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—— Abstract

We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems
— namely, HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION. The input in hypergraph
k-partitioning problems is a hypergraph G = (V, E) with positive hyperedge costs along with a fixed

positive integer k. The goal is to find a partition of V into k non-empty parts (Vi,Va,..., Vi) —

known as a k-partition — so as to minimize an objective of interest.

1. If the objective of interest is the maximum cut value of the parts, then the problem is known as
MINMAX-HYPERGRAPH-k-PARTITION. A subset of hyperedges is a MINMAX-k-CUT-SET if it is the
subset of hyperedges crossing an optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION.

2. If the objective of interest is the total cost of hyperedges crossing the k-partition, then the
problem is known as HYPERGRAPH-k-CUT. A subset of hyperedges is a MIN-k-CUT-SET if it is
the subset of hyperedges crossing an optimum k-partition for HYPERGRAPH-k-CUT.

We give the first polynomial bound on the number of MINMAX-k-CUT-SETs and a polynomial-time
algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong

O(k)p-time deterministic algorithm to enumerate all MIN-k-CUT-SETS in

0O(k?)

enough to also enable an n
hypergraphs, thus improving on the previously known n p-time deterministic algorithm, where
n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our
enumeration approach relies on a structural result that is a strong and unifying generalization of
known structural results for HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION. We
believe that our structural result is likely to be of independent interest in the theory of hypergraphs

(and graphs).
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1 Introduction

In hypergraph k-partitioning problems, the input consists of a hypergraph G = (V, E) with
positive hyperedge-costs ¢ : E — R, and a fixed positive integer k (e.g., k = 2,3,4,...).
The goal is to find a partition of the vertex set into k non-empty parts Vi, Vs, ..., Vi so
as to minimize an objective of interest. There are several natural objectives of interest in
hypergraph k-partitioning problems. In this work, we focus on two particular objectives:
MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT:
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1. In MINMAX-HYPERGRAPH-k-PARTITION, the objective is to minimize the maximum cut
value of the parts of the k-partition — i.e., minimize max¥_; ¢(5(V;)); here §(V;) is the set
of hyperedges intersecting both V; and V' \ V; and ¢(6(V;)) = >_.c5(v; cle) is the total
cost of hyperedges in §(V;).

2. In HYPERGRAPH-k-CUT!, the objective is to minimize the cost of hyperedges crossing the
k-partition — i.e., minimize ¢(§(V4, ..., Vi)); here §(Vi,..., Vi) is the set of hyperedges
that intersect at least two sets in {V1,...,Vi} and ¢(6(Vi,..., Vi) = 250,14 €(€)
is the total cost of hyperedges in 6(V1, ..., Vj).

If the input G is a graph, then we will refer to these problems as MINMAX-GRAPH-k-

PARTITION and GRAPH-k-CUT respectively. We note that the case of kK = 2 corresponds to

global minimum cut in both objectives. In this work, we focus on the problem of enumerating

all optimum solutions to MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT.

Motivations and Related Problems. We consider the problem of counting and enumerating
optimum solutions for partitioning problems over hypergraphs for three reasons. Firstly,
hyperedges provide more powerful modeling capabilities than edges and consequently, several
problems in hypergraphs become non-trivial in comparison to graphs. Although hypergraphs
and partitioning problems over hypergraphs (including MINMAX-HYPERGRAPH-k-PARTITION)
were discussed as early as 1973 by Lawler [33], most of these problems still remain open. The
powerful modeling capability of hyperedges has been useful in a variety of modern applications,
which in turn, has led to a resurgence in the study of hypergraphs with recent works focusing
on min-cuts, cut-sparsifiers, spectral-sparsifiers, etc. [6,8,12,15,17,18,20,21, 28,32,38]. Our
work adds to this rich and emerging theory of hypergraphs.

Secondly, hypergraph k-partitioning problems are special cases of submodular k-
partitioning problems. In submodular k-partitioning problems, the input is a finite ground
set V, a submodular function? f : 2¥ — R provided by an evaluation oracle® and a
positive integer k (e.g., k = 2,3,4,...). The goal is to partition the ground set V into
k non-empty parts Vi, Va,..., Vi so as to minimize an objective of interest. Two nat-
ural objectives are of interest: (1) In MINMAX-SUBMOD-k-PARTITION, the objective is
to minimize max?®_; f(V;) and (2) In MINSUM-SUBMOD-k-PARTITION, the objective is to
minimize Zle f(Vi). If the given submodular function is symmetric?, then we denote the
resulting problems as MINMAX-SYMSUBMOD-k-PARTITION and MINSUM-SYMSUBMOD-k-
PARTITION respectively. Since the hypergraph cut function is symmetric submodular, it
follows that MINMAX-HYPERGRAPH-k-PARTITION is a special case of MINMAX-SYMSUBMOD-
k-PARTITION. Moreover, HYPERGRAPH-k-CUT is a special case of MINSUM-SUBMOD-
kE-PARTITION (this reduction is slightly non-trivial with the submodular function in the
reduction being asymmetric — e.g., see [36] for the reduction). Queyranne claimed, in
1999, a polynomial-time algorithm for MINSUM-SYMSUBMOD-k-PARTITION for every fixed
k [37], however the claim was retracted subsequently (see [24]). The complexity status
of submodular k-partitioning problems (for fixed k& > 4) are open, so recent works have
focused on hypergraph k-partitioning problems as a stepping stone towards submodular
k-partitioning [8,12,13,24,36,41,42]. Our work contributes to this stepping stone by ad-
vancing the state of the art in hypergraph k-partitioning problems. We emphasize that the

‘We emphasize that the objective of HYPERGRAPH-k-CUT is not equivalent to minimizing ZLI c(6(V3)).
A real-valued set function f : 2V — R is submodular if f(A)+ f(B) > f(ANB)+ f(AUB)Y A,BC V.
An evaluation oracle for a set function f over a ground set V' returns the value of f(S) given S C V.
A real-valued set function f: 2V — R is symmetric if f(A) = fF(V\A)VACV.
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complexity status of two other variants of hypergraph k-partitioning problems which are
also special cases of MINSUM-SUBMOD-k-PARTITION are still open (see [36,41,42] for these
variants).

Thirdly, counting and enumeration of optimum solutions for graph k-partitioning problems
are fundamental to graph theory and extremal combinatorics. They have found farther
reaching applications than initially envisioned. We discuss some of the results and applications
for K =2 and k > 2 now. For k = 2 in connected graphs, it is well-known that the number of
min-cuts and the number of a-approximate min-cuts are at most ('2’) and O(n?%) respectively,
and they can all be enumerated in polynomial time for constant . These combinatorial
results have been the crucial ingredients of several algorithmic and representation results
in graphs. On the algorithmic front, these results enable fast randomized construction of
graph skeletons which, in turn, plays a crucial role in fast algorithms to solve graph min-
cut [29]. On the representation front, counting results form the backbone of cut sparsifiers
which in turn have found applications in sketching and streaming [2—4,32]. A polygon
representation of the family of 6/5-approximate min-cuts in graphs was given by Benczur and
Goemans in 1997 (see [9-11]) — this representation was used in the recent groundbreaking
(3/2 — €)-approximation for metric TSP [31]. On the approximation front, in addition to
the (3/2 — ¢)-approximation for metric TSP [31], counting results also led to the recent
1.5-approximation for path TSP [40]. For k > 2, we note that fast algorithms for GRAPH-
k-CuT have been of interest since they help in generating cutting planes while solving
TSP [5,19]. A recent series of works aimed towards improving the bounds on the number of
optimum solutions for GRAPH-k-CUT culminated in a drastic improvement in the run-time
to solve GRAPH-k-CUT [25-27]. Given the status of counting and enumeration results for
k-partitioning in graphs and their algorithmic and representation implications that were
discovered subsequently, we believe that a similar understanding in hypergraphs could serve
as an important ingredient in the algorithmic and representation theory of hypergraphs.

