1 + o(1)
) ∑
v∈Wk

n (ε)

∏
{i,j}∈EH

(
1 − e−Dvi

Dvj
/Ln

)
.

�

6.2. Convergence of conditional expectation. We now study the asymptotic behavior of
the expected number of subgraphs using Lemma 6.1.

LEMMA 6.2 (Convergence of conditional expectation of
√

n subgraphs). Let H be a
subgraph such that (2.2) has a unique maximizer, and the maximum is attained at 0. Then,

En[N(sub)(H,Wk
n (ε))]

n
k
2 (3−τ)

= (
1 + oP(1)

)
ckμ− k

2 (τ−1)
∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · ·xk)

−τ

× ∏
{i,j}∈EH

(
1 − e−xixj

)
dx1 · · ·dxk + fn(ε),

(6.7)

for some function fn(ε) such that, for any δ > 0,

(6.8) lim
ε↘0

lim sup
n→∞

P
(
fn(ε) > δ | Jn

) = 0.

PROOF. Let |EH | = m and denote the edges of H by {i1, j1}, . . . , {im, jm}. Define

(6.9) g(t1, . . . , tk) := ∏
{i,j}∈EH

(
1 − e−tutv

)
.
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Using the Taylor expansion of 1 − e−xy on [ε,1/ε]2 results in

(6.10) 1 − e−xy =
s∑

i=1

(xy)i

i! (−1)i + O

(
ε−s

(s + 1)!
)
.

Since g is bounded on F = [ε,1/ε]k , we can find s1, . . . , sm and η(t1, . . . , tk) such that
|η(t1, . . . , tk)| ≤ εk(τ−1)+1 such that

g(t1, . . . , tk) =
s1∑

p1=1

· · ·
sm∑

pm=1

(
(−1)p1

t
p1
u1 t

p1
v1

p1! · · · (−1)pm
t
pm
um t

pm
vm

pm!
)

+ η(t1, . . . , tk)

=
s1∑

p1=1

· · ·
sm∑

pm=1

(
(−1)p1+···+pm

p1! · · ·pm! t
γ1
1 t

γ2
2 · · · tγk

k

)
+ η(t1, . . . , tk),

(6.11)

where

(6.12) γj := γj (p1, . . . , pm) = ∑
l

pl1{il=j or jl=j }.

Let M(n) denote the random measure

(6.13) M(n)([a, b]) = (μn)
1
2 (τ−1)n−1

∑
v∈[n]

1{Dv∈√
μn[a,b]}.

The number of vertices with degrees in a certain interval [a, b] is binomially distributed. By

(1.1), we thus get (μn)
1
2 (τ−1)P(D1 ∈ √

n[a, b]) P−→ λ([a, b]), where

(6.14) λ
([a, b]) := c

∫ b

a
x−τ dx.

Hence, by the weak law of large numbers, as n → ∞,

(6.15) M(n)([a, b]) P−→ λ
([a, b]).

Let N(n) denote the product measure M(n) × M(n) × · · · × M(n) (k times). Then (6.11) to-
gether with Lemma 6.1 yields

En[N(sub)(H,Wk
n (ε))]

n
k
2 (3−τ)μ

k
2 (1−τ)

=
∫
F

g(t1, . . . , tk)dN(n)(t1, . . . , tk)

=
∫
F

s1∑
p1=1

· · ·
sm∑

pm=1

((
(−1)p1+···+pm

p1! · · ·pm! t
γ1
1 t

γ2
2 · · · tγk

k

)
+ η(t1, . . . , tk)

)
dN(n)(t1, . . . , tk)

=
s1∑

p1=1

· · ·
sm∑

pm=1

(−1)p1+···+pm

p1! · · ·pm!
∫ 1/ε

ε
t
γ1
1 dM(n)(t1) · · ·

∫ 1/ε

ε
t
γk

k dM(n)(tk) + fn(ε).

(6.16)

Here

fn(ε) =
∫
F

s1∑
p1=1

· · ·
sm∑

pm=1

η(t1, . . . , tk)dN(n)(t1, . . . , tk)

≤
∫
F

s1∑
p1=1

· · ·
sm∑

pm=1

εk(τ−1)+1 dN(n)(t1, . . . , tk)
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= εk(τ−1)+1s1 · · · smM(n)([ε,1/ε])k(6.17)

= εk(τ−1)+1OP

(
λ
([ε,1/ε])k)

= εk(τ−1)+1(
ε1−τ − ετ−1)k

OP(1) = OP(ε),

which shows that, for any δ > 0,

(6.18) lim
ε↘0

lim sup
n→∞

P
(
fn(ε) > δ | Jn

) = 0.

As in [30], equation (55), for any γ ,

(6.19)
∫ 1/ε

ε
xγ dM(n)(x)

P−→
∫ 1/ε

ε
xγ dλ(x).

Combining this with (6.16) results in

En[N(sub)(H,Wk
n (ε))]

n
k
2 (3−τ)μ

k
2 (1−τ)

= (
1 + oP(1)

) s1∑
p1=1

· · ·
sm∑

pm=1

(−1)p1+···+pm

p1! · · ·pm!

×
∫ 1/ε

ε
t
α1
1 dλ(t1) · · ·

∫ 1/ε

ε
t
αk

k dλ(tk) + fn(ε)

= (
1 + oP(1)

) ∫
F

s1∑
p1=1

· · ·
sm∑

pm=1

(−1)p1+···+pm

p1! · · ·pm! t
α1
1 · · · tαk

k dλ(t1) · · ·dλ(tk) + fn(ε)

= (
1 + oP(1)

) ∫
F

g(t1, . . . , tk)dλ(t1) · · ·dλ(tk) + fn(ε).

(6.20)

Then, by (6.15),

En[N(sub)(H,Wk
n (ε))]

n
k
2 (3−τ)

= (
1 + oP(1)

)
ckμ− k

2 (τ−1)
∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(t1 · · · tk)−τ

× g(t1, . . . , tk)dt1 · · ·dtk + fn(ε),

(6.21)

which proves the claim. �

6.3. Conditional variance. We now study the conditional variance of the number of sub-
graphs in the quenched setting for the degrees. The following lemma shows that the condi-
tional variance of the number of subgraphs is small compared to its expectation.

LEMMA 6.3 (Conditional variance for subgraphs). Let H be a subgraph such that (2.2)
has a unique maximum attained at 0. Then, on the event Jn defined in (3.1),

(6.22)
Varn(N(sub)(H,Wk

n (ε)))

En[N(sub)(H,Wk
n (ε))]2

P−→ 0.

PROOF. By Lemma 6.2,

(6.23) En

[
N(sub)(H,Wk

n (ε)
)]2 = �P

(
n(3−τ)k).
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Thus, we need to prove that the variance is small compared to n(3−τ)k . Denote v =
(v1, . . . , vk) and u = (u1, . . . , uk) and, for ease of notation, we denote G = ECM(n)(D).
We write the variance as

Varn
(
N(sub)(H,Wk

n (ε)
)) = ∑

v∈Wk
n (ε)

∑
u∈Wk

n (ε)

(
Pn(G|v ⊇ EH ,G|u ⊇ EH )

− Pn(G|v ⊇ EH)Pn(G|u ⊇ EH )
)
.

