31 research outputs found

    Random Contractions and Sampling for Hypergraph and Hedge Connectivity

    Full text link
    We initiate the study of hedge connectivity of undirected graphs, motivated by dependent edge failures in real-world networks. In this model, edges are partitioned into groups called hedges that fail together. The hedge connectivity of a graph is the minimum number of hedges whose removal disconnects the graph. We give a polynomial-time approximation scheme and a quasi-polynomial exact algorithm for hedge connectivity. This provides strong evidence that the hedge connectivity problem is tractable, which contrasts with prior work that established the intractability of the corresponding s−t min-cut problem. Our techniques also yield new combinatorial and algorithmic results in hypergraph connectivity. Next, we study the behavior of hedge graphs under uniform random sampling of hedges. We show that unlike graphs, all cuts in the sample do not converge to their expected value in hedge graphs. Nevertheless, the min-cut of the sample does indeed concentrate around the expected value of the original min-cut. This leads to a sharp threshold on hedge survival probabilities for graph disconnection. To the best of our knowledge, this is the first network reliability analysis under dependent edge failures

    Cuts and connectivity in graphs and hypergraphs

    Get PDF
    In this thesis, we consider cut and connectivity problems on graphs, digraphs, hypergraphs and hedgegraphs. The main results are the following: - We introduce a faster algorithm for finding the reduced graph in element-connectivity computations. We also show its application to node separation. - We present several results on hypergraph cuts, including (a) a near linear time algorithm for finding a (2+epsilon)-approximate min-cut, (b) an algorithm to find a representation of all min-cuts in the same time as finding a single min-cut, (c) a sparse subgraph that preserves connectivity for hypergraphs and (d) a near linear-time hypergraph cut sparsifier. - We design the first randomized polynomial time algorithm for the hypergraph k-cut problem whose complexity has been open for over 20 years. The algorithm generalizes to hedgegraphs with constant span. - We address the complexity gap between global vs. fixed-terminal cuts problems in digraphs by presenting a 2-1/448 approximation algorithm for the global bicut problem

    Multicriteria Cuts and Size-Constrained k-Cuts in Hypergraphs

    Get PDF

    Counting and enumerating optimum cut sets for hypergraph kk-partitioning problems for fixed kk

    Get PDF
    We consider the problem of enumerating optimal solutions for two hypergraph kk-partitioning problems -- namely, Hypergraph-kk-Cut and Minmax-Hypergraph-kk-Partition. The input in hypergraph kk-partitioning problems is a hypergraph G=(V,E)G=(V, E) with positive hyperedge costs along with a fixed positive integer kk. The goal is to find a partition of VV into kk non-empty parts (V1,V2,,Vk)(V_1, V_2, \ldots, V_k) -- known as a kk-partition -- so as to minimize an objective of interest. 1. If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-kk-Partition. A subset of hyperedges is a minmax-kk-cut-set if it is the subset of hyperedges crossing an optimum kk-partition for Minmax-Hypergraph-kk-Partition. 2. If the objective of interest is the total cost of hyperedges crossing the kk-partition, then the problem is known as Hypergraph-kk-Cut. A subset of hyperedges is a min-kk-cut-set if it is the subset of hyperedges crossing an optimum kk-partition for Hypergraph-kk-Cut. We give the first polynomial bound on the number of minmax-kk-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed kk. Our technique is strong enough to also enable an nO(k)pn^{O(k)}p-time deterministic algorithm to enumerate all min-kk-cut-sets in hypergraphs, thus improving on the previously known nO(k2)pn^{O(k^2)}p-time deterministic algorithm, where nn is the number of vertices and pp is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-kk-Cut and Minmax-Hypergraph-kk-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs).Comment: Accepted to ICALP'22. arXiv admin note: text overlap with arXiv:2110.1481

    A tight quasi-polynomial bound for Global Label Min-Cut

    Full text link
    We study a generalization of the classic Global Min-Cut problem, called Global Label Min-Cut (or sometimes Global Hedge Min-Cut): the edges of the input (multi)graph are labeled (or partitioned into color classes or hedges), and removing all edges of the same label (color or from the same hedge) costs one. The problem asks to disconnect the graph at minimum cost. While the stst-cut version of the problem is known to be NP-hard, the above global cut version is known to admit a quasi-polynomial randomized nO(logOPT)n^{O(\log \mathrm{OPT})}-time algorithm due to Ghaffari, Karger, and Panigrahi [SODA 2017]. They consider this as ``strong evidence that this problem is in P''. We show that this is actually not the case. We complete the study of the complexity of the Global Label Min-Cut problem by showing that the quasi-polynomial running time is probably optimal: We show that the existence of an algorithm with running time (np)o(logn/(loglogn)2)(np)^{o(\log n/ (\log \log n)^2)} would contradict the Exponential Time Hypothesis, where nn is the number of vertices, and pp is the number of labels in the input. The key step for the lower bound is a proof that Global Label Min-Cut is W[1]-hard when parameterized by the number of uncut labels. In other words, the problem is difficult in the regime where almost all labels need to be cut to disconnect the graph. To turn this lower bound into a quasi-polynomial-time lower bound, we also needed to revisit the framework due to Marx [Theory Comput. 2010] of proving lower bounds assuming Exponential Time Hypothesis through the Subgraph Isomorphism problem parameterized by the number of edges of the pattern. Here, we provide an alternative simplified proof of the hardness of this problem that is more versatile with respect to the choice of the regimes of the parameters
    corecore