The Enumeration Problem. There is a fundamental structural distinction between hy-

pergraphs and graphs that becomes apparent while enumerating optimum solutions to

k-partitioning problems. In connected graphs, the number of optimum k-partitions for

GRAPH-k-CUT and for MINMAX-GRAPH-k-PARTITION are nO®) and n®*") respectively

and they can all be enumerated in polynomial time, where n is the number of vertices

in the input graph [14,16,25,27,30,39]. In contrast, a connected hypergraph could have
exponentially many optimum k-partitions for both MINMAX-HYPERGRAPH-k-PARTITION
and HYPERGRAPH-k-CUT even for £k = 2 — e.g., consider the hypergraph with a single
hyperedge containing all vertices; we will denote this as the spanning-hyperedge-example.

Hence, enumerating all optimum k-partitions for hypergraph k-partitioning problems in

polynomial time is impossible. Instead, our goal in the enumeration problems is to enumerate

k-cut-sets corresponding to optimum k-partitions. We will call a subset F' C E of hyperedges
to be a k-cut-set if there exists a k-partition (Vi,...,Vy) such that FF = §(Vi,...,Vi); we
will call a 2-cut-set as a cut-set. In the enumeration problems that we will consider, the

input consists of a hypergraph G = (V, E) with positive hyperedge-costs ¢: E — R, and a

fixed positive integer k (e.g., k =2,3,4,...).

1. For an optimum k-partition (V1,...,V%) for MINMAX-HYPERGRAPH-k-PARTITION in
(G,c), we will denote §(V1,...,V%) as a MINMAX-k-CUT-SET. In ENUM-MINMAX-
HYPERGRAPH-k-PARTITION, the goal is to enumerate all MINMAX-k-CUT-SETS.

2. For an optimum k-partition (Vi,...,Vs) for HYPERGRAPH-k-CUT in (G,c), we will
denote 6(V1,..., V%) as a MIN-k-CUT-SET. In ENUM-HYPERGRAPH-k-CUT, the goal is to
enumerate all MIN-k-CUT-SETS.

16:3
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We observe that in the spanning-hyperedge-example, although the number of optimum
k-partitions for MINMAX-HYPERGRAPH-k-PARTITION (as well as HYPERGRAPH-k-CUT) is
exponential, the number of MINMAX-k-CUT-SETs (as well as MIN-k-CUT-SETs) is only one.

1.1 Results

In contrast to graphs, whose representation size is the number of edges, the representation
size of a hypergraph G = (V, E) is p := ) _p |e|. Throughout, our algorithmic discussion
will focus on the case of fixed k (e.g., k =2,3,4,...).

There are no prior results regarding ENUM-MINMAX-HYPERGRAPH-k-PARTITION in the
literature. We recall the status of MINMAX-HYPERGRAPH-k-PARTITION. As mentioned
earlier, MINMAX-HYPERGRAPH-k-PARTITION was discussed as early as 1973 by Lawler [33]
with its complexity status being open until recently. We note that the objective here could be
viewed as aiming to find a fair k-partition, i.e., a k-partition where no part pays too much in
cut value. Motivated by this connection to fairness, Chandrasekaran and Chekuri (2021) [13]
studied the more general problem of MINMAX-SYMSUBMOD-k-PARTITION. They gave the
first (deterministic) polynomial-time algorithm to solve MINMAX-SYMSUBMOD-k-PARTITION
and as a consequence, obtained the first polynomial-time algorithm to solve MINMAX-
HYPERGRAPH-k-PARTITION. Their algorithm does not show any bound on the number of
MINMAX-k-CUT-SETSs since it solves the more general problem of MINMAX-SYMSUBMOD-k-
PARTITION for which the number of optimum k-partitions can indeed be exponential (recall
the spanning-hyperedge-example). Focusing on hypergraphs raises the question of whether
all k-cut-sets corresponding to optimum solutions can be enumerated efficiently for every
fixed k. We answer this question affirmatively by giving the first polynomial-time algorithm
for ENUM-MINMAX-HYPERGRAPH-k-PARTITION.

» Theorem 1. There exists a deterministic algorithm to solve ENUM-MINMAX-HYPERGRAPH-
k-PARTITION that runs in time O(kn‘lkz*%“p), where n is the number of vertices and p is
the size of the input hypergraph. Moreover, the number of MINMAX-k-CUT-SETS in a n-vertex
hypergraph is O(n4k2_2k).

We emphasize that our result shows the first polynomial bound on the number of MINMAX-
k-cUT-SETs in hypergraphs for every fixed k (in addition to a polynomial-time algorithm
to enumerate all of them for every fixed k). Our upper bound of nO**) on the number of
MINMAX-k-CUT-SETSs is tight — there exist n-vertex connected graphs for which the number
of MINMAX-k-CUT-SETSs is n©*”).

Next, we briefly recall the status of HYPERGRAPH-k-CUT and ENUM-HYPERGRAPH-
k-CuT. HYPERGRAPH-k-CUT was shown to be solvable in randomized polynomial time
only recently [15,20]; the randomized algorithms also showed that the number of MIN-k-
cuUT-SETs is O(n?72) and they can all be enumerated in randomized polynomial time. A
subsequent deterministic algorithm was designed to solve HYPERGRAPH-k-CUT in time
n®®p by Chandrasekaran and Chekuri [12]. Chandrasekaran and Chekuri’s techniques
were extended to design the first deterministic polynomial-time algorithm to solve ENUM-
HYPERGRAPH-k-CUT in [8]. The algorithm for ENUM-HYPERGRAPH-k-CUT given in [8] runs
in time nO**) p. We note that this run-time has a quadratic dependence on k in the exponent
of n although the number of MIN-k-CUT-SETs has only linear dependence on k in the exponent
of n (since it is O(n?*~2)). So, an open question that remained from [8] is whether one can
obtain an n®*)p-time deterministic algorithm for ENUM-HYPERGRAPH-k-CUT. We resolve
this question affirmatively.
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» Theorem 2. There exists a deterministic algorithm to solve ENUM-HYPERGRAPH-k-CUT
that runs in time O(n'%%=25p) where n is the number of vertices and p is the size of the
input hypergraph.

