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Abstract

In this work, we collect Ramsey-type results concerning rainbow edge colorings of

graphs.
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1 Introduction

We will almost entirely focus on coloring edges so “coloring” will mean edge coloring. In
most cases, k will be used to denote the number of colors used on the edges. Also define
the color degree dc(v) to be the number of colors on edges incident to v. A colored graph
is called rainbow if each edge receives a distinct color. For all other notation, we refer the
reader to [47].

The original publication of this work was [78]. There are some other surveys of edge
coloring that we should mention. The first is the dynamic survey [158] by Radziszowski
which contains a wonderful list of known (monochromatic) Ramsey numbers. There is a
brief survey of anti-Ramsey results in [165]. Also there is a survey by Kano and Li [122]
which discusses some rainbow coloring. There is also a forthcoming survey by Fujita, Liu and
Magnant [74] related to this survey but focusing more on large monochromatic structures.

It should be noted that in [173], Voloshin demonstrates very interesting relationships
between rainbow / monochromatic subgraphs and mixed hypergraph colorings. In fact,
many of the notions of generalized Ramsey colorings are very closely related to upper and
lower chromatic numbers of the derived mixed hypergraph.

2 Anti-Ramsey Theory

The anti-Ramsey problem is stated as follows.

Definition 1 Given graphs G and H, the anti-Ramsey number ar(G,H) is defined to be the
maximum number of colors k such that there exists a coloring of the edges of G with exactly
k colors in which every copy of H in G has at least two edges with the same color (H is not
rainbow colored).

Classically, the graph G is a large complete graph and the graph H comes from some
class.

This is equivalent to the rainbow number rb(G,H) which is defined to be the minimum
number of colors k such that any coloring, using k colors, of the edges of G contains a
rainbow H . Thus, the relationship is rb(G,H) = ar(G,H) + 1. In order to be consistent
with the majority of the results, we state all results in terms of anti-Ramsey numbers.

The study of anti-Ramsey theory began with a paper by Erdős, Simonovits, and Sós [62]
in 1975 (note that related ideas were studied even earlier in [61]). Since then, the field has
blossomed in a wide variety of papers. See [165] for a brief survey.

2.1 Cycles

In the original work by Erdős, Simonovits and Sós, the authors stated the following conjec-
ture.

Conjecture 1 ([62]) For all n ≥ k ≥ 3,

ar(Kn, Ck) =

(

k − 2

2
+

1

k − 1

)

n+O(1).
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The authors provided the following lower bound construction (as presented in [113]). For
n = (k − 1)q + r, partition V (G) into sets V1, . . . , Vq of size k − 1 and one set Vq+1 of size
r. The edges with endpoints in the same set receive q

(

k−1
2

)

+
(

r
2

)

different colors. On the
remaining edges, we use q more colors c1, . . . , cq with cmin{i,j} on the edges between the sets
Vi and Vj when i 6= j. Each set is too small to contain the desired cycle and there can be no
cycle between sets so this example provides the stated lower bound.

Erdős, Simonovits and Sós proved the conjecture in the case when k = 3 by showing that
ar(Kn, C3) = n− 1. Alon [3] proved the conjecture for k = 4 by showing that ar(Kn, C4) =
⌊

4n
3

⌋

−1. He also provided a general upper bound of ar(Kn, Ck) ≤ (k−2)n−
(

k−1
2

)

. In 2000,
Montellano-Ballesteros and Neumann-Lara [150] provided another upper bound. Jiang and
West [113] later improved the upper bound to ar(Kn, Ck) ≤

(

k+1
2

− 2
k−1

)

n − (k − 2) with
a slight improvement when k is even. In 2004, Jiang, Schiermeyer and West [111] (see
also [163]) proved the conjecture for k ≤ 7 but finally, in 2005, Montellano-Ballesteros and
Neumann-Lara [153] completely proved Conjecture 1 with a simplified proof by Choi in [51].

