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Rakeness-Based Compressed Sensing of
Multiple-graph Signals for IoT Applications

Mauro Mangia, Member, IEEE, Fabio Pareschi, Member, IEEE, Rohan Varma, Student Member, IEEE,
Riccardo Rovatti, Fellow, IEEE, Jelena Kovačević, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—Signals on multiple graphs may model an IoT
scenarios consisting of local WSN performing sets of acquisitions
that must be sent to a central hub that may be far from
the measurement field. Rakeness-based design of Compressed
Sensing is exploited to allow the administration of the trade off
between local communication and the long range transmission
needed to reach the hub. Extensive Montecarlo simulations
incorporating real world figures in terms of communication
consumption show a potential energy saving from 25% to almost
50% with respect to a direct approach not exploiting local
communication and rakeness.

Index Terms—Signals on graphs, compressed sensing, rake-
ness, internet of things

I. INTRODUCTION

Instead of being supported by a sequence of time instants,
signals on graphs are supported by a set of vertices between
which edges may be drawn and weighted to obtain a graph.
More formally [1], [2], a signal x is defined on a set of n
vertices V if x : V 7→ Rn. For simplicity’s sake we assume
V = {0, 1, . . . , n − 1} so that vertices can also be used
as indexes when needed. The relationship between vertices
is modeled by possibly weighted edges between the nodes.
Tolerating a slight loss of generality in edge weighting, we
may model these connection with the so called incidence
matrix A ∈ Rn×n such that Aj,k is the weight associated
with the edge from k and j, with Aj,k = 0 if no edge from k
to j exists.

Signals on graphs fit into a large number of scenarios.
In unstructured frameworks, the locations at which samples
are acquired imply some relationship between them (like the
temperature at different spots that are thermically connected
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Fig. 1. A grand view of systems made of local Wireless Sensor Networks
that communicate their readings to a geographically separated hub.

in different ways or the consumption of computers in an
inhomogeneous company local network) that can be modeled
by a generic graph, which we refer to as the graph supporting
the signal. Moreover, the sensors themselves may belong to
a Wireless Sensor Network (WSN) whose nodes have local
communication capabilities (that can also be modeled by a
graph) and finally deliver their acquisitions to a central hub
by means of long range transmissions in some Wide Area
Network (WAN).

Fig. 1 gives an intuitive representation of these structures
that suggest exploring the trade-off between local commu-
nication/processing and direct transmission to the hub. For
example, assuming that the ratio between the typical distance
covered by long-range and short-range communications is 102

(e.g., tens of meters to kilometers) and that no particular
directivity can be provided by sensor nodes antennas, one
expects that the ratio between entailed powers is of the
order of 104. This is matched by actual consumption of
today’s implementations. For example, Bluetooth Low Energy
modules come with energy-per-bit efficiencies in the range
from 31 nJ/bit [3] to 46 nJ/bit [4] while LoRaWAN implemen-
tations exhibit energy efficiencies in the range 19µJ/bit [5]
to 220µJ/bit [6] so that one may expect a ratio ε between
short- and long-range efficiencies between εmin = 1.4× 10−4

and εmax = 2.4 × 10−3. This is more than enough to allow
substantial local data exchange before a single long-range
transmission is attempted. An additional cost in the power
budget is due to the needed local processing that is in general
dominate by local communication cost [7]–[10].

We address such a trade-off by exploiting a further prior that
is commonly valid for real-world signals, i.e., the fact that they
have non-white second-order statistics that can be modeled as
a further weighted graph connecting the same vertices.

Hence, the signal is ultimately characterized by three
graphs: the one representing the structure of its support, the
one describing the connectivity of the WSN acquiring it, and
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the one expressing its second-order statistics. Considering the
joint information from all three graphs in signal acquisition,
i.e., dealing with a signal on multiple graphs, represents
the novelty of this paper. In particular, the most important
contribution is to show that, by using information on the
second-order statistics graph, it is possible to reduce the overall
energy consumption for acquiring the signal (including both
short- and long-range communications) by a factor that ranges
between 25% and 50% with respect to a direct approach not
exploiting local communications.

This brief is organized as follows. Section II introduces
some basic concepts on the signal support and on the WSN
connectivity. Section III describes the rakeness approach and
how we apply it for exploiting the knowledge on the signal
second order statistics. In Section IV we provide some empir-
ical results, and finally, we draw the conclusion.

II. ACQUISITION OF MULTIPLE GRAPH SIGNALS

Acquisition largely benefits from priors on the signal. The
most obvious example is Nyquist sampling: frequency domain
information allows us to sample signals in a subset of the time
instants. A similar relation for signals defined on graphs can
be easily found, as in the following example.