Our algorithms for both ENUM-MINMAX-HYPERGRAPH-k-PARTITION and ENUM-
HYPERGRAPH-k-CUT are based on a structural theorem that allows for efficient recovery
of optimum k-cut-sets via minimum (s, t)-terminal cuts (see Theorem 4). Our structural
theorem builds on structural theorems that have appeared in previous works on MINMAX-
HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT [8,12,13]. Our structural theorem
may appear to be natural/incremental in comparison to ones that appeared in previous
works, but formalizing the theorem and proving it is a significant part of our contribution.
Moreover, our single structural theorem is strong enough to enable efficient algorithms for
both ENUM-HYPERGRAPH-k-CUT as well as ENUM-MINMAX-HYPERGRAPH-k-PARTITION in
contrast to previously known structural theorems. In this sense, our structural theorem can
be viewed as a strong and unifying generalization of structural theorems that have appeared
in previous works. We believe that our structural theorem will be of independent interest in
the theory of cuts and partitioning in hypergraphs (as well as graphs).

1.2 Technical overview and main structural result

We focus on the unit-cost variant of ENUM-HYPERGRAPH-k-CUT and ENUM-MINMAX-
HYPERGRAPH-k-PARTITION in the rest of this work for the sake of notational simplicity —
i.e., the cost of every hyperedge is 1. Throughout, we will allow multigraphs and hence, this
is without loss of generality. Our algorithms extend in a straightforward manner to arbitrary
hyperedge costs. They rely only on minimum (s, t)-terminal cut computations and hence,
they are strongly polynomial-time algorithms.

Notation and background. Let G = (V, E) be a hypergraph. Throughout this work, n
will denote the number of vertices in GG, m will denote the number of hyperedges in GG, and
p = ) .cp le| will denote the representation size of G. We will denote a partition of the
vertex set into h non-empty parts by an ordered tuple (Vi,...,V},) and call such an ordered
tuple as an h-partition. For a partition P = (V1, Vs, ..., V), we will say that a hyperedge e
crosses the partition P if it intersects at least two parts of the partition. We will refer to a
2-partition as a cut. For a non-empty proper subset U of vertices, we will use U to denote
V\ U, §(U) to denote the set of hyperedges crossing the cut (U, U), and d(U) := |5(U)]| to
denote the cut value of U. We observe that 6(U) = §(U), so we will use d(U) to denote
the value of the cut (U,U). More generally, given a partition P = (Vy,Va,..., V3), we
denote the set of hyperedges crossing the partition by §(Vi, Va,...,V4) (also by 6(P) for
brevity) and the number of hyperedges crossing the partition by |0(V1, Va,..., V4)|. We will
denote the optimum value of MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT
respectively by

OPT ninmax-k-partition 1= Iin {mz[a%( [6(Vi)|: (Va,..., Vi) is a k-partition of V} and
1€

OPTy cus :=min{|6(V,..., Vi) : (Vi,..., V) is a k-partition of V'}.

A key algorithmic tool will be the use of fixed-terminal cuts. Let S, T be disjoint non-
empty subsets of vertices. A 2-partition (U,U) is an (S, T)-terminal cut if S CU C V \ T.

Here, the set U is known as the source set and the set U is known as the sink set. A
minimum-valued (S, T')-terminal cut is known as a minimum (S, T')-terminal cut. Since there

16:5
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could be multiple minimum (.5, T)-terminal cuts, we will be interested in source minimal
minimum (S, 7T)-terminal cuts. For every pair of disjoint non-empty subsets S and T of
vertices, there exists a unique source minimal minimum (S, T')-terminal cut and it can be
found in deterministic polynomial time via standard maxflow algorithms. In particular, the
source minimal minimum (S, T)-terminal cut can be found in time O(np) [17].

Our technique to enumerate all MINMAX-k-CUT-SETS and all MIN-k-CUT-SETs will build
on the approaches of Chandrasekaran and Chekuri for HYPERGRAPH-k-CUT and MINMAX-
SYMSUBMOD-k-PARTITION [8,12,13]. We need the following structural theorem that was
shown in [8].

» Theorem 3 ([8]). Let G = (V, E) be a hypergraph and let OPTy;, ¢yt be the optimum value
of HYPERGRAPH-k-CUT in G for some integer k > 2. Suppose (U,U) is a 2-partition of V
with d(U) < OPTy_cyi- Then, for every pair of vertices s € U and t € U, there exist subsets
SCU\{s} and T C U\ {t} with |S| <2k — 3 and |T| < 2k — 3 such that (U,U) is the
unique minimum (SU {s}, T U {t})-terminal cut in G.

Enum-Hypergraph-k-Cut. We first focus on ENUM-HYPERGRAPH-k-CUT. We note that
Theorem 3 will allow us to recover those parts V; of an optimum k-partition (Vi,..., Vi)
for which d(V;) < OPTg.cus- However, recall that our goal is not to recover all optimum
k-partitions for HYPERGRAPH-k-CUT, but rather to recover all MIN-k-CUT-SETs (i.e., not to
recover the parts of every optimum k-partition, but rather only to recover the k-cut-set of every
optimum k-partition). The previous work [8] that designed an n®**)p-time deterministic
enumeration algorithm achieved this by proving the following structural result: suppose
(V1,..., Vi) is an optimum k-partition for HYPERGRAPH-k-CUT for which d(V}) = OPTg_cut-
Then, they showed that for every subset T' C V; satisfying T NV; # 0 for all j € {2,...,k},
there exists a subset S C V; with |S| < 2k such that the source minimal minimum (S, T)-
terminal cut (A, A) satisfies 6(A) = §(V1). This structural theorem in conjunction with
Theorem 3 allows one to enumerate a candidate family F of nO**) subsets of hyperedges
such that every MIN-k-CUT-SET is present in the family. The drawback of their structural
theorem is that it is driven towards recovering the cut-set 6(V;) of every part V; of every
optimum k-partition (V1, ..., V). Hence, their algorithmic approach ends up with a run-time
of no(k2)p. In order to improve the run-time, we prove a stronger result: we show that for an
arbitrary cut (U, U) with cut value O PT}._cy; (as opposed to only those sets V; of an optimum
k-partition (Vi,...,Vy)), its cut-set §(U) can be recovered as the cut-set of any minimum
(S, T)-terminal cut for some S and T of small size. The following is the main structural
theorem of this work.

» Theorem 4. Let G = (V, E) be a hypergraph and let OPTy_ct be the optimum value of
HYPERGRAPH-k-CUT in G for some integer k > 2. Suppose (U,U) is a 2-partition of V with
d(U) = OPTycut- Then, there exist sets S CU, T C U with |S| <2k —1 and |T| < 2k — 1
such that every minimum (S, T)-terminal cut (A, A) satisfies 5(A) = §(U).