Theorem 1 ([153]) For all n ≥ k ≥ 3,

ar(Kn, Ck) =

(

k − 2

2
+

1

k − 1

)

n+O(1).

In a related work, Axenovich, Jiang and Kündgen [18], proved the following result for
finding even cycles in complete bipartite graphs.

Theorem 2 ([18]) For all positive integers m,n, k with m ≤ n and k ≥ 2,

ar(Km,n, C2k) =







(k − 1)(m+ n) − 2(k − 1)2 + 1 for m ≥ 2k − 1,
(k − 1)n+m− (k − 1) for k − 1 ≤ m ≤ 2k − 1,
mn for m ≤ k − 1.

For the general class of all rainbow cycles, the following was shown.

Theorem 3 ([116]) For positive integers m and n, the maximum number of colors that can
appear in an edge coloring of Km,n with no rainbow cycles is m+ n− 1.

It was also shown in [116] that the colorings that achieve the bound in Theorem 3 can
be encoded by special vertex labelings of full binary trees with m+ n leaves.

Looking within hypercubes, the authors of [36] consider cycles and provide some bounds
on ar(Qn, Ck) and the exact results when n ≤ 4.

Let Ωk be the set of graphs containing k vertex disjoint disjoint cycles. In [115], the
following result was proven along with some general bounds for ar(Kn,Ωk).

Theorem 4 ([115]) For n ≥ 7,

ar(Kn,Ω2) = 2n− 2.

Also ar(K6,Ω2) = 11.
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Gorgol [84] considered using a split graph as the underlying host graph.

Theorem 5 ([84]) Let H be a graph with δ(G) ≥ 2. Then

ar(Kn +Ks, H) ≥ ar(Kn, H) + s

for n, s ≥ 1.

Theorem 6 ([84]) If |V (H)| ≤ n and H is a subgraph of Kn,s, then

ar(Kn +Ks, H) ≥ ar(Kn, H) + ar(Kn,s, H).

Theorem 7 ([84]) Let n ≥ 2 and s ≥ 1. Then ar(Kn +Ks, C3) = n+ s− 1.

Proposition 1 ([84]) Let n ∈ {2, 3} and n + s ≥ 4. Then

ar(Kn +Ks, C4) = ar(Kn,s, C4) + 1.

Theorem 8 ([84]) Let n ≥ 4 and s ≥ n. Then

ar(Kn +Ks, C4) ≤ ar(Kn, C4) + ar(Kn,s, C4) − 1.

Letting C+
3 denote a triangle with a pendant edge, the following was obtained.

Theorem 9 ([84]) Let n ≥ 3 and s ≥ 1. Then

ar(Kn +Ks, C
+
3 ) ≤ n+ s− 1.

Let B be the bull, the triangle with two disjoint pendant edges.

Theorem 10 ([84]) Let n, s ≥ 1 and n+ s ≥ 5. Then

ar(Kn +Ks, B) ≥ n + s,

and this bound is sharp for n = 2, 3.

Let K+
1,4 denote the triangle with two pendant edges incident to a single vertex of the

triangle.

Theorem 11 ([84]) Let s ≥ 3. Then

ar(K2 +Ks, K
+
1,4) ≤ s+ 1,

ar(K3 +Ks, K
+
1,4) ≤ max{7, s+ 3}.

Theorem 12 ([84]) Let n ≥ 4 and s ≤ n. Then

ar(Kn +Ks, K
+
1,4) ≤ n+ s + 1.

4
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2.2 Cliques

Let ex(n,H ) be the maximum number of edges in a graph G on n vertices containing no
subgraph isomorphic to H ∈ H . This function has been called the Turán function since it
was first studied in [171] where the set H consists of a single clique of order k + 1. In this
work, Turán proved the following theorem.