(6.24)

This splits into various cases, depending on the overlap of v and u. When v and u do not
overlap, similar to (6.3),

(6.25)

∑
v∈Wk

n (ε)

∑
u∈Wk

n (ε)

(
Pn(G|v ⊇ EH ,G|u ⊇ EH) − Pn(G|v ⊇ EH )Pn(G|u ⊇ EH)

)

= ∑
v∈Wk

n (ε)

∑
u∈Wk

n (ε)

((
1 + o(1)

) m∏
l=1

(
1 − Pn(Xvil

,vjl
= 0)

)(
1 − Pn(Xuil

,ujl
= 0)

)

− (
1 + o(1)

) m∏
l=1

(
1 − Pn(Xvil

,vjl
= 0)

)(
1 − Pn(Xuil

,ujl
= 0)

))

= En

[
N(sub)(H,Wk

n (ε)
)]2

o(1).

The other contributions are when v and u overlap. We then denote by |v ∪ u| the number of
distinct vertices in v and u. In this situation, we use the bound Pn(Xu,v = 1) ≤ 1. When v
and u overlap on s ≥ 1 vertices, we bound the contribution to (6.24) as

(6.26)

∑
v,u∈Wk

n (ε) : |v∪u|=2k−s

Pn(G|v ⊇ EH ,G|u ⊇ EH) ≤ ∣∣{i : Di ∈ √
μn[ε,1/ε]}∣∣2k−s

= OP

(
n

(3−τ)(2k−s)
2

)
,

which is o(n(3−τ)k), as required. �

PROOF OF LEMMA 5.1. We start by proving part (i). By Lemma 6.3 and Chebyshev’s
inequality, conditionally on the degrees

(6.27) N(sub)(H,Wk
n (ε)

) = En

[
N(sub)(H,Wk

n (ε)
](

1 + oP(1)
)
.

Combining this with Lemma 6.2 proves Lemma 5.1(i). Lemma 5.1(ii) is a direct consequence
of Lemma 7.2 in the next section, when we take |S∗

3 | = k. Here, we remark that the proof of
Lemma 7.2 is entirely self-contained, so no circularity in our argument arises. �

7. Major contribution to general subgraphs: Proof of Theorem 2.1(i). In this section
we prove Theorem 2.1(i) for subgraphs. We start by giving an overview of the proof. We

restrict this overview to the expected value of N(sub)(H,M
(α(sub))
n (εn)).

To compute E[N(sub)(H,M
(α(sub))
n (εn))], we need to count the expected number of copies

of H on vertices v1, . . . , vk ∈ [n] for which Dvi
≈ nα

(sub)
i . This means that we sum the prob-

abilities that Dvi
= ki for all i ∈ [k] over all ki that are of the order nα

(sub)
i , multiplied by

the probabilities that {vi, vj } is an edge in CMn(D) for all {i, j} ∈ EH , conditionally on the

degrees. We rescale the arising sum over ki , and instead integrate over xi = kin
−α

(sub)
i .

After rescaling, we are left with a k-fold integral over the variables xi for all i ∈ [k] of
which we aim to show that it satisfies the appropriate bounds. Here, we will crucially rely
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on the uniqueness of the optimization problem in (2.2). While we are “merely” left with a
k-fold integral over relatively simple functions, due to the somewhat implicit information that
(2.2) has a unique solution, proving the finiteness of the integral is quite challenging. Indeed,
we will need to resort to comparisons over different partitions, and use that they provide a
smaller value of the functional in (2.2) to establish the finiteness of the integral.

Let us give some more details about the nature of the integral, and on the organisation of
the proof. To simplify notation, we write S∗

i = S
(sub)
i for i = 1,2,3 for the optimal partition

P in (2.2). Recall that, by Lemma 6.1 and on the event Jn,

(7.1) Pn

({vi, vj } is an edge in CMn(D)
) ≤ min

(
Dvi

Dvj
/(μn),1

)
,

and these events are close to being independent for different edges. We bound the minimum
in (7.1) by Dvi

Dvj
/(μn) for i, j ∈ S∗

1 , for i or j in V1 and for i ∈ S∗
1 , j ∈ S∗

3 or vice versa.
We bound the minimum by 1 for i, j ∈ S∗

2 and i ∈ S∗
2 , j ∈ S∗

3 or vice versa. This means that

in the integral over the rescaled variables xi , a factor x
ζi

i appears for a certain ζi ≥ 0 (for a
precise definition of ζi , see (7.2)). Further, the nice aspect of this bound is that the integrals
over xi for i ∈ [k] factorize into integrals over xi for i ∈ S∗

3 and i ∈ S∗
1 ∪S∗

2 . This allows us to
study these integrals separately. It turns out that our proof of the finiteness of these integrals
depends sensitively on the optimization problem in (2.2) having a unique solution. In turn,
this explains why some of these integrals are quite hard to bound, as the only ingredient we
have is that the optimization problem in (2.2) has a unique solution.

The remainder of the proof is now organized as follows. In Lemma 7.1, we derive bounds
on the additional powers ζi of xi in the rescaled integral, which will prove crucial in bounding
the arising integrals. In Lemma 7.2, we derive a bound on the integrals over xi for i ∈ S∗

3 ,
and in Lemma 7.3, we bound the integrals over xi for i ∈ S∗

1 ∪ S∗
2 . After stating Lemmas 7.2

and 7.3, we complete the proof of Theorem 2.1(i). Then we give the (rather involved) proofs
of Lemmas 7.2 and 7.3.

Before giving the details of the argument, we introduce some further notation. For any
W ⊆ VH , we denote by di,W the number of edges from vertex i to vertices in W . Let H be
a connected subgraph, such that the optimum of (2.2) is unique, and let P = (S∗

1 , S∗
2 , S∗

3 ) be
the optimal partition. Define

(7.2) ζi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if di = 1,

di,S∗
1
+ di,S∗

3
+ di,V1 if i ∈ S∗

1 ,

di,V1 if i ∈ S∗
2 ,

di,S∗
1
+ di,V1 if i ∈ S∗

3 .

The following lemma states several properties of the number of edges between vertices in the
different optimizing sets.

LEMMA 7.1 (Bounds on the additional powers of rescaled variables). Let H be a con-
nected subgraph, such that the optimum of (2.2) is unique, and let P = (S∗

1 , S∗
2 , S∗

3 ) be the
optimal partition. Then:

(i) ζi ≤ 1 for i ∈ S∗
1 ;

(ii) di,S∗
1
+ ζi ≥ 2 for i ∈ S∗

2 ;
(iii) ζi ≤ 1 and di,S∗

3
+ ζi ≥ 2 for i ∈ S∗

3 .

PROOF. Suppose first that i ∈ S∗
1 . Now consider the partition Ŝ1 = S∗

1 \{i}, Ŝ2 = S∗
2 , S3 =

S∗
3 ∪{i}. Then, E

Ŝ1
= ES∗

1
−di,S∗

1
and E

Ŝ1,Ŝ3
= ES∗

1 ,S∗
3
+di,S∗

1
−di,S∗

3
. Furthermore, E

Ŝ1,V1
=



524 R. VAN DER HOFSTAD, J. S. H. VAN LEEUWAARDEN AND C. STEGEHUIS

ES∗
1 ,V1 − di,V1 and E

Ŝ2,V1
= ES∗

2 ,V1 . Because the partition into S∗
1 , S∗

2 and S∗
3 achieves the

unique optimum of (2.2),

(7.3)

∣∣S∗
1
∣∣ − ∣∣S∗

2
∣∣ − 2ES∗

1
− ES∗

1 ,S∗
3
+ ES∗

2 ,V1 − ES∗
1 ,V1

τ − 1

>
∣∣S∗

1
∣∣ − 1 − ∣∣S∗

2
∣∣ − 2ES∗

1
− ES∗

1 ,S∗
3
− di,S∗

1
− di,S∗

3
+ ES∗

2 ,V1 − ES∗
1 ,V1 + di,V1

τ − 1
,

which reduces to

(7.4) di,S∗
1
+ di,S∗

3
+ di,V1 = ζi < τ − 1.