We encourage the reader to compare and contrast Theorems 3 and 4. The former helps
to recover cuts whose cut value is strictly smaller than O PT}._c,t while the latter helps to
recover cut-sets whose size is equal to OPTy_cus. So, the latter theorem is weaker since it
only recovers cut-sets, but we emphasize that this is the best possible that one can hope to
do (as seen from the spanning-hyperedge-example). However, proving the latter theorem
requires us to work with cut-sets (as opposed to cuts) which is a technical barrier to overcome.
Indeed, our proof of Theorem 4 deviates significantly from the proof of Theorem 3 since
we have to work with cut-sets. Our proof also deviates from the structural result in [§]
that was mentioned in the paragraph above Theorem 4 since our result is stronger than
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their result — our result helps to recover the cut-set 6(U) of an arbitrary cut (U,U) whose
cut value is d(U) = OPTy. ¢y while their result helps only to recover the cut-set 6(V;) of a
part V; of an optimum k-partition (Vi,...,V;) for HYPERGRAPH-k-CUT whose cut value is
d(V;) = OPT}._cus; moreover, their proof technique crucially relies on a containment property
with respect to the part V;, whereas under the hypothesis of our structural theorem, the
containment property fails with respect to the set U and consequently, our proof technique
differs from theirs.

Theorems 3 and 4 lead to a deterministic n©*)-time algorithm to enumerate all MIN-k-
CUT-SETs via a divide-and-conquer approach. We describe this algorithm now: For each
pair (S,7T) of disjoint subsets of vertices S and T with |S|, |T'| < 2k — 1, compute the
source minimal minimum (S, T')-terminal cut (A, A); (i) if G — 6(A) has at least k connected
components, then add §(A) to the candidate family F; (ii) otherwise, add the set A to a
collection C. We note that the sizes of the family F and the collection C are O(n**~2). Next,
for each subset A in the collection C, recursively enumerate all MIN-k/2-CUT-SETs in the
subhypergraphs induced by A and A respectively® — denoted G[A] and G[A] respectively —
and add 0(A) U Fy U F; to the family F for each F; and F5 being MIN-k/2-CUT-SET in G[A]
and G[A] respectively. Finally, return the subfamily of k-cut-sets from the family F that are
of smallest size.

We sketch the correctness analysis of the above approach: let F = §(V3,..., Vi) be a
MIN-k-CUT-SET with (V,..., V%) being an optimum k-partition for HYPERGRAPH-k-CUT.
We will show that the family F contains F. Let U := UfﬁVZ We note that §(U) C F.
We have two possibilities: (1) Say d(U) = |F|. Then, d(U) = OPTg.cyt- Consequently,
by Theorem 4, the MIN-k-CUT-SET F will be added to the family F by step (i). (2) Say
d(U) < |F|. Then, by Theorem 3, the set U = UfﬁVi will be added to the collection C
by step (ii); moreover, Fy := F N E(G[U]) and F, := F N E(G[U]) are MIN-k/2-CUT-SETS
in G[U] and G[U] respectively and they would have been enumerated by recursion, and
hence, the set §(U) U Fy U F» = F will be added to the family F. The size of the family F
can be shown to be n@*1°8k) and the run-time is n©*1°8%)p. Using the known fact that
the number of MIN-k-CUT-SETSs in a n-vertex hypergraph is O(n?*=2), we can improve the

run-time analysis of this approach to n®®p.

Enum-MinMax-Hypergraph-k-Partition. Next, we focus on ENUM-MINMAX-
HYPERGRAPH-k-PARTITION. There is a fundamental technical issue in enumerating
MINMAX-k-CUT-SETs as opposed to MIN-k-CUT-SETs. We highlight this technical issue
now. Suppose we find an optimum k-partition (Vi,...,V;) for MINMAX-HYPERGRAPH-
k-PARTITION (say via Chandrasekaran and Chekuri’s algorithm [13]) and store only
the MINMAX-k-CUT-SET F' = 6(V1,..., V%) but forget to store the partition (Vi,...,Vi);
now, by knowing a MINMAX-k-CUT-SET F', can we recover some optimum k-partition for
MINMAX-HYPERGRAPH-kK-PARTITION (not necessarily (Vi,...,V%))? Or by knowing a
MINMAX-k-CUT-SET F), is it even possible to find the value OPTyinmax-k-partition Without
solving MINMAX-HYPERGRAPH-k-PARTITION from scratch again — i.e., is there an advantage
to knowing a MINMAX-k-CUT-SET in order to solve MINMAX-HYPERGRAPH-k-PARTITION?
We are not aware of such an advantage. This is in stark contrast to HYPERGRAPH-k-CUT
where knowing a MIN-k-CUT-SET enables a linear-time solution to HYPERGRAPH-k-CUTS.

5 Subhypergraph G[A] has vertex set A and contains all hyperedges of G which are entirely contained
within A.

5 Suppose we know a MIN-k-CUT-SET F. Then consider the connected components Q1,...,Q; in G — F
and create a partition (Py,..., Py) by taking P; = Q; for every i € [k — 1] and P, = U;Zij; such a
k-partition (P, ..., Py) will be an optimum k-partition for HYPERGRAPH-k-CUT.
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Why is this issue significant while solving ENUM-MINMAX-HYPERGRAPH-k-PARTITION?
We recall that in our approach for ENUM-HYPERGRAPH-k-CUT, the algorithm computed
a polynomial-sized family F containing all MIN-k-CUT-SETs and returned the ones with
smallest size — the smallest size ones will exactly be MIN-k-CUT-SETs. It is unclear if a
similar approach could work for enumerating MINMAX-k-CUT-SETs: suppose we do have an
algorithm to enumerate a polynomial-sized family F containing all MINMAX-k-CUT-SETS;
now, in order to return all MINMAX-k-CUT-SETs (which is a subfamily of F), note that we
need to identify them among the ones in the family F — i.e., we need to verify if a given
subset F' € F of hyperedges is a MINMAX-k-CUT-SET; this verification problem is closely
related to the question mentioned in the previous paragraph. We do not know how to
address this verification problem directly. So, our algorithmic approach for ENUM-MINMAX-
HYPERGRAPH-k-PARTITION has to overcome this technical issue.

Our ingredient to overcome this technical issue is to enumerate representatives for
MINMAX-k-CUT-SETs. For a k-partition (Vi,..., V%) and disjoint subsets Uy,...,Ur CV, we
will call the k-tuple (Uy,...,Ux) to be a k-cut-set representative of (Vi,..., Vi) if U; CV;
and 0(U;) = 0(V;) for all i € [k]. We note that a fixed k-partition (Vi,..., Vi) could
have several k-cut-set representatives and a fixed k-tuple (Ui,...,Uy) could be the k-
cut-set representative of several k-partitions. Yet, it is possible to efficiently verify if
a given k-tuple (Uy,...,Uy) is a k-cut-set representative. Moreover, knowing a k-cut-set
representative (Ut, ..., Uy) of a k-partition (V1, Va, ..., V}) allows one to recover the k-cut-set
F:=5§(Vh,..., Vi) since F = UF_ §(U;). Thus, in order to enumerate all MINMAX-k-CUT-SETS,
it suffices to enumerate k-cut-set representatives of all optimum k-partitions for MINMAX-
HYPERGRAPH-K-PARTITION. At this point, the astute reader may wonder if there exists a
polynomial-sized family of k-cut-set representatives of all optimum k-partitions for MINMAX-
HYPERGRAPH-E-PARTITION given that the number of optimum k-partitions for MINMAX-
HYPERGRAPH-k-PARTITION could be exponential. For example, is there a polynomial-sized
family of k-cut-set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-
PARTITION in the spanning-hyperedge-example? Indeed, in the spanning-hyperedge-example,
even though the number of optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION is
exponential, there exists a (k!(:))-sized family of k-cut-set representatives of all optimum k-
partitions: consider the family {({v1},...,{ve}) : v1,...,vx € V,v; # v; V distinct ¢, € [k]}.