Theorem 13 ([171])

ex(n,Kk+1) =

(

k

2

)

t2 + i(k − 1)t+

(

i

2

)

where the sharpness is given by the complete k-partite graph with partite sets V1, . . . , Vk where
|Vj| = t + 1 for 1 ≤ j ≤ i and |Vj| = t for i + 1 ≤ j ≤ k where n = tk + i (i.e. an almost
balanced complete multipartite graph).

On the surface, Theorem 13 may seem to have little in common with anti-Ramsey theory
but in [62], Erdős, Simonovits, and Sós proved the following relationship.

Theorem 14 ([62]) Given an integer k, there exists an integer n(k) such that

ar(Kn, Kk) = ex(n,Kk−1) + 1 (1)

for all n ≥ n(k).

The authors also showed, in [62], that Equation (1) holds for k = 3 for all n ≥ 4.
Independently, Montellano-Ballesteros and Neumann-Lara [151] and Schiermeyer [164]

proved that Equation (1) holds for all n > k ≥ 3.
The lower bound, as observed in [62], uses a different color on each edge of Turán’s

construction and then a single new color on all other edges to complete the coloring. This
coloring certainly has no rainbow Kk but it uses ex(n,Kk−1) + 1 colors. Both proofs of the
upper bound are by induction on n but each uses a different counting strategy within the
induction.

The idea of anti-Ramsey numbers for cliques was extended in [34] to coloring in rounds.
For positive integers k ≤ n and t, let χt(k, n) denote the minimum number χ of colors such
that there exists a sequence of length t of χ-colorings ψ1, ψ2, . . . , ψt of the edges of Kn such
that all

(

k
2

)

edges of each Kk ⊆ Kn get different colors in at least one coloring ψi. Conversely,

let t(k, n) denote the minimum length of such a sequence of colorings each using
(

k
2

)

colors
such that each Kk is rainbow in at least one coloring. The main result of [34] is the following
concerning rainbow triangles.

Theorem 15 ([34]) For all n ≥ 3 and t,

(n− 1)1/t ≤ χt(3, n) ≤ 4n1/t − 1.

This result generalizes an earlier result of Körner and Simonyi [125] which is stated as
follows.
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Theorem 16 ([125]) For all n ≥ 3,

⌈log(n− 1)/ log 3⌉ ≤ t(3, n) ≤ ⌈log n⌉ .

The authors of [34], then go on to explore 2-round colorings, providing bounds on χ2(i, n)
for i = 4, 5, 6, 7. Further, they studied t(k, n) for k = n− 1, n− 2 and n

2
.

2.3 Trees

For general trees, Jiang and West [112] provide exact numbers for some families of trees and
bounds for some individual trees. Let Tk be the family of all trees on k edges and let ℓ(n, k)
denote the maximum size of an n-vertex graph in which every two components together have
at most k vertices.

For the sake of notation, for any set of graphs H , let ar(Kn,H ) be the maximum
number of colors k such that there exists a coloring of Kn with exactly k colors in which, for
all H ∈ H , no copy of H in the colored Kn is rainbow.

Theorem 17 ([112]) If n > k, then:

ar(Kn,Tk) − 1 = ℓ(n, k) =

{ (

k−1
2

)

if k < n ≤ 2k − 1,
(⌈k/2⌉

2

)

+ r
(⌊k/2⌋

2

)

+
(

s
2

)

if n ≥ 2k.

where r = ⌊(n− ⌈k/2⌉)/⌊k/2⌋⌋ and s = n− ⌈k/2⌉ − r⌊k/2⌋.

This result is proven by finding ℓ(k, n) and then showing the relationship to the anti-
Ramsey number. The bipartite version of this problem is considered in [114]. Also in [112],
the authors prove the following for an individual tree T .

Theorem 18 ([112]) Let T be a tree with k edges and n ≥ 2k. Then

n

2

⌊

k − 2

2

⌋

+ ck ≤ ar(Kn, T ) ≤ n(k − 1)

where ck does not depend on n.