Using that τ ∈ (2,3) then yields di,S∗
1
+ di,S∗

3
+ di,V1 ≤ 1.

Similar arguments give the other inequalities. For example, for i ∈ S∗
3 , considering the

partition where i is moved to S∗
1 gives the inequality di,S∗

3
+di,S∗

1
+di,V1 ≥ 2, and considering

the partition where i is moved to S∗
2 results in the inequality di,S∗

1
+ di,V1 ≤ 1, so that ζi ≤ 1.

�

We now show that two integrals related to the solution of the optimization problem (2.2)
are finite, using Lemma 7.1. These integrals are the key ingredient in proving Theorem 2.1(i)
for subgraphs.

LEMMA 7.2 (Subgraph integrals over S∗
3 ). Suppose that the maximum in (2.2) is uniquely

attained by P = (S∗
1 , S∗

2 , S∗
3 ) with |S∗

3 | = s > 0, and say S∗
3 = [s]. Then

(7.5)
∫ ∞

0
· · ·

∫ ∞
0

∏
i∈[s]

x
−τ+ζi

i

∏
{i,j}∈ES∗

3

min(xixj ,1)dxs · · ·dx1 < ∞.

The proof of Lemma 7.2 is deferred to after the proof of Theorem 2.1(i). We continue with
the integrals over S∗

1 ∪ S∗
2 .

LEMMA 7.3 (Subgraph integrals over S∗
1 ∪ S∗

2 ). Suppose the optimal solution to (2.2) is
unique, and attained by P = (S∗

1 , S∗
2 , S∗

3 ). Say that S∗
2 = [t2] and S∗

1 = [t2 + t1] \ [t2]. Then,
for every a > 0,

(7.6)
∫ a

0
· · ·

∫ a

0

∫ ∞
0

· · ·
∫ ∞

0

∏
j∈[t1+t2]

x
−τ+ζj

j

∏
{i,j}∈ES∗

1 ,S∗
2

min(xixj ,1)dxt1+t2 · · ·dx1 < ∞.

The proof of Lemma 7.3 is deferred to after the proof of Theorem 2.1(i). Now we are ready
to complete the proof of Theorem 2.1(i) for subgraphs.

PROOF OF THEOREM 2.1(i). Because Dmax = OP(n
1/(τ−1)), for any ηn → 0, Dmax ≤

n1/(τ−1)/ηn with high probability. Define

(7.7) γ u
i (n) =

⎧⎨
⎩n1/(τ−1)/ηn if i ∈ S∗

2 ,

nα
(sub)
i /εn else,

with α
(sub)
i as in (2.5), and denote

(7.8) γ l
i (n) =

⎧⎨
⎩1 if i ∈ V1,

εnn
α

(sub)
i else.
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We then show that the expected number of subgraphs where the degree of at least one vertex
i satisfies Di /∈ [γ l

i (n), γ u
i (n)] is small, similar to the proof of Theorem 2.2 in Section 5.

With loss of generality, we assume that vertex 1 ∈ VH satisfies 1 ∈ V1. We count the ex-
pected number of v = (v1, . . . , vk) for which the edge {vi, vj } is present in CMn(D) for every
{i, j} ∈ EH . We first study the expected number of copies of H where vertex V1 has degree
Dv1 ∈ [1, γ l

1(n)) and all other vertices satisfy Dvi
∈ [γ l

i (n), γ u
i (n)], by integrating the proba-

bility that subgraph H is formed over the range where vertex v1 has degree Dv1 ∈ [1, γ l
1(n))

and all other vertices satisfy Dvi
∈ [γ l

i (n), γ u
i (n)]. Using that the connection probabilities can

be bounded by M1 min(Dvi
Dvj

/n,1) for some M1 > 0 (recall Lemma 6.1, and in particular
(7.1)), and the degree distribution can be bounded as P(D = k) ≤ M2k

−τ for some M2 > 0
by (1.1), we bound the expected number of such copies of H by

(7.9)

∑
v

E
[
I (sub)(H,v)1{Dv1<γ l

1(n),Dvi
∈[γ l

i (n),γ u
i (n)] ∀i>1}

]

≤ Knk
∫ γ l

1(n)

1

∫ γ u
2 (n)

γ l
2(n)

· · ·
∫ γ u

k (n)

γ l
k (n)

(x1 · · ·xk)
−τ

∏
{i,j}∈EH

min
(

xixj

n
,1

)
dxk · · ·dx1,

for some K > 0, and where we recall that I (sub)(H,v) = 1{ECM(n)(D)|v⊇EH }. This inte-

gral equals zero when vertex 1 is in V1, since then [1, γ l
1(n)) = ∅. Suppose that ver-

tex 1 is in S∗
2 . Without loss of generality, assume that S∗

2 = [t2], S∗
1 = [t1 + t2] \ [t2] and

S∗
3 = [t1 + t2 + t3] \ [t1 + t2]. We bound the minimum in (7.9) by:

(a) xixj /n for i, j ∈ S∗
1 ;

(b) xixj /n for i or j in V1;
(c) xixj /n for i ∈ S∗

1 , j ∈ S∗
3 or vice versa; and

(d) 1 for i, j ∈ S∗
2 and i ∈ S∗

2 , j ∈ S∗
3 or vice versa.

Applying the change of variables yi = xi/nα
(sub)
i results, for some K̃ > 0, in the bound∑

v

E
[
I (sub)(H,v)1{Dv1<γ l

1(n),Dvi
∈[γ l

i (n),γ u
i (n)] ∀i>1}

]

≤ K̃n|S∗
1 |(2−τ)+|S∗

3 |(1−τ)/2−|S∗
2 |

× nkn
τ−3
τ−1 ES∗

1
+ τ−3

2(τ−1)
ES∗

1 ,S∗
3
− 1

τ−1 ES∗
1 ,V1

− 1
2 ES∗

3 ,V1
− τ−2

τ−1 ES∗
2 ,V1

×
∫ εn

0

∫ 1/ηn

0
· · ·

∫ 1/ηn

0

∫ ∞
0

· · ·
∫ ∞

0

∏
i∈VH \V1

y
−τ+ζi

i

× ∏
{i,j}∈ES∗

3
∪ES∗

1 ,S∗
2

min(yiyj ,1)dyt1+t2+t3 · · ·dy1
∏

j∈V1

∫ ∞
1

y1−τ
j dyj ,

where the integrals from 0 to 1/ηn correspond to vertices in S∗
2 and the integrals from 0 to

∞ to vertices in S∗
1 and S∗

3 . Since τ ∈ (2,3), the integrals corresponding to vertices in V1 are
finite. By the analysis from (4.37) to (4.40),

∣∣S∗
1
∣∣(2 − τ) + ∣∣S∗

3
∣∣(1 − τ)/2 − ∣∣S∗

2
∣∣ + k + τ − 3

τ − 1
ES∗

1
+ τ − 3

2(τ − 1)
ES∗

1 ,S∗
3

− 1

τ − 1
ES∗

1 ,V1 − 1

2
ES∗

3 ,V1 − τ − 2

τ − 1
ES∗

2 ,V1(7.10)

= 3 − τ

2

(
k2+ + B(sub)(H)

) + k1/2.
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The integrals over yi ∈ VH \ V1 can be split into∫ εn

0

∫ 1/ηn

0
· · ·

∫ 1/ηn

0

∫ ∞
0

· · ·
∫ ∞

0

∏
i∈S∗

1 ∪S∗
2

y
−τ+ζi

i

∏
{i,j}∈ES∗

1 ,S∗
2

min(yiyj ,1)dyt1+t2 · · ·dy1

×
∫ ∞

0
· · ·

∫ ∞
0

∏
i∈S∗

3

y
−τ+ζi

i

∏
{i,j}∈ES∗

3

min(yiyj ,1)dyt1+t2+t3 · · ·dyt1+t2+1.