Let us consider a discrete-time periodic signal of period n,
and associate each vertex j of a graph with the j-th time in-
stant. Let us also encode the periodic property of the sequence
into the graph adjacency matrix by setting Aj+1,j = 1 for
j = 0, . . . , n− 2, A0,n−1 = 1 and Aj,k = 0 otherwise. In this
setting the eigendecomposition of the incidence matrix is A =
UDU−1 with Uj,k = e−2πi jk/n for j, k = 0, . . . , n− 1 and D
a diagonal matrix with Dj,j = e2πi j/n for j = 0, . . . , n − 1.
It is then most natural to extend the label Fourier basis to the
matrix U in the decomposition A = UDU−1 of the incidence
matrix of a generic graph supporting a signal [11], [12]. Note
that if the underlying graph is not oriented, A is symmetric
and U is an orthonormal matrix.

Signal processing on graphs exploits this generalization and
often assumes that the representation ξ = U−1x of the signal
in the Fourier basis of the supporting graph has some special
properties, in analogy with a time-domain signal that has some
frequency-domain feature. In this brief we address the efficient
acquisition of graph signals exploiting the prior that they are
known to be sparse in their Fourier domain, i.e, that ξ has at
most κ � n non-zero components. The graph providing the
Fourier basis will be named the sparsity graph of the signal.

This is the natural setting in which Compressed Sensing
(CS) [13], [14] may be employed. In fact, for certain m < n
one may find m × n matrices S such that the measurements
in the vector y = (y0, . . . , ym−1)> = Sx = SUξ can be post-
processed to yield the original x despite the fact that S (and
thus SU ) is rectangular. In the graph framework, the easiest
case is when yj = xvj for certain vertices v0, . . . , vm−1 ∈ V ,
i.e., when the signal is subsampled and the matrix S is made
of m rows of the n× n identity matrix [15]. We will refer to
this option as the vertex-only sampling.

Instead, we consider measurements of the form yj =∑
u∈Wj

Sj,uxu for certain Wj ⊆ V , assuming that one may

1

vj

Fig. 2. A generalization of single-vertex sampling. In the graph nodes are
connected only if their are closer than a certain threshold.

use local communication to collect the signal values at the
vertices w ∈ Wj , compute yj and send it to the hub. This
is precisely the scenario sketched in the introduction, where
acquired values can be propagated locally by the WSN with
an energy cost per individual communication (a hop) that is
only ε-times the cost of transmitting yj to the hub.

Usually, one cannot arbitrarily choose the vertices in Wj

since, for example, they must correspond to nodes that are
geometrically close. We model this with a sampling graph that
connects two vertices of V if one of them can communicate
a value to the other. Unconnected vertices may communicate
only by propagating messages through the edges of the sam-
pling graph.

The sampling strategy is a generalization of single-vertex
sampling scheme that takes into account the sampling graph
constraint. To compute the j-th measurement yj we randomly
select a vertex vj ∈ V . Assuming that the sampling graph
is connected, a distance h(vj , u) is defined from every vertex
u ∈ V as the minimum number of edges (or transmission
hops) necessary to reach vj from u. Given a hop budget H we
select a subset Wj ⊆ V such that

∑
u∈Wj

h(vj , u) ≤ H . This
can be effectively done by modifying the classical Dijkstra
algorithm for the shortest path to a given root (vj), so that it
adds a new vertex to the tree only if there are enough hops
left to go from that vertex to the root.

This is exemplified in Fig. 2 where the largest red disk
represents the randomly chosen root vj and we are given a hop
budget H = 16. The 3 nearest neighbors of vj are included in
Wj and consume a total of 1 hop each to communicate their
values to the root along the red solid edges. Four nodes can
connect to the nearest neighbors of the root by means of red
dashed edges and thus can communicate their value with 2
hops each. Since the budget is not exhausted by these 11 hops
we may add further vertices. Yet, not all the vertices that can
communicate to the root in 3 hops can be accommodated. In
this case, the budget allows only one node to be selected and
linked to the other by a red dotted edge.