The upper bound in Theorem 18 comes from the known bound of ex(n, T ) ≤ n(k − 1).
Regarding this quantity, Erdős and Sós conjectured the following.

Conjecture 2

ex(n, T ) ≤ n(k − 1)

2
.

If this conjecture is true, then the upper bound of Theorem 18 can also be reduced to n(k−1)
2

.
More specifically, Jiang and West also proved the following result for brooms. Let Bs,t

be the broom consisting of s + t edges obtained by identifying the center of K1,s with an
end-vertex of Pt+1.

6
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Theorem 19 ([112]) For n sufficiently large,

1

2
nr1 + ck ≤ ar(Kn, Bs,t) ≤

1

2
nr2 + 1

where r1 = max{s− 1, 2⌊(t− 1)/2⌋}, r2 = max{s− 1, t} and ck does not depend on n.

Jiang [107]and Montellano-Ballesteros [147] independently found the anti-Ramsey num-
ber for stars, improving upon bounds in [142].

Theorem 20 ([107, 147])

ar(Kn, K1,k) =

⌊

n(k − 2)

2

⌋

+

⌊

n

n− k + 2

⌋

or possibly this value plus one if certain conditions hold.

In [142], Manoussakis, Spyratos, Tuza and Voigt found the number for spanning rainbow
stars.

Theorem 21 ([142])

ar(Kn, K1,n−1) =
n(n− 3)

2
+
⌊n

3

⌋

+ 1.

Also in [147], the author found the anti-Ramsey numbers for stars K1,k in host graphs
such as the hypercube Qn, the grid Cm × Cn and a general graph G with δ(G) ≥ k + 4.
Similarly in [152], the authors consider rainbow stars within chosen subsets of vertices in
colored multigraphs.

The anti-Ramsey numbers for paths were considered by Simonovits and Sós [168].

Theorem 22 ([168]) There exists a constant c such that if t ≥ 5 and n > ct2, then for
ǫ = 0, 1, we have

ar(Kn, P2t+3+ǫ) = tn−
(

t + 1

2

)

+ 1 + ǫ.

Simonovits and Sós also defined the H0 spectra of colorings as follows. Given a particular
graph H ⊆ Kn and a coloring φr of Kn using r colors, let c(H ;φr) denote the number of
colors on H . For a given graph H0, define the spectrum to be

S(H0;n, φr) = {i : H ∼ H0, c(H ;φr) = i}.
Let Tn be the set of all trees on n vertices and let T ∗

n be the set of all graphs obtained from
graphs in Tn be the removal of a single edge. Then the following was proven by Bialostocki
and Voxman [32].

Theorem 23 ([32])
ar(Kn, Tn) − ex(n, T ∗

n ) = 1.

For a given set S ⊂ {1, . . . , r}, a general question is whether or not there exists a coloring
φr of Kn such that S(H0;n, φr) = S. Some cases of this problem are considered in [168] and
it is noted that this is a generalization of work presented in [53]
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2.4 Matchings

In 2004, Schiermeyer observed the following easy proposition. Unfortunately, it became a
rather difficult problem to pin down the exact anti-Ramsey numbers for matchings.

Proposition 2 ([164])

ex(n, (k − 1)K2) + 1 ≤ ar(Kn, kK2) ≤ ex(n, kK2).

The extremal number for a matching is known from [57] to be as follows.

Theorem 24 ([57])

ex(n, kK2) = max

{(

2k − 1

2

)

,

(

k − 1

2

)

+ (k − 1)(n− k + 1)

}

.

Also in [164], Schiermeyer used a counting technique to show that the lower bound is, in
fact, the correct number for all k ≥ 2 and n ≥ 3k + 3. This was later improved by Fujita,
Kaneko, Schiermeyer and Suzuki [73] for all n ≥ 2k + 1. For k = 2, 3, 4 the same result was
proven by Kaneko, Saito, Schiermeyer and Suzuki [121]. Finally, Chen, Li and Tu [50] used
the Gallai-Edmonds Structure Theorem for matchings to prove the following, which shows
that the lower bound of Proposition 2 is almost always the correct number.