(7.11)

By Lemma 7.2 the set of integrals on the second line of (7.11) is finite. Lemma 7.3 shows
that the set of integrals on the first line of (7.11) tends to zero for ηn fixed and εn → 0. Thus,
choosing ηn → 0 sufficiently slowly compared to εn yields∫ εn

0

∫ 1/ηn

0
· · ·

∫ 1/ηn

0

∫ ∞
0

· · ·
∫ ∞

0

∏
i∈S∗

1 ∪S∗
2

y
−τ+ζi

i

∏
{i,j}∈ES∗

1 ,S∗
2

min(yiyj ,1)dyt1+t2 · · ·dy1

= o(1).

(7.12)

Therefore, ∑
v

E
[
I (sub)(H,v)1{Dv1<γ l

1(n),Dvi
∈[γ l

i (n),γ u
i (n)] ∀i>1}

]

= o
(
n

3−τ
2 (k2++B(sub)(H))+k1/2)

,

(7.13)

when vertex 1 satisfies 1 ∈ S∗
2 . Similarly, we can show that the expected contribution from

Dv1 < γ l
1(n) satisfies the same bound when vertex 1 is in S∗

1 or S∗
3 . The expected number of

subgraphs where Dv1 > γ u
1 (n) if vertex 1 is in S∗

1 , S∗
3 or V1 can be bounded similarly, as well

as the expected contribution where multiple vertices have Dvi
/∈ [γ l

i (n), γ u
i (n)].

Denote

(7.14) �n(εn, ηn) = {
(v1, . . . , vk) : Dvi

∈ [
γ l
vi

(n), γ u
vi

(n)
]}

,

and define �̄n(εn, ηn) as its complement. Denote the number of subgraphs with vertices
in �̄n(εn, ηn) by N(sub)(H, �̄n(εn, ηn)). Since Dmax ≤ n1/(τ−1)/ηn with high probability,

�n(εn, ηn) = M
(α(sub))
n with high probability. Therefore, with high probability,

(7.15) N(sub)(H,M̄(α(sub))
n (εn)

) = N(sub)(H, �̄n(εn, ηn)
)
,

where N(sub)(H, M̄
(α(sub)))
n (εn)) denotes the number of copies of H on vertices not in

M
(α(sub))
n (εn). By the Markov inequality,

(7.16) N(sub)(H, �̄n(εn, ηn)
) = oP

(
n

3−τ
2 (k2++B(sub)(H))+k1/2)

.

Combining this with the fact that by Theorem 2.1(ii) as proved in Section 4, for fixed
ε > 0,

N(sub)(H) = N(sub)(H,M(α(sub))
n (ε)

) + N(sub)(H,M̄(α(sub))
n (ε)

)
= OP

(
n

3−τ
2 (k2++B(sub)(H))+k1/2)(7.17)

shows that

(7.18)
N(sub)(H,M

(α(sub))
n (εn))

N(sub)(H)

P−→ 1,

as required. This completes the proof of Theorem 2.1(i). �
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We close this section by proving the integral Lemmas 7.2 and 7.3.

PROOF OF LEMMA 7.2. Recall that S∗
3 = [s]. Without loss of generality, we may assume

that x1 < x2 < · · · < xs . Let U = [t] be such that xi < 1 precisely when i ∈ [t]. Here U = ∅

when t = 0.
The integral (7.5) consists of multiple regions that will be characterized by U , and we will

deal with all of them in the sequel. The first region is where U = ∅, so that x1, . . . , xs ≥ 1.
Since −τ + ζi < −1 by Lemma 7.1(iii), this integral can be bounded by the full integral over
[1,∞) for all variables, which is bounded by

(7.19)
∫ ∞

1
· · ·

∫ ∞
1

∏
j∈[s]

x
−τ+ζj

j dx1 · · ·dxs < ∞.

The second region is where U = [s], so that x1, . . . , xs ∈ [0,1]. Since by Lemma 7.1, any
vertex in S∗

3 satisfies ζi + di,S∗
3
≥ 2, this integral can be bounded as

(7.20)

∫ 1

0
· · ·

∫ 1

0

∏
j∈[s]

x
−τ+ζj

j

∏
{i,j}∈ES∗

3

xixj dx1 · · ·dxs

=
∫ 1

0
· · ·

∫ 1

0

∏
j∈[s]

x
−τ+ζj+dj,S∗

3
j dx1 · · ·dxs

≤
∫ 1

0
· · ·

∫ 1

0
(x1 · · ·xs)

2−τ dx1 · · ·dxs < ∞.

The other regions arise when U �= ∅ and U �= [t]. For these cases, the integral runs from
1 to ∞ for i ∈ U , and from 0 to 1 for i ∈ Ū = S∗

3 \ U . In such a region, min(xixj ,1) = xixj

when i, j /∈ U , and min(xixj ,1) = 1 when i, j ∈ U . Then, as we assumed that x1 < x2 <

· · · < xs , the contribution to (7.5) from the region described by U can be bounded by

(7.21)
∫ ∞

1

∫ ∞
x1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj

j

s∏
i=t+1

h(i,x)dxt · · ·dx1,

where x = (xi)i∈[t] and

(7.22) h(i,x) =
∫ 1

0
x

−τ+ζi+di,Ū

i

∏
j∈U : {i,j}∈ES∗

3

min(xixj ,1)dxi,

for i ∈ U = [s] \ [t].
The integral in h(i,x) consists of multiple regions, depending on whether xixj < 1 or not.

Suppose vertex i ∈ Ū is connected in H to vertices j1, j2, . . . , jl ∈ U , where j1 < j2 < · · · <
jl so that also 1 < xj1 < xj2 < · · · < xjl

and l + di,Ū = di,S∗
3
. Then, by splitting the integral

depending on how many jl’s are such that xixjl
≤ 1, we obtain

h(i,x) =
∫ 1

0
x

−τ+ζi+di,Ū

i min(xixj1,1)min(xixj2,1) · · ·min(xixjl
,1)dxi

=
∫ 1

1/xj1

x
−τ+ζi+di,Ū

i dxi + · · · + xj1 · · ·xjl−1

∫ 1/xjl−1

1/xjl

x
−τ+ζi+l−1+di,Ū

i dxi(7.23)

+ xj1 · · ·xjl

∫ 1/xjl

0
x

−τ+ζi+l+di,Ū

i dxi.

Since ζi + di,Ū + l − τ = ζi + di,S∗
3
− τ > −1 by Lemma 7.1(iii), the last integral is finite.
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Computing these integrals yields

h(i,x) = C0 + C1x
τ−ζi−di,Ū−1
j1

+ · · · + Cl−1xj1 · · ·xjl−2x
τ−ζi−l−di,Ū+1
jl−1

+ Clxj1xj2 · · ·xjl−1x
τ−ζi−l−di,Ū

jl
(7.24)

=: C0h0(i,x) + C1h1(i,x) + · · · + Clhl(i,x),

for some constants C0, . . . ,Cl . These terms (except for the first term) are all products of
powers of xj1, . . . , xjl

, such that the sum of these powers is τ − ζi − di,Ū − 1. Furthermore,
the exponents of xj1, . . . , xjb

equal 1 for some b ∈ [l], and the exponents of xjb+2, . . . , xjl

equal zero, and

(7.25)
hp(i,x)

hp−1(i,x)
= xjp−1

x
τ−ζi−p
jp

x
τ−ζi−(p−1)
jp−1

=
(

xjp

xjp−1

)τ−ζi−p

,

which is at most 1 for p ≤ τ − ζi , and smaller than 1 for p > τ − ζi . Thus, p∗ = p∗
i =

argmaxp hp(i,x) = �τ − ζi�. Therefore, there exists a K > 0 such that

h(i,x) ≤ Khp∗
i
(i,x).(7.26)

In particular, p∗
i = �τ − ζi� ≥ 1 by Lemma 7.1(iii).

