31 research outputs found

    Rakeness-based Compressed Sensing of Surface ElectroMyoGraphy for Improved Hand Movement Recognition in the Compressed Domain

    Get PDF
    Surface electromyography (sEMG) waveforms are widely used to generate control signals in several application areas, ranging from prosthetic to consumer electronics. Classically, such waveforms are acquired at Nyquist rate and digitally transmitted trough a wireless channel to a decision/actuation node. This causes large energy consumption and is incompatible with the implementation of ultra-low power acquisition nodes. We already proposed Compressed Sensing (CS) as a low-complexity method to achieve substantial energy saving by reducing the size of data to be transmitted while preserving the information content. We here make a significant leap forward by showing that hand movements recognition task can be performed directly in the compressed domain with a success rate greater than 98 % and with a reduction of the number of transmitted bits by two order of magnitude with respect to row data

    Low-power fixed-point compressed sensing decoder with support oracle

    Get PDF
    Approaches for reconstructing signals encoded with Compressed Sensing (CS) techniques, and based on Deep Neural Networks (DNNs) are receiving increasing interest in the literature. In a recent work, a new DNN-based method named Trained CS with Support Oracle (TCSSO) is introduced, relying the signal reconstruction on the two separate tasks of support identification and measurements decoding. The aim of this paper is to improve the TCSSO framework by considering actual implementations using a finite-precision hardware. Solutions with low memory footprint and low computation requirements by employing fixed-point notation and by reducing the number of bits employed are considered. Results using synthetic electrocardiogram (ECG) signals as a case study show that this approach, even when used in a constrained-resources scenario, still outperform current state-of-art CS approaches

    Deep Neural Oracles for Short-Window Optimized Compressed Sensing of Biosignals

    Get PDF
    The recovery of sparse signals given their linear mapping on lower-dimensional spaces can be partitioned into a support estimation phase and a coefficient estimation phase. We propose to estimate the support with an oracle based on a deep neural network trained jointly with the linear mapping at the encoder. The divination of the oracle is then used to estimate the coefficients by pseudo-inversion. This architecture allows the definition of an encoding-decoding scheme with state-of-the-art recovery capabilities when applied to biological signals such as ECG and EEG, thus allowing extremely low-complex encoders. As an additional feature, oracle-based recovery is able to self-assess, by indicating with remarkable accuracy chunks of signals that may have been reconstructed with a non-satisfactory quality. This self-assessment capability is unique in the CS literature and paves the way for further improvements depending on the requirements of the specific application. As an example, our scheme is able to satisfyingly compress by a factor of 2.67 an ECG or EEG signal with a complexity equivalent to only 24 signed sums per processed sample

    Rakeness-Based Compressed Sensing of Multiple-graph Signals for IoT Applications

    Get PDF
    Signals on multiple graphs may model IoT scenarios consisting of a local wireless sensor network performing sets of acquisitions that must be sent to a central hub that may be far from the measurement field. Rakeness-based design of compressed sensing is exploited to allow the administration of the tradeoff between local communication and the long-range transmission needed to reach the hub. Extensive Monte Carlo simulations incorporating real world figures in terms of communication consumption show a potential energy saving from 25% to almost 50% with respect to a direct approach not exploiting local communication and rakeness

    Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways

    Get PDF
    Principal component analysis (PCA) is a powerful data reductionmethod for Structural Health Monitoring. However, its computa-tional cost and data memory footprint pose a significant challengewhen PCA has to run on limited capability embedded platformsin low-cost IoT gateways. This paper presents a memory-efficientparallel implementation of the streaming History PCA algorithm.On our dataset, it achieves 10x compression factor and 59x memoryreduction with less than 0.15 dB degradation in the reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over, the algorithm benefits from parallelization on multiple cores,achieving a maximum speedup of 4.8x on Samsung ARTIK 710

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks

    An architecture for ultra-low-voltage ultra-low-power compressed sensing-based acquisition systems

    Get PDF
    Compressed Sensing (CS) has been addressed as a paradigm capable of lowering energy requirements in acquisition systems. Furthermore, the capability of simultaneously acquiring and compressing an input signal makes this paradigm perfectly suitable for low-power devices. However, the need for analog hardware blocks makes the adoption of most of standard solutions proposed so far in the literature problematic when an aggressive voltage and energy scaling is considered, as in the case of ultra-low-power IoT devices that need to be battery-powered or energy harvesting-powered. Here, we investigate a recently proposed architecture that, due to the lack of any analog block (except for the comparator required in the following A/D stage) is compatible with the aggressive voltage scaling required by IoT devices. Feasibility and expected performance of this architecture are investigated according to the most recent state-of-the-art literature

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    Adapted Compressed Sensing: A Game Worth Playing

    Get PDF
    Despite the universal nature of the compressed sensing mechanism, additional information on the class of sparse signals to acquire allows adjustments that yield substantial improvements. In facts, proper exploitation of these priors allows to significantly increase compression for a given reconstruction quality. Since one of the most promising scopes of application of compressed sensing is that of IoT devices subject to extremely low resource constraint, adaptation is especially interesting when it can cope with hardware-related constraint allowing low complexity implementations. We here review and compare many algorithmic adaptation policies that focus either on the encoding part or on the recovery part of compressed sensing. We also review other more hardware-oriented adaptation techniques that are actually able to make the difference when coming to real-world implementations. In all cases, adaptation proves to be a tool that should be mastered in practical applications to unleash the full potential of compressed sensing

    Metodi Matriciali per l'Acquisizione Efficiente e la Crittografia di Segnali in Forma Compressa

    Get PDF
    The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-PĂ©rot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager
    corecore