Theorem 25 ([50])

ar(Kn, kK2) =







4, n = 4 and k = 2,
ex(n, (k − 1)K2) + 2, n = 2k and k ≥ 7,
ex(n, (k − 1)K2) + 1, otherwise.

Haas and Young [97] verified a conjecture from [73] in the following result.

Theorem 26 ([97]) For k ≥ 3, if Mk is a matching on k edges,

ar(K2k,Mk) = max

{(

2k − 3

2

)

+ 3,

(

k − 2

2

)

+ k2 − 2

}

.

Others have studied rainbow matchings in bipartite graphs. Li, Tu and Jin [134] deter-
mined the anti-Ramsey number for matchings in complete bipartite graphs as follows.

Theorem 27 ([134]) For all m ≥ n ≥ k ≥ 3,

ar(Km,n, kK2) = m(k − 2) + 1.

In looking at more sparse graphs, Li and Xu [133] determined the anti-Ramsey number
for matchings in m-regular bipartite graphs of order 2n, denoted Bn,m.

Theorem 28 ([133]) For all k ≥ 2 and m ≥ 3, if n > (3k − 1), then

ar(Bn,m, kK2) = m(k − 2) + 1.
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Gilboa and Roditty [82] proved reduction results of the form ‘if ar(Kn, L ∪ t1Ps) ≤
f(n, t1, L) then ar(Kn, L ∪ tPs) ≤ f(n, t, L)’ where s = 2 or 3. These results lead to the
following.

Corollary 29 ([82]) For sufficiently large n,

• ar(Kn, P3 ∪ tP2) = (t− 1)(n− t/2) + 2 for t ≥ 2,

• ar(Kn, P4 ∪ tP2) = t(n− (t + 1)/2) + 2 for t ≥ 1,

• ar(Kn, C3 ∪ tP2) = t(n− (t+ 1)/2) + 2 for t ≥ 1,

• ar(Kn, tP3) = (t− 1)(n− t/2) + 2 for t ≥ 1,

• ar(Kn, Pk+1 ∪ tP3) = (t + ⌊k/2⌋ − 1)(n− t+⌊k/2⌋
2

) + 2 + k mod 2 for k ≥ 3 and t ≥ 0,

• ar(Kn, P2 ∪ tP3) = (t− 1)(n− t/2) + 3 for t ≥ 1,

• ar(Kn, kP2 ∪ tP3) = (t+ k − 2)(n− (t+ k − 1)/2) + 2 for k ≥ 2 and t ≥ 2.

2.5 Other Graphs

In full generality, Erdős, Simonovits and Sós [62] proved the following proposition which
cements the relationship between the anti-Ramsey numbers and the extremal numbers of
Turán. For this statement, given a set of graphs H , let ex(G,H ) be the maximum number
of edges in a subgraph of G containing no copy of H for any H ∈ H .

Proposition 3 ([62]) Given graphs G and H, we have

ex(G,H ) + 1 ≤ ar(G,H) ≤ ex(G,H),

where H = {H − e : e ∈ E(H)}.

For graphs containing at least one vertex of degree 2, Jiang [106] proved the following
theorem.

Theorem 30 ([106]) Given a graph H, let H = {H − v : v ∈ V (H), dH(v) = 2} and
suppose H has p vertices and q edges. For all positive integers n, we have

ar(Kn, H) ≤ ex(n,H ) + bn,

where b = max{2p− 2, q − 2}.

This eventually led to the following result for subdivided graphs.