Then, for some K̃ > 0,∫ ∞
1

∫ ∞
x1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj

j

s∏
i=t+1

h(i,x)dxt · · ·dx1

≤ K̃

∫ ∞
1

∫ ∞
x1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj

j

s∏
i=t+1

hp∗
i
(i,x)dxt · · ·dx1.

(7.27)

The above steps effectively perform the integrals over xi for i ∈ Ū , and we are left with
the integrals over xj for j ∈ U . It is here that we will rely on the fact that the optimization
problem in (2.2) has a unique solution. We start by rewriting the integral in (7.27) so that we
can effectively use the uniqueness of (2.2), for which we need to make the dependence on the
various xj for j ∈ U explicit. We start by introducing some notation to simplify this analysis.

Let Ti = {jq : q ∈ [p∗
i ]} ⊆ U denote the set of neighbors of i that appear in hp∗

i
(i,x). For

all j ∈ U , let

Qj = {
i ∈ Ū : {i, j} ∈ ES∗

3
, jp∗

i
≥ j

}
(7.28)

denote the set of neighbors i ∈ Ū of j ∈ U such that xj appears in hp∗
i
(i,x) (note that i < j

for all i ∈ Ū , j ∈ U ). Then,

t∏
j=1

x
−τ+ζj

j

s∏
i=t+1

hp∗
i
(i,x)

= K̃

t∏
j=1

x
−τ+ζj+|Qj |
j

s∏
i=t+1

x
τ−1−ζi−di,Ū−p∗

i

jp∗
i

,

(7.29)

for some constant K̃ > 0. We now simplify the above integral.
Let Wj = {i ∈ Ū : xjp∗

i
= j} for j ∈ [t], so that Wj denotes the set of neighbors i of j in

Ū such that the factor x
τ−ζj−p∗

i −dj,Ū

j appears in hjp∗
i
(i,x). Furthermore, let Ŵj = (V1 ∪S∗

1 ∪
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[j ] ∪ Ū ) \ Wj . Then, by (7.2) and the fact that p∗
i = di,[jp∗

i
],

(7.30)
∑

i∈Wj

ζi + di,Ū + p∗
i = ∑

i∈Wj

di,V1 + di,S∗
1
+ di,Ū + p∗

i = 2EWj
+ E

Wj ,Ŵj
,

where

(7.31) EWj
= ∣∣{{i, j} ∈ ES∗

3
: i, j ∈ Wj

}∣∣
denotes the number of edges inside Wj and E

Wj ,Ŵj
denotes the number of edges in S∗

3

between Wj and Ŵj . As a result, (7.27) becomes

(7.32) K̃

∫ ∞
1

∫ ∞
x1

· · ·
∫ ∞
xt−1

t∏
j=1

x
−τ+ζj+|Qj |+(τ−1)|Wj |−2EWj

−E
Wj ,Ŵj

j dxt · · ·dx1.

We aim to perform the integrals one by one, starting with the integral over xt , followed by
xt−1, etc. For this, we crucially use the uniqueness of (2.2) to show that

(7.33) −τ + ζt + |Qt | + (τ − 1)|Wt | − 2EWt − E
Wt,Ŵt

< −1,

so that the integral in (7.32) over xt is finite. Indeed, note that

(7.34) Qt = {
i ∈ Ū : {i, t} ∈ ES∗

3
, jp∗

i
= t

} = {
i ∈ Wt : {i, t} ∈ ES∗

3

}
,

because t is the maximal index in U , so that |Qt | = dt,Wt . Also, Ŵt = (V1 ∪ S∗
1 ∪ S∗

3 ) \ Wt

because [t] ∪ Ū = S∗
3 .

Define Ŝ2 = Ŝ∗
2 ∪ {t}, Ŝ1 = Ŝ∗

1 ∪ Wt and Ŝ3 = S∗
3 \ (Wt ∪ {t}). This gives

E
Ŝ1

− ES∗
1
= EWt + EWt,S

∗
1
,(7.35)

E
Ŝ1,Ŝ3

− ES∗
1 ,S∗

3
= EWt,S

∗
3
− EWt − EWt,S

∗
1
− |Qt | − dt,S∗

1
,(7.36)

E
Ŝ1,V1

− ES∗
1 ,V1 = EWt,V1,(7.37)

E
Ŝ2,V1

− ES∗
2 ,V1 = dt,V1 .(7.38)

Because (2.2) is uniquely optimized by S∗
1 , S∗

2 and S∗
3 ,

(7.39)
|Ŝ1| − |Ŝ2| −

2E
Ŝ1

+ E
Ŝ1,Ŝ3

+ E
Ŝ1,V1

− E
Ŝ2,V1

τ − 1

<
∣∣S∗

1
∣∣ − ∣∣S∗

2
∣∣ − 2ES∗

1
+ ES∗

1 ,S∗
3
+ ES∗

1 ,V1 − ES∗
2 ,V1

τ − 1
.

Using (7.35)–(7.38), this reduces to

(7.40) |Wt | − 1 − 2EWt + E
Wt,Ŵt

− |Qt | − dt,S∗
1
− dt,V1

τ − 1
< 0,

which is equivalent to

(7.41) −τ + (τ − 1)|Wt | + |Qt | + dt,S∗
1
+ dt,V1 − 2EWt − E

Wt,Ŵt
< −1,

which is (7.33). Since ζt = dt,V1 + dt,S∗
1

by (7.2), the inner integral of (7.32) is finite. As Wt

and Wt−1 are disjoint, we obtain that the integral over xt can be evaluated as∫ ∞
xt−1

t∏
j=t−1

x
−τ+ζj+|Qj |+(τ−1)|Wj |−2EWj

−E
Wj ,Ŵj

j dxt

= Kx
1−2τ+ζt−1+ζt+|Qt−1|+|Qt |+(τ−1)|Wt∪Wt−1|−2EWt ∪Wt−1−E

Wt∪Wt−1, ̂Wt∪Wt−1
t−1 ,

(7.42)

for some K > 0, where Ŵt ∪ Wt−1 = V1 ∪ S∗
1 ∪ S∗

3 \ (Wt ∪ Wt−1).
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We next repeat the above procedure to evaluate the integral over xt−1. Choosing Ŝ2 =
S∗

2 ∪ {t, t − 1}, Ŝ1 = S∗
1 ∪ Wt ∪ Wt−1 and Ŝ3 = S∗

3 \ (Wt ∪ Wt−1 ∪ {t, t − 1}), we can again
use (7.39) to prove that the power of xt−1 in (7.42) is smaller than −1, so that integral (7.42)
over xt−1 from xt−2 to ∞ as in (7.32) results in a power of xt−2. We continue this process
until we arrive at the integral over x1 and show that this final integral is finite.

In general, fix b ∈ [t −1]. We let Zb = Wt ∪Wt−1 ∪· · ·∪Wt−b and Ẑ = V1 ∪S∗
1 ∪S∗

3 \Zb.

