An adaptive randomized distributed space-time coding (DSTC) scheme and
algorithms are proposed for two-hop cooperative MIMO networks. Linear minimum
mean square error (MMSE) receivers and an amplify-and-forward (AF) cooperation
strategy are considered. In the proposed DSTC scheme, a randomized matrix
obtained by a feedback channel is employed to transform the space-time coded
matrix at the relay node. Linear MMSE expressions are devised to compute the
parameters of the adaptive randomized matrix and the linear receive filter. A
stochastic gradient algorithm is also developed to compute the parameters of
the adaptive randomized matrix with reduced computational complexity. We also
derive the upper bound of the error probability of a cooperative MIMO system
employing the randomized space-time coding scheme first. The simulation results
show that the proposed algorithms obtain significant performance gains as
compared to existing DSTC schemes.Comment: 4 figure