380 research outputs found

    Multiple-Symbol Differential Sphere Detection Aided Successive Relaying in the Cooperative DS-CDMA Uplink

    No full text
    The conventional amplify-and-forward cooperative system is capable of achieving a superior performance with the aid of Multiple-Symbol Differential Sphere Detection (MSDSD), when compared to conventional differential detection (CDD) for transmission over time-selective channels. However, the conventional broadcast/cooperative twin-phase based relaying protocol encounters a 50% throughput loss imposed by half-duplex relaying. For combating this problem, in this paper, we create a MSDSD aided successive relaying based cooperative DS-CDMA system. We demonstrate that given the target BER of 10?4 , a diversity gain of up to 10 dB is achieved over the benchmark schemes employed without a throughput loss

    Adaptive Randomized Distributed Space-Time Coding in Cooperative MIMO Relay Systems

    Full text link
    An adaptive randomized distributed space-time coding (DSTC) scheme and algorithms are proposed for two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE) receivers and an amplify-and-forward (AF) cooperation strategy are considered. In the proposed DSTC scheme, a randomized matrix obtained by a feedback channel is employed to transform the space-time coded matrix at the relay node. Linear MMSE expressions are devised to compute the parameters of the adaptive randomized matrix and the linear receive filter. A stochastic gradient algorithm is also developed to compute the parameters of the adaptive randomized matrix with reduced computational complexity. We also derive the upper bound of the error probability of a cooperative MIMO system employing the randomized space-time coding scheme first. The simulation results show that the proposed algorithms obtain significant performance gains as compared to existing DSTC schemes.Comment: 4 figure

    Cooperative differential space-time spreading for the asynchronous relay aided CDMA uplink using interference rejection spreading code

    No full text
    Abstract—This letter proposes a differential Space–Time Coding (STC) scheme designed for asynchronous cooperative networks, where neither channel estimation nor symbol-level synchroniza-tion is required at the cooperating nodes. More specifically, our system employs differential encoding during the broadcast phase and a Space–Time Spreading (STS)-based amplify-and-forward scheme during the cooperative phase in conjunction with inter-ference rejection direct sequence spreading codes, namely Loosely Synchronized (LS) codes. Our simulation results demonstrate that the proposed Cooperative Differential STS (CDSTS) scheme is ca-pable of combating the effects of asynchronous uplink transmis-sions without any channel state information. Index Terms—Asynchronous cooperation, cooperative diversity, differential space–time spreading, loosely synchronized codes. I

    Performance of Two-Hop DS-CDMA Systems Using Amplify-and-Forward Protocol over Different Fading Channels

    Get PDF
    This study analyses the performance of directsequence code division multiple access (DS-CDMA) based on two-hop amplify-and-forward protocol over Weibull symmetric fading channels as well as Rayleigh/Rician, Rician/Rayleigh asymmetric fading phenomenas. We investigate the bit-error rate (BER) of the considered system using multiple relays by considering the effect of Weibull fading parameter and Rician K factor on the system performance. Our simulation results demonstrate the positive impacts of the value of fading parameter, Rician K factor and increasing number of relay nodes on BER performance. It is also confirmed that the Rician K factor is more effective on the system performance over Rician/Rayleigh fading channels in comparison with Rayleigh/Rician fading environment
    • …
    corecore