Choosing Ŝ
(b)
2 = S∗

2 ∪([t]\[t −b−1]), Ŝ(b)
1 = S∗

1 ∪Zb and Ŝ
(b)
3 = S∗

3 \(Za ∪([t]\[t −b−1]))
gives

E
Ŝ

(b)
1

− ES∗
1
= EZa + EZb,S

∗
1
,(7.43)

E
Ŝ

(b)
1 ,Ŝ3

− ES∗
1 ,S∗

3
= EZb,S

∗
3
− EZb

− EZb,S
∗
1
− |Qt | − · · · − |Qt−b|

(7.44)
− dt,S∗

1
− · · · − dt−b,S∗

1
,

E
Ŝ

(b)
1 ,V1

− ES∗
1 ,V1 = EZb,V1,(7.45)

E
Ŝ

(b)
2 ,V1

− ES∗
2 ,V1 = dt,V1 + dt−1,V1 + · · · + dt−b,V1 .(7.46)

Then, (7.39) reduces to

|Zb| − b − 1 − 2EZb
+ E

Zb,Ẑb
− |Qt | − · · · − |Qt−b| − ζt − · · · − ζt−b

τ − 1
< 0,(7.47)

which is equivalent to

− (b + 1)τ + b + (τ − 1)|Zb| + |Qt | + · · · + |Qt−b| + ζt

+ · · · + ζt−b − 2EZa − E
Zb,Ẑb

< −1.
(7.48)

This is precisely the exponent that appears in the variable xt−b when integrating for xt−b

from xt−b−1 to ∞ (as in (7.42) for b = 1). Thus indeed, evaluating the integrals in (7.32) one
by one does not result in diverging integrals at ∞ as their exponents are smaller than −1.
Therefore (7.32) is also finite, so that the claim in (7.5) follows. �

PROOF OF LEMMA 7.3. We first argue that we may assume that a = 1. Indeed, the
integral with a < 1 is upper bounded by that with a = 1, while for a > 1, we can do a change
of variables and use that min(bxixj ,1) ≤ b min(xixj ,1) for all b > 1. Thus, from now on,
we will assume that a = 1.

The proof that this integral is finite has a similar structure as the proof of Lemma 7.2, and
we will be more concise here to avoid repetitions. Recall that S∗

2 = [t2] and S∗
1 = [t2 + t1] \

[t2]. Now, it will be convenient to order the xi for i ∈ [t2] such that x1 > x2 > · · · > xt2 , which
we can do w.l.o.g. We first rewrite the integral as

(7.49)
∫ 1

0
· · ·

∫ 1

0

∏
j∈[t2]

x
−τ+ζj

j

t1+t2∏
i=t2+1

h̃(i,x)dxt2 · · ·dx1,

where x = (xj )j∈[t2] and, for i ∈ [t1 + t2] \ [t2],

(7.50) h̃(i,x) =
∫ ∞

0
x

−τ+ζi

i

∏
j∈[t2] : {i,j}∈ES∗

1 ,S∗
2

min(xixj ,1)dxi.

Similar to (7.23), suppose that vertex i ∈ S∗
1 = [t2 + t1] \ [t2] has vertices j1, j2, . . . , jl as

neighbors in S∗
2 = [t2], where j1 < j2 < · · · < jl , so that now 1 > xj1 > xj2 > · · · > xjl

. Note
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that l = di,S∗
2
. Then,

h̃(i,x) =
∫ ∞

0
x

−τ+ζi

i min(xixj1,1)min(xixj2,1) · · ·min(xixjl
,1)dxi

=
∫ ∞

1/xjl

x
−τ+ζi

i dxi + · · · +
∫ 1/xj3

1/xj2

x
−τ+ζi+l−1
i xj2 · · ·xjl

dxi(7.51)

+
∫ 1/xj1

0
x

−τ+ζi+l
i xj1 · · ·xjl

dxi.

Because ζi + l = ζi + di,S∗
2

= di ≥ 2 by (7.2), and ζi ≤ 1 by Lemma 7.1(i), the first and the
last integrals are finite. Computing the integrals yields that for some C1, . . . ,Cl ,

h̃(i,x) = Clx
τ−ζi−1
jl

+ · · · + C2x
τ−ζi−l+1
j2

xj3 · · ·xjl
+ C1x

τ−ζi−l
j1

xj2 · · ·xjl

=: Clh̃l(i,x) + Cl−1h̃l−1(i,x) + · · · + C1h̃1(i,x).
(7.52)

Similar to the argument leading to (7.26), for all i ∈ [t1 + t2] \ [t2], there exists p∗
i such that,

for all 1 > xv1 > xv2 > · · · > xvl
,

(7.53) h̃(i,x) ≤ Kh̃p∗
i
(i,x),

for some K > 0. Thus,

∫ 1

0

∫ x1

0
· · ·

∫ xt2−1

0

∏
j∈[t2]

x
−τ+ζj

j

t1+t2∏
i=t2+1

h̃(i,x)dxt2 · · ·dx1

≤ K

∫ 1

0

∫ x1

0
· · ·

∫ xt2−1

0

∏
j∈[t2]

x
−τ+ζj

j

t1+t2∏
i=t2+1

h̃p∗
i
(i,x)dxt2 · · ·dx1.

(7.54)

Let Ti = {jq : q ≥ p∗
i }, so that |Ti | ≤ l, denote the set of neighbors of i whose terms appear

in hp∗
i
(i,x). Since ζi + l = ζi + di,S∗

2
= di ≥ 2 by (7.2), and ζi ≤ 1 by Lemma 7.1(i), we have

that l ≥ 1, and therefore |Ti | ≥ 1 for all i ∈ [t2]. For j ∈ S∗
2 , let

(7.55) Qj = {
i ∈ S∗

1 : {i, j} ∈ EH , jp∗
i
≤ j

}
be the set of indices i such that xj appears in h̃p∗

i
(i,x). Then,

(7.56)

∏
j∈[t2]

x
−τ+ζj

j

t1+t2∏
i=t2+1

h̃p∗
i
(i,x)

≤ K̃
∏

j∈[t2]
x

−τ+ζj+|Qj |
j

t1+t2∏
i=t2+1

(1/xjp∗
i
)τ−1−ζi−(l−p∗

i +1),

for some K̃ > 0.
Define Wj = {i ∈ S∗

1 : jp∗
i
= j} for j ∈ S∗

2 and let W̄j = VH \ (Wj ∪ [j − 1]). Using that
ζi = di,V1 +di,S∗

1
+di,S∗

3
for i ∈ S∗

1 by (7.2), and that l −p∗
i +1 = di,S∗

2 \[jp∗
i
−1], (7.56) reduces

to

(7.57) K̃
∏

j∈[t2]
x

−τ+ζj+|Qj |+(τ−1)|Wj |−2EWj
−EWj ,W̄j

j .
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We set Ŝ1 = S∗
1 \ Wt2 , Ŝ2 = S∗

2 \ {t2} and Ŝ3 = S∗
3 ∪ Wt2 ∪ {t2}. Notice that

ES∗
1
− E

Ŝ1
= EWt2

+ EWt2 ,S∗
1 \Wt2

,(7.58)

ES∗
1 ,S∗

3
− E

Ŝ1,Ŝ3
= EWt2 ,S∗

3
− dt2,S

∗
1 \Wt2

− EWt2 ,S∗
1 \Wt2

,(7.59)

ES∗
1 ,V1 − E

Ŝ1,V1
= EWt2 ,V1,(7.60)

ES∗
2 ,V1 − E

Ŝ2,V1
= dt2,V1 .(7.61)

Because the optimal solution to (2.2) is unique, we obtain using (7.39) that

− τ + (τ − 1)|Wt2 | − 2EWt2
− EWt2 ,S∗

1 \Wt2

− EWt2 ,S∗
3
− EWt2 ,V1 + dt2,S

∗
1 \Wt2

+ dt2,V1 > −1.
(7.62)

Note that W̄t2 = V1 ∪ S∗
1 ∪ S∗

3 ∪ {t2} \ Wt2 since S∗
2 = [t2]. Therefore,

(7.63) EWt2 ,W̄t2
= EWt2 ,S∗

1 \Wt2
+ EWt2 ,S∗

3
+ dt2,Wt2

+ EWt2 ,V1 .