It turns out that Theorems 3 and 4 are strong enough to enable efficient enumeration of k-
cut-set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION.
We describe the algorithm to achieve this: For each pair (S,7) of disjoint subsets of
vertices with |S|, |T'| < 2k — 1, compute the source minimal minimum (.5, T')-terminal cut
(U,U) and add U to a candidate collection C. We note that the size of the collection C
is O(n**=2). Next, for each k-tuple (Uy,...,Uy) € C*, verify if (Uy,...,Uy) is a k-cut-set
representative and if so, then add the k-tuple to the candidate family D. Finally, return
arg min{max®_, d(U;) : (Uy,...,Us) € D}, i.e., prune and return the subfamily of k-cut-set
representatives (Uy, ..., Uy) from the family D that have minimum max?_, d(U;).

We note that the size of the family D is nO**) and consequently, the run-time is no(kz)p.
We sketch the correctness analysis of the above approach: let (V,...,V;) be an optimum -
partition for MINMAX-HYPERGRAPH-k-PARTITION. We will show that the family D contains
a k-cut-set representative of (V1,...,Vy). By noting that O PTinmax-k-partition < OPTk-cut
and by Theorems 3 and 4, for every i € [k], we have a set U; in the collection C with U; C V;
and 6(U;) = 6(V;). Hence, the k-tuple (Uy,...,Us) € C* is a k-cut-set representative and it
will be added to the family D. The final pruning step will not remove (Uy, ..., Uy) from the
family D and hence, it will be in the subfamily returned by the algorithm.
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Significance of our technique. As mentioned earlier, our techniques build on the structural
theorems that appeared in previous works [8,12,13]. The main technical novelty of our
contribution lies in Theorem 4 which can be viewed as the culmination of structural theorems
developed in those previous works. We also emphasize that using minimum (s, t)-terminal
cuts to solve global partitioning problems is not a new technique per se (e.g., minimum
(s,t)-terminal cut is the first and most natural approach to solve global minimum cut). This
technique of using minimum (s, t)-terminal cuts to solve global partitioning problems has a
rich variety of applications in combinatorial optimization: e.g., (1) it was used to design the
first efficient algorithm for GRAPH-k-CUT for fixed k [23], (2) it was used to design efficient
algorithms for certain constrained submodular minimization problems [22,35], and (3) more
recently, it was used to design fast algorithms for global minimum cut in graphs as well as to
obtain fast Gomory-Hu trees in unweighted graphs [1,34]. The applicability of this technique
relies on identifying and proving appropriate structural results. Our Theorem 4 is such a
structural result. The merit of the structural result lies in its ability to solve two different
enumeration problems in hypergraph k-partitioning which was not possible via structural
theorems that were developed before. Moreover, it leads to the first polynomial bound on
the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k.

Organization. In Section 1.3, we recall properties of the hypergraph cut function. In
Section 2, we prove a special case of Theorem 4. In Section 3, we use this special case to
prove Theorem 4. We refer the reader to the full version [7] for a discussion of related work,
our algorithms to prove Theorems 1 and 2, and a lower bound example. We conclude with
some open questions in Section 4.

1.3 Preliminaries

Let G = (V, E) be a hypergraph. Throughout, we will follow the notation mentioned in the
second paragraph of Section 1.2. For disjoint A, B C V', we define E(A,B) :={e€ E:eC
AUB,enNA#0,enB# 0}, and E[A] :=={e € E: e C A}. We will repeatedly rely on the
fact that the hypergraph cut function d : 2" — R is symmetric and submodular. We recall
that a set function f : 2¥ — R is symmetric if f(U) = f(U) for all subsets U C V and is
submodular if f(A)+ f(B) > f(ANB) + f(AU B) for all subsets A,B C V.

We will need the following partition uncrossing theorem that was proved in previous works
on HYPERGRAPH-k-CUT and ENUM-HYPERGRAPH-k-CUT (see Figure 1 for an illustration

of the sets that appear in the statement of Theorem 5):

» Theorem 5 ([8,12]). Let G = (V,E) be a hypergraph, k > 2 be an integer and ) #
RCUCV. Let S = {u1,...,up,} CU\R forp>2k—2. Let (4;, A;) be a minimum
((SUR)\{u;}, U)-terminal cut. Suppose that u; € A; \ (Ujep (iyA;s) for every i € [p]. Then,
the following two hold:

1. There exists a k-partition (Py,...,Py) of V with U C Py such that
1 . .
|0(Py,...,Py)| < 3 min{d(A4;) + d(4;) :4,j € [p],s #j}.

2. Moreover, if there exists a hyperedge e € E such that e intersects W := Ui <icj<p(A;NA;j),
e intersects Z = ﬂie[p]E, and e is contained in W U Z, then the inequality in the previous
conclusion is strict.
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Figure 1 Tllustration of the sets that appear in the statement of Theorem 5.

2 A special case of Theorem 4

The following is the main theorem of this section. Theorem 6 implies Theorem 4 in the
special case where the 2-partition (U, U) of interest to Theorem 4 is such that |U| < 2k — 1.

» Theorem 6. Let G = (V, E) be a hypergraph and let OPTy_cut be the optimum value of
HYPERGRAPH-k-CUT in G for some integer k > 2. Suppose (U,U) is a 2-partition of V
with d(U) = OPTy_cut- Then, there exists a set S C U with |S| < 2k — 1 such that every
minimum, (S, U)-terminal cut (A, A) satisfies 5(A) = 6(U).

Proof. Consider the collection
C:={QCV: UCQ, dQ) < dU), and §(Q) # 5(U)}.

Let S be an inclusion-wise minimal subset of U such that SNQ # 0 for all Q € C, i.e., the set
S is completely contained in U and is a minimal transversal of the collection C. Proposition
7 and Lemma 8 complete the proof of Theorem 6 for this choice of S. |

» Proposition 7. Every minimum (S, U)-terminal cut (A, A) has §(A) = 6(U).

Proof. Let (A, A) be a minimum (S, U)-terminal cut. If A = U, then we are done, so we may
assume that A # U. This implies that S C A and U C A. Since (U,U) is a (S, U)-terminal

cut, we have that d(A) = d(A) < d(U). Since S intersects every set in the collection C, we
have that A € C. Hence, 6(A) = 6(U), and by symmetry of cut-sets, §(A) = §(U). <

» Lemma 8. The size of the subset S is at most 2k — 1.

Proof. For the sake of contradiction, suppose |S| > 2k. Our proof strategy is to show the
existence of a k-partition with fewer crossing hyperedges than O PTj_cyt, thus contradicting
the definition of OPTy.cut. Let S := {ui,us,...,u,} for some p > 2k. For notational
convenience, we will use S —u; to denote S\ {u;} and S —u; —u; to denote S\ {u;, u;}. For
a subset X C U, we denote the source minimal minimum (X, U)-terminal cut by (Hx, Hx).

