84 research outputs found

    Rainbow Perfect and Near-Perfect Matchings in Complete Graphs with Edges Colored by Circular Distance

    Get PDF
    Given an edge-colored complete graph Kn on n vertices, a perfect (respectively, near-perfect) matching M in Kn with an even (respectively, odd) number of vertices is rainbow if all edges have distinct colors. In this paper, we consider an edge coloring of Kn by circular distance, and we denote the resulting complete graph by K●n. We show that when K●n has an even number of vertices, it contains a rainbow perfect matching if and only if n=8k or n=8k+2, where k is a nonnegative integer. In the case of an odd number of vertices, Kirkman matching is known to be a rainbow near-perfect matching in K●n. However, real-world applications sometimes require multiple rainbow near-perfect matchings. We propose a method for using a recursive algorithm to generate multiple rainbow near-perfect matchings in K●n

    Bounded degree graphs and hypergraphs with no full rainbow matchings

    Full text link
    Given a multi-hypergraph GG that is edge-colored into color classes E1,,EnE_1, \ldots, E_n, a full rainbow matching is a matching of GG that contains exactly one edge from each color class EiE_i. One way to guarantee the existence of a full rainbow matching is to have the size of each color class EiE_i be sufficiently large compared to the maximum degree of GG. In this paper, we apply a simple iterative method to construct edge-colored multi-hypergraphs with a given maximum degree, large color classes, and no full rainbow matchings. First, for every r1r \ge 1 and Δ2\Delta \ge 2, we construct edge-colored rr-uniform multi-hypergraphs with maximum degree Δ\Delta such that each color class has size EirΔ1|E_i| \ge r\Delta - 1 and there is no full rainbow matching, which demonstrates that a theorem of Aharoni, Berger, and Meshulam (2005) is best possible. Second, we construct properly edge-colored multigraphs with no full rainbow matchings which disprove conjectures of Delcourt and Postle (2022). Finally, we apply results on full rainbow matchings to list edge-colorings and prove that a color degree generalization of Galvin's theorem (1995) does not hold

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow independent sets on dense graph classes

    Full text link
    Given a family I\mathcal{I} of independent sets in a graph, a rainbow independent set is an independent set II such that there is an injection ϕ ⁣:II\phi\colon I\to \mathcal{I} where for each vIv\in I, vv is contained in ϕ(v)\phi(v). Aharoni, Briggs, J. Kim, and M. Kim [Rainbow independent sets in certain classes of graphs. arXiv:1909.13143] determined for various graph classes C\mathcal{C} whether C\mathcal{C} satisfies a property that for every nn, there exists N=N(C,n)N=N(\mathcal{C},n) such that every family of NN independent sets of size nn in a graph in C\mathcal{C} contains a rainbow independent set of size nn. In this paper, we add two dense graph classes satisfying this property, namely, the class of graphs of bounded neighborhood diversity and the class of rr-powers of graphs in a bounded expansion class

    Among graphs, groups, and latin squares

    Get PDF
    A latin square of order n is an n × n array in which each row and each column contains each of the numbers {1, 2, . . . , n}. A k-plex in a latin square is a collection of entries which intersects each row and column k times and contains k copies of each symbol. This thesis studies the existence of k-plexes and approximations of k-plexes in latin squares, paying particular attention to latin squares which correspond to multiplication tables of groups. The most commonly studied class of k-plex is the 1-plex, better known as a transversal. Although many latin squares do not have transversals, Brualdi conjectured that every latin square has a near transversal—i.e. a collection of entries with distinct symbols which in- tersects all but one row and all but one column. Our first main result confirms Brualdi’s conjecture in the special case of group-based latin squares. Then, using a well-known equivalence between edge-colorings of complete bipartite graphs and latin squares, we introduce Hamilton 2-plexes. We conjecture that every latin square of order n ≥ 5 has a Hamilton 2-plex and provide a range of evidence for this conjecture. In particular, we confirm our conjecture computationally for n ≤ 8 and show that a suitable analogue of Hamilton 2-plexes always occur in n × n arrays with no symbol appearing more than n/√96 times. To study Hamilton 2-plexes in group-based latin squares, we generalize the notion of harmonious groups to what we call H2-harmonious groups. Our second main result classifies all H2-harmonious abelian groups. The last part of the thesis formalizes an idea which first appeared in a paper of Cameron and Wanless: a (k,l)-plex is a collection of entries which intersects each row and column k times and contains at most l copies of each symbol. We demonstrate the existence of (k, 4k)-plexes in all latin squares and (k, k + 1)-plexes in sufficiently large latin squares. We also find analogues of these theorems for Hamilton 2-plexes, including our third main result: every sufficiently large latin square has a Hamilton (2,3)-plex
    corecore