Using (7.62) and that by (7.2) ζt2 = dt2,V1 then shows that

(7.64) −τ + (τ − 1)|Wt2 | − 2EWt2
− EWt2 ,W̄t2

+ EWt2 ,S∗
2
+ dt2,S

∗
1 \Wt2

+ ζt2 > −1.

We then use that dt2,S
∗
1 \Wt2

+ dt2,Wt2
= dt2,S

∗
1

to obtain

(7.65) −τ + (τ − 1)|Wt2 | − 2EWt2
− EWt2 ,W̄t2

+ dt2,S
∗
1
+ ζt2 > −1.

Finally, by (7.55), |Qt2 | = dt2,S
∗
1

as t2 is the largest index in S∗
1 .

This shows that the integral of (7.57) over xt2 ∈ [0, xt2−1) equals a power of xt2−1. A simi-
lar argument, setting Ŝ1 = S∗

1 \ (Wt2 ∪Wt2−1) and Ŝ2 = S∗
2 \{t2, t2 −1} shows that the integral

of (7.57) over xt2−1 ∈ [0, xt2−2) equals a power of xt2−2, and we can proceed to show that the
outer integral of (7.57) is finite. We conclude that (7.6) is finite. �

8. Induced subgraphs. We now describe how to adapt the analysis of subgraphs to in-
duced subgraphs. For induced subgraphs we can define a similar optimization problem as
(4.29). When αi + αj < 1, (4.4) results in

(8.1) Pn(Xvi,vj
= 0) = e−�(n

αi+αj −1
)(1 + o(1)

) = 1 + o(1),

whereas for αi + αj > 1, (4.17) yields

(8.2) Pn(Xvi,vj
= 0) = o(1),

and for αi + αj = 1 (4.4) yields Pn(Xvi,vj
= 0) = �(1). Similar to (4.21), we can write the

probability that H occurs as an induced subgraph on v = (v1, . . . , vk) as

(8.3)

Pn

(
ECM(n)(D)|v = EH

)
= �P

( ∏
{i,j}∈EH : αi+αj<1

nαi+αj−1
∏

{i,j}/∈EH : αi+αj>1

e−n
αi+αj −1

/2
)
.

Similar to (4.21), edges with αi +αj = 1 do not contribute to the order of magnitude of (8.3).
Thus, the probability that H is an induced subgraph on v is stretched exponentially small in n

when two vertices i and j with αi + αj > 1 are not connected in H . Then the corresponding
optimization problem to (4.28) for induced subgraphs becomes

(8.4)

max(1 − τ)
∑
i

αi + ∑
{i,j}∈EH : αi+αj<1

αi + αj − 1,

s.t. αi + αj ≤ 1 ∀{i, j} /∈ EH .
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The following lemma shows that this optimization problem attains its optimum for very
specific values of α (similar to Lemma 4.2 for subgraphs).

LEMMA 8.1 (Maximum contribution to induced subgraphs). Let H be a connected
graph on k vertices. If the solution to (8.5) is unique, then the optimal solution satisfies
αi ∈ {0, τ−2

τ−1 , 1
2 , 1

τ−1} for all i. If it is not unique, then there exist at least 2 optimal solutions

with αi ∈ {0, τ−2
τ−1 , 1

2 , 1
τ−1} for all i. In any optimal solution, αi = 0 if and only if vertex i has

degree one in H .

PROOF. This proof is similar to the proof of Lemma 4.2. First, we again define βi =
αi − 1

2 , so that (8.4) becomes

(8.5)
max

1 − τ

2
k + (1 − τ)

∑
i

βi + ∑
{i,j}∈EH : βi+βj<0

βi + βj ,

s.t. βi + βj ≤ 0 ∀{i, j} /∈ EH .

The proof of Step 1 from Lemma 4.2 then also holds for induced subgraphs. Now we prove
that if the optimal solution to (8.5) is unique, it satisfies βi ∈ {−1

2 , τ−3
2(τ−1)

,0, 3−τ
2(τ−1)

} for all i.

We take β̃ as in (4.33), and assume that β̃ < 3−τ
2(τ−1)

. The contribution of the vertices with

|βi | = β̃ is as in (4.34). By increasing β̃ or by decreasing it to zero, the constraints on βi +βj

are still satisfied for all {i, j}. Thus, we can use the same argument as in Lemma 4.2 to
conclude that βi ∈ { τ−3

2(τ−1)
,0, 3−τ

2(τ−1)
} for all i with di ≥ 2. A similar argument as in Step 3

of Lemma 4.2 shows that if the solution to (8.5) is not unique, it can be transformed into two
optimal solutions that satisfy βi ∈ {−1

2 , τ−3
2(τ−1)

,0, 3−τ
2(τ−1)

} for all i with degree at least 2. �

Following the same lines as the proof of Theorem 2.1(ii) for subgraphs, Theorem 2.1(ii)
for induced subgraphs follows, where we now use Lemma 8.1 instead of 4.2. We now state
an equivalent lemma to Lemma 5.1 for induced subgraphs.

LEMMA 8.2 (Convergence of major contribution to induced subgraphs). Let H be a
connected graph on k > 2 vertices such that (2.3) is uniquely optimized by S∗

3 = VH with
B(ind)(H) = 0. Then:

(i) the number of induced subgraphs with vertices in Wk
n (ε) satisfies

N(ind)(H,Wk
n (ε))

n
k
2 (3−τ)

= (
1 + oP(1)

)
ckμ− k

2 (τ−1)
∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · ·xk)

−τ

× ∏
{i,j}∈EH

(
1 − e−xixj

) ∏
{i,j}/∈EH

e−xixj dx1 · · ·dxk + fn(ε),

(8.6)

for some function fn(ε) such that for any δ > 0,

(8.7) lim
ε↘0

lim sup
n→∞

P
(
fn(ε) > δ | Jn

) = 0.

(ii) A(ind)(H) defined in (2.11) satisfies A(ind)(H) < ∞.

The proof of Theorem 2.2 for induced subgraphs is similar to the proof of Theorem 2.2
for subgraphs, using Lemma 8.2 instead of Lemma 5.1. The proof of Lemma 8.2(i) in turn
follows from straightforward extensions of Lemmas 6.1, 6.2 and 6.3 to induced subgraphs,
now also using that the probability that an edge {i, j} /∈ EH is not present in the subgraph
can be approximated by exp(−Dvi

Dvj
/Ln). Lemma 8.2(ii) is an application of the following

equivalent lemma to Lemma 7.2 for S∗
3 = VH .
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LEMMA 8.3 (Induced subgraph integrals over S∗
3 ). Suppose that the maximum in (2.3) is

uniquely attained by P = (S∗
1 , S∗

2 , S∗
3 ) with |S∗

3 | = s > 0, and say that S∗
3 = [s]. Then

(8.8)
∫ ∞

0
· · ·

∫ ∞
0

∏
i∈[s]

x
−τ+ζi

i

∏
{i,j}∈ES∗

3

min(xixj ,1)
∏

{i,j}/∈ES∗
3

e−xixj dxs · · ·dx1 < ∞.