Our strategy to arrive at a k-partition with fewer crossing hyperedges than O PTy_cyus is
to apply the second conclusion of Theorem 5. The next few claims will set us up to obtain
sets that satisfy the hypothesis of Theorem 5.

> Claim 9. For every ¢ € [p], we have Hg_,,, € C.
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Proof. Let ¢ € [p]. Since S is a minimal transversal of the collection C, there exists a set
B; € C such that B; NS = {u;}. Hence, (B;, B;) is a (S — u;, U)-terminal cut. Therefore,

d(Hs—w) < d(B;) < d(U).

Since (Hs—v,, Hs—v,) is a (S — u;, U)-terminal cut, we have that U C Hg_,,. If d(Hg_,,) <
d(U), then §(Hg_,,) # 6(U) and U C Hg_,,, and consequently, Hs_,, € C. So, we will
assume henceforth that d(Hg_,,) = d(U).

Since (Hg—y, N Bi, Hs_y, N B;) is a (S — u;, U)-terminal cut, we have that

d(Hs—y, N B;) > d(Hg_y,).
Since (Hg_., U B;, m) is a (S — u;, U)-terminal cut, we have that

d(Hs—y, UB;) > d(Hg_y,)-
Therefore, by submodularity of the hypergraph cut function, we have that

2d(U) > d(Hs—y,) + d(B;) > d(Hs—u, N B;) + d(Hs—y, U B;) > 2d(Hs—y,) = 2d(U). (1)
Therefore, all inequalities above should be equations. In particular, we have that d(Hg—_,, N

B;) = d(U) = d(B;) = d(Hs_,,) and hence, (Hg_,, N B;, Hs_,, N B;) is a minimum

(S — u;, U)-terminal cut. Since (Hg_y,;, Hg—_y,) is a source minimal minimum (S — u;, U)-
terminal cut, we must have Hg_,, N B, = Hg_,,, and thus Hs_,, C B;. Therefore,
B; C Hg_,,. Since B; € C, we have §(B;) # 6(U). However, d(B;) = d(U). Therefore
S(U)Y\ 6(B;) # 0. Let e € 5(U) \ §(B;). Since e € §(U), but e € §(B;), and U C B;, we have
that e C B;, and thus e C Hg_,,. Thus, we conclude that §(U) \ §(Hs—v,;) # 0, and so
§(Hs — u;) # 6(U). This also implies that U C Hg_,,,. Thus, Hg_,, € C. <

Claim 9 implies the following Corollary.

» Corollary 10. For every i € [p], we have u; € Hg_,,.

Proof. By definition, S — u; C Hg_y,, s0 SN Hg_y, C {u;}. By Claim 9 we have that
Hgs_,, €C. Since S is a transversal of the collection C, we have that SN Hg_,,, # (). So, the
vertex u; must be in Hg_,,. |

Having obtained Corollary 10, the next few claims (Claims 11, 13, 14, and 15) are similar
to the claims appearing in the proof of a structural theorem that appeared in [8]. Since the
hypothesis of the structural theorem that we are proving here is different from theirs, we
present the complete proofs of these claims here. The way in which we use the claims will
also be different from [8].

The following claim will help in showing that u;, u; € Hs_v,—u;, which in turn, will be
used to show that the hypothesis of Theorem 5 is satisfied by suitably chosen sets.

> Claim 11.  For every i, j € [p], we have Hg_y, o, € Hs_y,-

Proof. We may assume that 7 # j. We note that (Hg ., —w; N Hs—u;, Hs—u,—u; N Hs_y,) is

a (S —u; — uj, U)-terminal cut. Therefore,

d(HS_u'i_'U«j N HS—ui) 2 d(HS_u'i_'U«j)' (2)

Also, (Hs—w;—u; UHg u;, Hs—u;—u; UHs_y,) is a (S — u;, U)-terminal cut. Therefore,

d(HS_ui_uj U HS_Ui) 2 d<HS_ui)' (3)
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By submodularity of the hypergraph cut function and inequalities (2) and (3), we have that

d(HS—u,—uJ) + d(HS—u,) (HS—ui—uj ﬁ HS—u,) + d(HS—u,;—uj U HS—U,)

>d
> d(HsfuifuJ') + d(HsfuL)

Therefore, inequality (2) is an equation, and consequently, (Hs_y,—u; N

Hg—u;, Hs—uy—u; N Hs—y,) is a minimum (S—u;—u;, U)-terminal cut. If Hg_y, —u; \Hs—u, #
(), then
(Hs—w;—u; N Hs—y;, Hs_y;—u, N Hs_y,) contradicts source minimality of the minimum

(S — ui — uj,U)-terminal cut (Hs_y,—u,, H§—u,—u,;). Hence, Hg_y,—u, \ Hs—y, = 0 and
consequently, Hg_y, w; € Hg ;. <

Claim 11 implies the following Corollary.

» Corollary 12. For every i,j € [p], we have w;,u; & Hs_y, ;-

Proof. By Corollary 10, we have that u; ¢ Hs . Therefore, u;,u; ¢ Hs—y, N Hs_y,. By
Claim 11, Hsy;—w; € Hs—, and Hg_y, w; € Hs_y;. Therefore, Hg 4, w; € Hg 4, N
Hs .y, , and thus, u;, u; € Hs v, —u;- |

The next claim will help in controlling the cost of the k-partition that we will obtain by
applying Theorem 5.

> Claim 13. For every i, j € [p], we have d(Hs_y,) = d(U) = d(Hs_u;—u,)-

Proof. Let a,b € [p]. We will show that d(Hg_,,) = d(U) = d(Hs—_u,—u,)- Since (U,U)
is a (S — ug, U)-terminal cut, we have that d(Hg_,,) < d(U). Since (Hg_y,, Hs_u,) is a
(S — uy — up, U)-terminal cut, we have that d(Hg_.,—u,) < d(Hs—v,) < d(U). Thus, in
order to prove the claim, it suffices to show that d(Hg_,,—v,) > d(U).

Suppose for contradiction that d(Hg_y,—v,) < d(U). Let £ € [p] \ {a, b} be an arbitrary
element (which exists since we have assumed that p > 2k and k > 2). Let R := {us}, S’ :=
S—ug—ug,and A; := Hg_y,—y, for every i € [p]\{a,¢}. We note that |S’| =p—2 > 2k —2.
By definition, (4;, 4;) is a minimum (S — u, — u;, U)-terminal cut for every i € [p] \ {a, ¢}.
Moreover, by Corollary 12, we have that u; € A; \ (Ujep)\{a,i,}A;) for every i € [p] \ {a, (}.
Hence, the sets U, R, and S’, and the cuts (4;, A;) for i € [p] \ {a, ¢} satisfy the conditions
of Theorem 5. Therefore, by the first conclusion of Theorem 5, there exists a k-partition P’
with

6(P')] < %min{d(HS—ua—ui) +d(Hg—u,—u;): 1,5 € [p]\ {a, (}}.
By assumption, d(Hs—qy,—v,) < d(U) and b € [p] \ {a, ¢}, so min{d(Hg_y,—u;): ¢ € [p] \
<