The root vj computes the measurement yj once that signal
values are collected from the neighborhood Wj . This may fit
into the CS general framework where y = Sx by assuming
that matrix elements Sj,u = 0 if u /∈ Wj . The same root
may also combine the same signal values in multiple ways by
adopting different coefficients, thus producing more than one
measurement. This sample reuse saves communication costs



MANGIA et al.: RAKENESS-BASED COMPRESSED SENSING OF MULTIPLE-GRAPH SIGNALS FOR IOT APPLICATIONS 3

but limits the diversity that can be exploited in computing
the measurements. Hence, if we say that the same subset of
samples may be used at most M times we may define ∆m =
dm/Me, and accumulate samples in independently drawn
roots vj and from independently defined neighborhoods Wj

for j = 0, . . . ,∆m − 1. Then, we assume vj = vj (mod ∆m)

and Wj = Wj (mod ∆m) for j ≥ ∆m.
As far as coefficients are concerned, the most trivial, CS-

inspired, option is to take each non-null entry of S to be
the realization of a zero-mean independent normal random
variable. We will denote this classical choice as the random
option.

III. CORRELATION GRAPH AND RAKENESS-BASED CS
Independently of their sparsity, most signals feature some

sort of energy localization that can be detected by considering
their correlation matrix X = E[xx>] and verifying that its
eigenvalues are not identical and, thus, there are subspaces
along which most of the energy of x concentrates. Localization
and sparsity are different priors since the subspaces along
which energy concentrates do not need to be κ-dimensional
canonical subspaces in the sparsity reference system.

Yet, localization can be considered a graph prior. The matrix
X is symmetric and can be interpreted as the incidence matrix
of a complete graph where the edge between v′ and v′′ has a
weight E[xv′xv′′ ].

The exploitation of such a prior to optimize CS for time-
domain signals has been investigated based on the rakeness
concept [7], [16]. The basic observation is that it is convenient
to design the rows of S such that yj is, on the average,
able to rake from the signal as much energy as possible.
Let us indicate with sj the generic j-th row of S, and with
Σ = E[s>j sj ] its correlation matrix. Without entering into
mathematical details, one can write a constrained optimization
problem to maximize the expected raked energy E[y2

j ] =
E[(sjx)2] = tr (ΣX ) given some physical constraints. The
solution gives the optimal Σ, i.e., the second order statistic
that should be used to randomly drawn all rows of S. If X is
not diagonal, also the optimal Σ is not diagonal, showing that
performance is maximized by randomly drawing elements in
the rows of S as realizations of zero-mean normal variables
that are not independent the each other, but that feature a
prescribed correlation.

The procedure can be easily adapted to cope with the
constraint Sj,u = 0 if u /∈Wj by introducing the operator ·|Wj

that selects only the elements in Wj of its indexed quantity
argument. Since yj =

∑
u∈Wj

Sj,uxu = sj |Wj
x|Wj

, it is easy
to see that E[y2

j ] = tr
(
Σ|Wj

X|Wj

)
. Non-null coefficients of

S should be drawn according to the correlation matrix Σ|Wj

that solves the optimization problem

max
Σ|Wj

tr
(
Σ|Wj

X|Wj

)
s.t.

Σ|Wj
� 0

Σ|Wj
= Σ>|Wj

tr
(
Σ|Wj

)
= nj

tr
(

Σ2
|Wj

)
≤ r nj2

(1)

where the first three constraints ensure that Σ|Wj
is positive

definite, symmetric and with a total energy proportional to

the number of coefficients nj = |Wj |, respectively. As far as
the last constraint is concerned, note that, due to the random
nature of the signal, observing only its maximum-energy
component (the so-called principal component) is not enough
to reconstruct it, and energy maximization should be tempered
by the need to span the whole signal space as in the case
where entries of S are drawn as realizations of independent
normal random variable. In other words, we need to introduce
a trade-off between the maximization of the raked energy and
the randomness of the S. This is obtained by suitably bounding
the mean of the squares of the eigenvalues of Σ|Wj

by a factor
r, thus preventing measurements to concentrate only on the
principal components [7], [16].

By setting r as suggested in [7], the analytical solution of
(1) is

Σ|Wj
=

1

2

(
njX|Wj

tr
(
X|Wj

) + Inj

)
(2)

where Inj
is the nj ×nj identity matrix. We recall that under

the assumption of zero-mean normal distributions, it is enough
to take a vector composed of zero-mean independent random
variables and multiply it by

√
Σ|Wj

to generate the rows of
S as required.

Hence, as a second option, instead of drawing the coeffi-
cients as random independent normals, for every measurement
yj depending on the vertices in Wj we generate random
jointly-Gaussian coefficients with correlation (2). We denote
this choice as the rakeness option.

IV. EMPIRICAL EVIDENCE

To assess the effectiveness of the proposed approach we
perform a Montecarlo analysis of a few configurations. In all
cases we set n = 128 while the sparsity level is taken as
κ ∈ {6, 12, 24} to explore priors with different strengths.