PROOF. The proof follows that of Lemma 7.2, where now we need to rely on the unique-
ness of (2.3) instead of that of (2.2), and we obtain extra factors e−xixj for all {i, j} /∈ EH .
We will therefore be more brief, and focus on the differences compared to the proof of
Lemma 7.2.

This integral is finite if

(8.9)
∫ ∞

0
· · ·

∫ ∞
0

∏
i∈[s]

x
−τ+ζi

i

∏
{i,j}∈ES∗

3

min(xixj ,1)
∏

{i,j}/∈ES∗
3

1{xixj<1} dxs · · ·dx1 < ∞,

since if

(8.10)
∫ b

a

∫ 1/x1

0
x

γ1
1 x

γ2
2 e−x1x2 dx2 dx1 < ∞,

then also

(8.11)
∫ b

a

∫ ∞
1/x1

x
γ1
1 x

γ2
2 e−x1x2 dx2 dx1 < ∞.

We can show similar to (7.19) and (7.20) that the integral is finite when all integrands are
larger than one, or when all are smaller than one. We compute the contribution to (8.9) where
the integrand runs from 1 to ∞ for vertices in some nonempty set U , and from 0 to 1 for
vertices in Ū = S∗

3 \ U . Without loss of generality, assume that U = [t] for some 1 ≤ t < s.
Define, for i ∈ Ū ,

(8.12) ĥ(i,x) =
∫ 1

0
x

−τ+ζi+di,Ū

i

∏
j∈U : {i,j}∈ES∗

3

min(xixj ,1)
∏

j∈U : {i,j}/∈ES∗
3

1{xixj<1} dxi.

Then (8.8) results in

(8.13)
∫ ∞

1
· · ·

∫ ∞
1

∏
p∈[t]

x
−τ+ζj
p

∏
i,j∈U : {i,j}/∈ES∗

3

1{xixj<1}
k∏

i=t+1

ĥ(i,x)dxt · · ·dx1.

When the induced subgraph of H formed by the vertices of U is not a complete graph,
this integral equals zero, as 1{xixj<1} = 0 when i, j ∈ U . Thus, we assume that the induced
subgraph of H formed by the vertices of U is a complete graph so that {{i, j} ∈ U : {i, j} /∈
EH } =∅.

We first bound the region of (8.8) where 1 < x1 < · · · < xt . When i ∈ Ū is connected to
all vertices in U , ĥ(i,x) equals h(i,x) defined in (7.22), which can be bounded by (7.26).
Otherwise, define

(8.14) ai = max
{
j ∈ [t] : {i, j} /∈ EH

}
.

Thus, i is connected to vertices [t] \ [ai] and we can write ĥ(i,x) as

ĥ(i,x) =
∫ 1/xt

0
x

−τ+ζi+di,S∗
3

i dxi · xt · · ·xai+1
∏

j∈[ai ]:{i,j}∈EH

xj
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+
∫ 1/xt−1

1/xt

x
−τ−1+ζi+di,S∗

3
i dxi · xt−1 · · ·xai+1

∏
j∈[ai ]:{i,j}∈EH

xj + · · ·(8.15)

+
∫ 1/xai

1/xai+1

x
−τ+ζi+di,S∗

3
−t+ai

i dxi

∏
j∈[ai ]:{i,j}∈EH

xj .

By a similar argument as in Lemma 7.1, ζi + di,S∗
3

≥ 2 for i ∈ S∗
3 so that the first integral is

finite. Thus, for some constants Ct, . . . ,Cai
,

ĥ(i,x) = ∏
j∈[ai ] : {i,j}∈EH

xj

(
Ctx

τ−ζi−di,S∗
3

t xt−1 · · ·xai+1 + Ct−1x
τ−ζi−di,S∗

3
+1

t−1 xt−2 · · ·xai+1

+ · · · + Cai
x

τ−ζi−di,S∗
3
+t−ai

ai

)
(8.16)

=: ĥt (i,x) + · · · + ĥai
(i,x).

As in (7.26), for every i we can find a p∗
i such that, for all 1 > x1 > · · · > xt ,

(8.17) ĥ(i,x) ≤ Khp∗
i
(i,x)

for some K > 0. Again, let Ti denote the set of neighbors of vertex i appearing in hp∗
i
(i,x),

and Qj as in (7.28), and let Wj = {i ∈ Ū : jp∗
i
= j}. Then,

(8.18)

∫ ∞
1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj

j 1{xixj<1}
k∏

i=t+1

ĥ(i,x)dxt · · ·dx1

≤ K̃

∫ ∞
1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj

j

k∏
i=t+1

ĥp∗
i
(i,x)dxt · · ·dx1

≤
∫ ∞

1

∫ ∞
x1

· · ·
∫ ∞
xt−1

∏
j∈[t]

x
−τ+ζj+|Qj |+(τ−1)|Wj |−2EWj

−E
Wj ,Ŵj

j dxt · · ·dx1

for some K̃ > 0, where Ŵj = (V1 ∪ S∗
1 ∪ [j ] ∪ Ū ) \ Wj . We can now show that the integral

over xt is finite in a similar manner as in Lemma 7.2.
Indeed, we will now again use the uniqueness of the solution of the optimization problem

in (2.3) to again prove that this integral is finite. For this, we define Ŝ1 = S∗
1 ∪ Wt , Ŝ2 =

S∗
2 ∪ {t} and Ŝ3 = S∗

3 \ (Wt ∪ {t}). Because t ∈ S∗
3 , by constraint (2.3), t is connected to all

other vertices in Ŝ2, so that the vertices of Ŝ2 still form a complete graph. Furthermore, t ∈ U ,
so that t is connected to all other vertices in U , since the vertices of U formed a complete
graph. Also, when i ∈ Ū is not connected to t , then i ∈ Wt by (8.15) and the definition of ai

in (8.14). Thus, t is connected to all vertices in U ∪ Ū \ (Wt ∪ {t}) = Ŝ3.
We conclude that Ŝ1, Ŝ2 and Ŝ3 still satisfy the constraint in (2.3), and we may proceed

as in Lemma 7.2 using (7.39) to show that the integral over xt is finite. Iterating this proves
Lemma 8.3. �

The following lemma is the counterpart of Lemma 7.3 for induced subgraphs.

LEMMA 8.4 (Induced subgraph integrals over S∗
1 ∪ S∗

2 ). Suppose the optimal solution to
(2.3) is unique, and attained by P = (S∗

1 , S∗
2 , S∗

3 ). Say that S∗
2 = [t2] and S∗

1 = [t2 + t1] \ [t2].
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Then, for every a > 0,

(8.19)

∫ a

0
· · ·

∫ a

0

∫ ∞
0

· · ·
∫ ∞

0

∏
j∈[t1+t2]

x
−τ+ζj

j

∏
{i,j}∈ES∗

1 ,S∗
2

min(xixj ,1)

× ∏
{i,j}/∈ES∗

1 ,S∗
2

e−xixj dxt1+t2 · · ·dx1 < ∞.

PROOF. This lemma can be proven along similar lines as Lemma 7.3, with similar ad-
justments as the adjustments to prove Lemma 8.3 for induced subgraphs from its counterpart
for subgraphs, Lemma 7.2. �

From these lemmas, the proof of Theorem 2.1(i) for induced subgraphs follows along the
same lines as the proof of Theorem 2.1(i) for subgraphs.
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