{a,¢}} < d(U). Since (U,U) is a (S — ug — u;, U)-terminal cut, we have that d(Hg_v, —u,)
d(U) for every i € [p] \ {a,(}. Therefore,

%min{d(HS,ua,ui) Fd(Hs u,—u,): 6,5 € [P\ {a,£}} < d(U) = OPTjcns.-

Thus, we have that |§(P’)| < OPTy.cut, which is a contradiction. <

The next two claims will help in arguing the existence of a hyperedge satisfying the
conditions of the second conclusion of Theorem 5. In particular, we will need Claim 15. The
following claim will help in proving Claim 15.
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> Claim 14. For every i,j € [p], we have

d(HS—ui N Hs_uj) = d(U) = d(HS—ui U HS—uj)-

Proof. Since (Hs_y, N Hg—w;, Hs—u, N Hs_;) is a (S —u; — u;, U)-terminal cut, we have
that d(Hs_y, N Hs—v;) > d(Hs_y,—u,;). By Claim 13, we have that d(Hs_y, ;) = d(U) =
d(Hg_,). Therefore,

d(Hs—u, N HS—uJ) > d(Hs—v,). (4)

Since (Hg—y, UHg_v,;, Hs—y, UHg_,,) is a (S — u;, U)-terminal cut, we have that
d(Hs—w;, UHs ;) > d(Hs ;). (5)
By submodularity of the hypergraph cut function and inequalities (4) and (5), we have that
d(Hs ;) +d(Hs ;) > d(Hs o, NHs_y;) +d(Hs—y, UHs_y;) > d(Hs_y,) +d(Hs_y;).
Therefore, inequalities (4) and (5) are equations. Thus, by Claim 13, we have that
d(Hs—u; NHs—y,;) = d(Hs—y,) = d(U),
and
d(Hs—w;, UHs_y;) = d(Hg_y,) = d(U). <
> Claim 15.  For every i, j, £ € [p] with i # j, we have Hg_,, € Hg ., U Hg ;.

Proof. If £ = i or £ = j the claim is immediate. Thus, we assume that ¢ ¢ {i,j}. Let
Q = Hs_y, \ (Hs_y, U Hg_,;). We need to show that Q = (. We will show that

(Hs—u, \ @, Hgs_y, \ @) is a minimum (S — uy, U)-terminal cut. Consequently, () must be
empty (otherwise, Hs_y, \ @ € Hs_,, and hence, (Hg_,, \ @, Hs—v, \ @) contradicts source

minimality of the minimum (S — ug, U)-terminal cut (Hs_y,, Hs—u,))-

We now show that (Hg_,, \ Q, Hs—v, \ Q) is a minimum (S — u,, U)-terminal cut. Since
Hs w,\Q=Hs ., N (Hs_y, UHs_y;), we have that S —u; —u; —ug C Hs_,,, \ Q. We
also know that u; and u; are contained in both Hg_,, and Hs_,, U Hs_;. Therefore,

S—up C Hg_y,\Q. Thus, (Hs_,, \Q, Hs_u, \ Q) is a (S —uy, U)-terminal cut. Therefore,

d(HS—u[ N (Hsfui U Hsfu_,-)) = d(HS—ug \Q) > d(Hsfug)' (6)

We also have that (Hg_v, U (Hs—u, UHs_y;), Hs—u, U(Hs—y, UHs_y;)) is a (S — u;, U)-
terminal cut. Therefore, d(Hg v, U (Hs—y, U Hs_y;)) > d(Hs_,,). By Claims 13 and 14,
we have that d(Hs_.,) = d(V1) = d(Hs—y, U Hs_y;). Therefore,

d(HS—w U (HS—ui U HS—uj)) > d(HS—ui U HS—uj)- (7)
By submodularity of the hypergraph cut function and inequalities (6) and (7), we have that

d(HS—uZ)‘i’d(HS—ui U HS—uj) (HS—ug M (HS—ui U HS—uj))‘i’d(HS—ug U (HS—ui U HS—uj))

>d
> d(Hs_W) + d(Hs_ui U HS—uj)-

Therefore, inequalities (6) and (7) are equations, so (Hg—q, \ @, Hs—y, \ Q) is a minimum

(S — ug, U)-terminal cut. <
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Let R := {uy}, S" := 8 —uy,, and (A4;, A;) := (Hs—_y,, Hs_y,) for every i € [p —1]. By
definition, (A;, A;) is a minimum (S — u;, U)-terminal cut for every i € [p — 1]. Moreover,
by Corollary 10, we have that u; € A; \ (Ujepp—1)\{s}A4;). Hence, the sets U, R, and 5,
and the cuts (A4;, A;) for i € [p — 1] satisfy the conditions of Theorem 5. We will use the
second conclusion of Theorem 5. We now show that there exists a hyperedge satisfying the
conditions mentioned in the second conclusion of Theorem 5. We will use Claim 16 below
to prove this. Let W := Ui<ijcj<p-1(4; N A4;) and Z := ﬂie[p,l]fi as in the statement of
Theorem 5.

> Claim 16. There exists a hyperedge e € E such that eNW # 0, eNZ # 0, and e C WU Z.

Proof. We note that S C (S —u;) U (S —u;) € Hs o, UHs_,,; for every distinct i, j € [p—1].
Therefore, SN (A; N A;) =0 for every distinct ¢, j € [p — 1], and thus SNW = ). Since S is
a transversal of the collection C, it follows that the set W is not in the collection C.

By definition, U C A; for every i € [p— 1], and thus U C W. Since W ¢ C, either d(W) >
d(U) or (W) = 6(U). By Claim 9, we have that Hs_,,, € C, and thus, d(Hg_,,) < d(U)
and 6(Hs_y,) # 6(U). Consequently, d(W) > d(Hs_y,), and §(W) # 6(Hs_., ), and thus,
S(W)\6(Hs—u,) # 0. Let e € 6(W) \ 6(Hs—v,). We will show that this choice of e achieves
the desired properties.

For each i € [p], let Y; := Hg_,,, \W. By Claim 15, for every i, j, ¢ € [p] with ¢ # j we have
that Hg_y, € Hs_, UHg_y,. Therefore Hg_,,NHg_,,, C Hs_,, for every such i, 4,£ € [p],
and hence W C Hg_,, for every £ € [p]. Thus, W C Hg_,,,. Since e € §(W)\ 0(Hgs_,), we
have that e C W UY),, eNW # 0 and eNY,, # (). Therefore, in order to show that e has the
three desired properties as in the claim, it suffices to show that Y}, C Z. We prove this next.

By definition, Y,NW = (). By Claim 15, for every i € [p—1], we have that Hg_,,,NHg_, C
Hg_,, and HS,up NHg_y, € Hs_y,, SO Hsfup NHg_y, € Hs_y, N Hg_y, € W. Thus,
for every i € [p—1], Y, NY; € Hg_y, N Hg_, € W, so since Y, N W = (), we have that
Y, NY; =0 for every i € [p — 1]. Therefore,

p—1

p—1 p—1
Y;gWU(UK»):UHS_M:ﬂHS_W:Z. <
i=1 =1

i=1
By Claim 16, there is a hyperedge e satisfying the conditions of the second conclusion of
Theorem 5. Therefore, by Theorem 5, there exists a k-partition P’ with
1. . .,
[6(P))] < 5 min{d(Ai) +d(4)) 3,5 € [p = 1], # j}
=d(U) (By Claim 13)
= OPT}cus- (By assumption of the theorem)

Thus, we have obtained a k-partition P’ with |§(P’)| < OPTj_cut, which is a contradiction.
<

3 Proof of Theorem 4

We prove Theorem 4 in this section. Applying Theorem 6 to (U,U) yields the following
corollary.

