58,061 research outputs found

    Kramers-Moyall cumulant expansion for the probability distribution of parallel transporters in quantum gauge fields

    Get PDF
    A general equation for the probability distribution of parallel transporters on the gauge group manifold is derived using the cumulant expansion theorem. This equation is shown to have a general form known as the Kramers-Moyall cumulant expansion in the theory of random walks, the coefficients of the expansion being directly related to nonperturbative cumulants of the shifted curvature tensor. In the limit of a gaussian-dominated QCD vacuum the obtained equation reduces to the well-known heat kernel equation on the group manifold.Comment: 7 page

    Center vortex properties in the Laplace center gauge of SU(2) Yang-Mills theory

    Get PDF
    Resorting to the the Laplace center gauge (LCG) and to the Maximal-center gauge (MCG), respectively, confining vortices are defined by center projection in either case. Vortex properties are investigated in the continuum limit of SU(2) lattice gauge theory. The vortex (area) density and the density of vortex crossing points are investigated. In the case of MCG, both densities are physical quantities in the continuum limit. By contrast, in the LCG the piercing as well as the crossing points lie dense in the continuum limit. In both cases, an approximate treatment by means of a weakly interacting vortex gas is not appropriate.Comment: reference added, submitted to Phys. Lett.

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning

    Get PDF
    A key research question at the Large Hadron Collider (LHC) is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: It requires the time consuming generation of scattering events, the simulation of the detector response, the event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiment. In the BSM-AI project we attack this challenge with a new approach. Machine learning tools are thought to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets - each tested with 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93 percent. It has been validated further within the constrained MSSM and a minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded at http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/

    DEFROST: A New Code for Simulating Preheating after Inflation

    Full text link
    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not want to thermalize quite the way one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a lognormal distribution. It is tempting to attribute this state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure

    Inherent Structures in m-component Spin Glasses

    Get PDF
    We observe numerically the properties of the infinite-temperature inherent structures of m-component vector spin glasses in three dimensions. An increase of m implies a decrease of the amount of minima of the free energy, down to the trivial presence of a unique minimum. For little m correlations are small and the dynamics are quickly arrested, while for larger m low-temperature correlations crop up and the convergence is slower, to a limit that appears to be related with the system size.Comment: Version accepted in Phys. Rev. B, 10 pages, 11 figure

    Realistic GUT Yukawa Couplings from a Random Clockwork Model

    Full text link
    We present realistic models of flavor in SU(5) and SO(10) grand unified theories (GUTs). The models are renormalizable and do not require any exotic representations in order to accommodate the necessary GUT breaking effects in the Yukawa couplings. They are based on a simple clockwork Lagrangian whose structure is enforced with just two (one) vectorlike U(1) symmetries in the case of SU(5) and SO(10) respectively. The inter-generational hierarchies arise spontaneously from products of matrices with order one random entries.Comment: 18 pages, 2 figure
    • …
    corecore