Performance in each configuration is achieved by averaging
results of 1000 trials, where in each of them the sampling
graph is a realization of a Geometric random graph with n
nodes uniformly distributed in [0, 1]2 with connections if their
distance is less than 0.15 (label Geo-0.15) [17]. Hop budgets
H ∈ {64, 128, 256} are considered.

The sparsity graph is the realization of one of the following
random graphs for which we adopt the definitions in [17]
• Erdös-Rényi graph with probability of connection equal

to 0.1 (label ER-0.1)
• Barabasi-Albert graph whose construction starts from a

10-vertices ER-0.1 and connects every new vertex to 5
previous vertices (label BA-10-5)

• Watts-Strogatz graph with 6 neighbors in the initial ring
and with a rewiring probability equal to 0.3 (label WS-
6-0.3)

In all cases possibly non-connected realizations are discarded.
To simulate localization, the κ non-zero components in ξ

are selected with a non-uniform probability. This probability
is communicated to neither the sampling mechanism nor the
reconstruction algorithm. What is known by the sampling stage
is only the correlation matrix X = E[xx>] from which the
various correlation submatrices X|Wj

are taken to compute (2).
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Fig. 3. PCR plotted against m for different configurations. Track color indicates the available hop budget (H = 0 signifying vertex-only sampling). Solid lines
correspond to random CS, dashed lines correspond to rakeness-based CS. The number of measurements needed to guarantee a PCR of 95% is highlighted for
vertex-only sampling (H = 0) and for the best random and rakeness-based options. In a) κ = 6, the sparsity graph is the same Geo-0.15 used for sampling,
and each vertex contributes not more than M = 4 measurements. In b) κ = 14, the sparsity graph is WS-6-0.3, and each vertex contributes not more than
M = 8 measurements. In c) κ = 24, the sparsity graph is ER-0.1, and each vertex contributes not more than M = 16 measurements.

White Gaussian noise is added to the samples giving them
an Intrinsic Signal-to-Noise-Ratio ISNR = 60 dB. Recon-
struction is obtained by Basis Pursuit with De-noising (BPDN)
[18] as implemented by SPGL1 [19].

Performance is evaluated as the Probability of Correct
Reconstruction (PCR), defined as the probability that the re-
construction algorithm is capable of recovering the input signal
with a quality such that its Signal-to-Noise-Ratio (RSNR) is at
least 54 dB, i.e., with a loss of not more than 6 dB with respect
to the ISNR. Mathematically, PCR = Pr {RSNR ≥ 54 dB}.

The qualitative features of all the observed trends coincide.
Fig. 3 reports how the PCR depends on the number of
measurements in three cases that correspond to κ = 6, 12, 24,
i.e., to progressively weakening sparsity priors. The reference
line (black dotted track, referred to as H = 0) is the vertex-
only option, where input signal is reconstructed by means of
m measurements sent to the collector by m randomly selected
nodes without using local communication.

In all those plots as well as in all tested cases, the position
of the continuous tracks shows that if the samples collected
by local communication are combined with purely random
coefficients no gain is obtained with respect to the reference
case.

Local communication can be traded for long-range one only
if we exploit the correlation graph by means of rakeness-based
CS. An optimized choice of the coefficients leverages the
availability of multiple samples to compute more informative
measurements. Hence, the same reconstruction quality can be
obtained at the hub even if less measurements are sent to
it through long-range transmission. As an example, we have
highlighted in Fig. 3 the minimum number of measurement
that guarantees a PCR of 95% for the vertex-only sampling
and for the best random and rakeness-based options.

This points towards a possible power saving. To quantify
this, we normalize to 1 J the energy needed by a long-
range transmission so that the cost of a short-range trans-
mission gets normalized to the ratio ε J as discussed in the
introduction. With this, the energy needed by the collec-
tion of samples and transmission of the measurements is
ECS =

(
mCS + εH

⌈
mCS

/M
⌉)

J, where mCS is the number

of measurement needed to achieve the prescribed performance,
M is the maximum number of measurement that each node
can compute with the samples it collected, and H is the hop
budget constraining sample collection. This compares with
EVS = mVSJ, i.e., with the energy (equal to the number of
measurements) needed to achieve the same performance level
by simple vertex-sampling.

Fig. 4 reports the ratio ECS/EVS when the desired PCR
is set to 95% for different values of κ, H , M and ε, for
the two different CS options, and for the different sparsity
graphs. In the abscissa the different configurations are ordered,
while the ordinate indicates the deviation of ECS/EVS with
respect to 1. Negative values indicates an energy saving of the
corresponding configuration with respect to the vertex-only
sampling.