» Corollary 17. Let G = (V, E) be a hypergraph and let OPTy_cyt be the optimum value of
HYPERGRAPH-k-CUT in G for some integer k > 2. Suppose (U,U) is a 2-partition of V
with d(U) = OPTy_cus. Then, there exists a set T C U with |T| < 2k — 1 such that every
minimum (U, T)-terminal cut (A, A) satisfies 5(A) = 6(U).
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We now restate Theorem 4 and prove it using Theorem 6 and Corollary 17.

» Theorem 4. Let G = (V, E) be a hypergraph and let OPTy._cyr be the optimum value of
HYPERGRAPH-k-CUT in G for some integer k > 2. Suppose (U,U) is a 2-partition of V with
d(U) = OPT}.cys. Then, there exist sets S CU, T C U with |S| <2k —1 and |T| < 2k — 1
such that every minimum (S, T)-terminal cut (A, A) satisfies 5(A) = 6(U).

Proof. By Theorem 6, there exists a subset S C U with |S| < 2k — 1 such that every
minimum (S, U)-terminal cut (A4, A) has 6(A) = §(U). By Corollary 17, there exists a
subset T C U with |T| < 2k — 1 such that every minimum (U, T)-terminal cut (A, A) has
§(A) = 6(U). We will show that every minimum (S, T)-terminal cut (A, A) has §(A) = §(U).
We will need the following claim.

> Claim 18. Let (Y,Y) be the source minimal minimum (S, 7T)-terminal cut. Then

3(Y) = 5(U).

Proof. Since (U,U) is a (S, T)-terminal cut, and (Y,Y) is a minimum (S, T)-terminal cut,
we have that

d(U) > d(Y).
Since (UNY,UNY) is a (S,U)-terminal cut, we have that
dUNY) >d(U).
Since (UUY,UUY) is a (U, T)-terminal cut, we have that
dUUY) >dU).
Thus, by the submodularity of the hypergraph cut function we have that
2d(U) > d(U)+d(Y)>dUNY)+dUUY) >2d(U).

Therefore, we have that d(UNY) =d(U), so (UNY,UNY) is a minimum (S, T)-terminal
cut. Since (Y,Y) is the source minimal (S, T)-terminal cut, we have that U NY =Y, and
hence Y C U. Therefore, (Y,Y) is a minimum (S, U)-terminal cut. By the choice of S, we
have that §(Y) = 6(U). <

Applying Claim 18 to both sides of the partition (U, U), we have that the source minimal
minimum (S, T)-terminal cut (Y,Y) has §(Y) = §(U), and the source minimal minimum
(T, S)-terminal cut (Z,Z) has 6(Z) = §(U). Therefore, for every e € §(U), we have that
eNY £ and en Z # (.

Let (A, A) be a minimum (S, T)-terminal cut. Since (Y,Y) is the source minimal minimum
(S, T)-terminal cut, we have that Y C A. Since (Z, Z) is the source minimal minimum (7', S)-
terminal cut, we have that Z C A. Since every e € §(U) intersects both Y and Z, it follows
that every e € §(U) intersects both A and A, and hence, §(U) C §(A). Since (A4, A) is a
minimum (S, T)-terminal cut, d(A) < d(U), and thus we have that 6(A) = §(U). <

4 Conclusion

We showed the first polynomial bound on the number of MINMAX-k-CUT-SETs in hypergraphs
for every fixed k and gave a polynomial-time algorithm to enumerate all MINMAX-k-CUT-SETs
as well as all MIN-k-CUT-SETs in hypergraphs for every fixed k. Our main contribution is
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a structural theorem that is the backbone of the correctness analysis of our enumeration
algorithms. In order to enumerate MINMAX-k-CUT-SETs in hypergraphs, we introduced
the notion of k-cut-set representatives and enumerated k-cut-set representatives of all
optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION. Our technique builds on
known structural results for HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION
[8,12,13).

The technique underlying our enumeration algorithms is not necessarily novel — we simply
rely on minimum (s, t)-terminal cuts. Using fixed-terminal cuts to address global partitioning
problems is not a novel technique by itself — it is common knowledge that minimum (s, t)-
terminal cuts can be used to solve global minimum cut. However, there are several problems
where naive use of this technique fails to lead to efficient algorithms: e.g., multiway cut does
not help in solving GRAPH-k-CUT since multiway cut is NP-hard. Adapting this technique for
specific partitioning problems requires careful identification of structural properties. In fact,
beautiful structural properties have been shown for a rich variety of partitioning problems in
combinatorial optimization in order to exploit this technique: for example, it was used (1) to
design the first efficient algorithm for GRAPH-k-CUT [23], (2) to solve certain constrained
submodular minimization problems [22,35], and (3) more recently, to design fast algorithms
for global minimum cut in graphs and for Gomory-Hu tree in unweighted graphs [1,34]. Our
use of this technique also relies on identifying and proving a suitable structural property,
namely Theorem 4. The advantage of our structural property is that it simultaneously
enables enumeration of MIN-k-CUT-SETs as well as MINMAX-k-CUT-SETs in hypergraphs
which was not possible via structural theorems that were developed before. Furthermore,
it helps in showing the first polynomial bound on the number of MINMAX-k-CUT-SETS in
hypergraphs for every fixed k.

We also emphasize a limitation of our technique. Although it helps in solving ENUM-
HYPERGRAPH-k-CUT and ENUM-MINMAX-HYPERGRAPH-k-PARTITION, it does not help in
solving a seemingly related hypergraph k-partitioning problem — namely, given a hypergraph
G = (V,E) and a fixed integer k, find a k-partition (Vi,...,V%) of the vertex set that
minimizes Zle |6(V;)|. Natural variants of our structural theorem fail to hold for this
objective. Resolving the complexity of this variant of the hypergraph k-partitioning problem
for k > 5 remains open.

We mention an open question concerning HYPERGRAPH-k-CUT and the enumeration of
MIN-k-CUT-SETS in hypergraphs for fixed k. We recall the status in graphs: the number of
minimum k-partitions in a connected graph was known to be O(n?*=2) via Karger-Stein’s
algorithm [30] and Q(n*) via the cycle example, where n is the number of vertices; recent
works have improved on the upper bound to match the lower bound for fixed k& — this
improvement in upper bound also led to the best possible O(n*)-time algorithm for GRAPH-
k-Cur for fixed k [25-27]. For hypergraphs, the number of MIN-k-CUT-SETS is known to be
O(n?*=2) and Q(n*). Can we improve the upper/lower bound? Is it possible to design an
algorithm for HYPERGRAPH-k-CUT that runs in time O(n¥p)?
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