Though it is evident that as κ increases, our framework
looses its ability of allowing any real subsampling and thus
power saving, rakeness-based CS is almost always able to
yield substantial power saving. Actual reduction depends on
the relationship between the sparsity graph and the sampling
graph and on the value of ε, but in most of the non-extreme
cases, at least 25% of the power is unnecessary if rakeness-
based CS is adopted.

V. CONCLUSION

Rakeness-based CS applied to multiple-graph signals is an
effective way to administer the trade-off between short- and
long-range communication in a quite common IoT scenario
that sees the interplay of local WSN and geographic informa-
tion hubs. It is estimated that its exploitation may yield not
less than 25% of power saving.

REFERENCES

[1] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp.
1644–1656, Apr. 2013.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
May 2013.



MANGIA et al.: RAKENESS-BASED COMPRESSED SENSING OF MULTIPLE-GRAPH SIGNALS FOR IOT APPLICATIONS 5

1

-50%

-25%

0

+25%

+50%

a) b) c)

E
C
S
/
E

V
S

fo
r
ε
=

1
.4

×
1
0
−

4

︸ ︷︷ ︸
rnd︸ ︷︷ ︸

κ=6

︸ ︷︷ ︸
rak

︸ ︷︷ ︸
rnd︸ ︷︷ ︸

κ=12

︸ ︷︷ ︸
rak

︸ ︷︷ ︸
rnd︸ ︷︷ ︸

κ=24

︸ ︷︷ ︸
rak

-50%

-25%

0

+25%

+50%

a) b) c)

E
C
S
/
E

V
S

fo
r
ε
=

2
.4

×
1
0
−

3

H=64, M=1 H=64, M=4 H=64, M=8 H=64, M=16 H=64, M=32
H=128, M=1 H=128, M=4 H=128, M=8 H=128, M=16 H=128, M=32
H=256, M=1 H=256, M=4 H=256, M=8 H=256, M=16 H=256, M=32

Fig. 4. Power saving with respect to vertex-only sampling in all the tested configurations. Each group of 4 points with the same shape and color correspond
to the 4 sparsity graph (ER-01, BA-10-2, WE-10-0.6, and Geo-0.51). The color of a point indicates the available hop budget H , while its shape indicates
the maximum number of measurements M provided by each vertex. Different sparsities κ are shown and for each sparsity, random and rakeness-based CS
is considered. The upper plot considers a ratio between the energy needed by short-range and long-range communication equal to ε = εmin = 1.4× 10−4.
The lower plot considers ε = εmax = 2.4× 10−3. Highlighted points correspond to the a), b), and c) plots of Fig. 3.

[3] http://www.st.com/content/st com/en/products/wireless-connectivity/
bluetooth-bluetooth-low-energy/bluenrg.html.

[4] http://www.microchip.com/wwwproducts/en/RN4020.
[5] http://www.semtech.com/apps/product.php?pn=SX1272.
[6] http://www.nemeus.fr/en/nemeus-mm002-2/.
[7] M. Mangia, F. Pareschi, V. Cambareri, R. Rovatti, and G. Setti,

“Rakeness-based design of low-complexity compressed sensing,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 5,
pp. 1201–1213, May 2017.

[8] G. Yang, V. Y. F. Tan, C. K. Ho, S. H. Ting, and Y. L. Guan,
“Wireless compressive sensing for energy harvesting sensor nodes,”
IEEE Transactions on Signal Processing, vol. 61, no. 18, pp. 4491–
4505, Sep. 2013.

[9] J. Y. Park, M. B. Wakin, and A. C. Gilbert, “Modal analysis with
compressive measurements,” IEEE Transactions on Signal Processing,
vol. 62, no. 7, pp. 1655–1670, Apr. 2014.

[10] X. Liu et al., “A fully integrated wireless compressed sensing neural
signal acquisition system for chronic recording and brain machine
interface,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 10, no. 4, pp. 874–883, Aug. 2016.

[11] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Frequency analysis,” IEEE Transactions on Signal Processing,
vol. 62, no. 12, pp. 3042–3054, Jun. 2014.

[12] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on

graphs: Graph fourier transform,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, May 2013, pp. 6167–
6170.

[13] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[14] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
Mar. 2008.

[15] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal
processing on graphs: Sampling theory,” IEEE Transactions on Signal
Processing, vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[16] M. Mangia, R. Rovatti, and G. Setti, “Rakeness in the design of
analog-to-information conversion of sparse and localized signals,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 5,
pp. 1001–1014, May 2012.

[17] M. Newman, Networks: An Introduction. London, U.K.: Oxford Univ,
2010.

[18] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
Dec. 2005.

[19] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for
basis pursuit solutions,” SIAM Journal on Scientific Computing, vol. 31,
no. 2, pp. 890–912, 2009.