Theorem 31 ([106]) If H is a graph containing at least two cycles in which each edge is
incident to a vertex of degree two, then

ar(Kn, H) = ex(n,H )(1 + o(1)),

where H = {H − e : e ∈ E(H)}.
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Theorem 30 also implies the following result from [17].

Theorem 32 ([17])
ar(Kn, K2,t) = ex(Kn, K2,t−1) +O(n).

A related result was shown in [128].

Theorem 33 ([128]) For all s ≤ t, there exists c = c(s, t) such that

ar(Kn, Ks,t) − ex(Kn, Ks,t−1) < cn.

In [17], the authors also provided the following general results for finding K2,t in complete
bipartite graphs.

Theorem 34 ([17])

ar(Km,n, K2,t) = ex(Km,n, K2,t−1) +O(m+ n).

Theorem 35 ([17])
ar(Kn,n, K2,t) =

√
t− 2n3/2 +O(n4/3).

Theorem 35 follows immediately from Theorem 34 and the following result of Füredi.

Theorem 36 ([79])
ex(Kn,n, K2,t) =

√
t− 1n3/2 +O(n4/3).

For a C4 with a single chord, which we will denote D for diamond, the following result
was proven in [148, 149].

Theorem 37 ([148, 149]) For n ≥ 4,

ex(Kn, {C3, C4}) + 1 ≤ ar(Kn, D) ≤ ex(Kn, {C3, C4}) + n.

For a cycle with a pendant edge, denoted by C+
k , Gorgol showed the following interesting

result.

Theorem 38 ([83]) For n ≥ k + 1,

ar(Kn, C
+
k ) = ar(n, Ck).

If you add one additional pendant to the cycle, creating a graph denoted by C++
k , Gorgol

showed the following.

Theorem 39 ([83]) For n ≥ k + 2,

ar(Kn, C
++
k ) > ar(n, Ck).
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The proof of this result involves a slight modification of the coloring providing the lower
bound of Conjecture 1.

A related result for a triangle with two pendant edges off a single vertex is the following.

Theorem 40 ([87]) For n ≥ 5,

ar(Kn, K1,4 + e) = n+ 1.

Let Qn be the hypercube of dimension n, i.e. the graph of order 2n in which the vertices
are binary n-tuples and two vertices are adjacent if and only if the corresponding tuples
differ by one term. Regarding the hypercube, Axenovich, Harborth, Kemnitz, Möller and
Schiermeyer [14] provided a collection of results for finding one hypercube in another.

Theorem 41 ([14])

n2n−1 −
⌊n

k
(2n−1 − k + 1)

⌋

≤ ar(Qn, Qk) ≤ n2n−1

(

1 − n− k

(n− 1)k2k−2

)

.

More specifically, the authors also proved the following.

Theorem 42 ([14])

ar(Qn, Qn−1) =

{

n2n−1 − 4 for n = 3, 4, 5,
n2n−1 − 3 for n ≥ 6.

and ar(Q4, Q2) = 18.

Bode et al. [35] provide exact results for ar(Q5, Q2) and ar(Q5, Q3).
In other work, Gorgol and  Lazuka computed the following anti-Ramsey numbers for stars

with an added edge.

Theorem 43 ([86]) For all n ≥ 4,

ar(Kn, K1,3 + e) = n− 1,

and for all n ≥ 5,

ar(Kn, K1,4 + e) = n+ 1.

We say that a graph H is doubly edge-critical if χ(H \ e) ≥ p+ 1 for any edge e ∈ E(H)
and there exists a pair of edges e, f for which χ(H \ {e, f}) = p. Jiang and Pikhurko
[110] obtained exact values of ar(Kn, H) for doubly edge-critical graphs H and classified all
sharpness examples. This result generalizes Theorem 14 since Kp+2 is doubly edge-critical.

The cyclomatic number of a connected graph G, denoted v(G), is the minimum number
of edges that must be removed from G to make the resulting graph acyclic, that is, v(G) =
|E(G)| − |V (G)| + 1.

Theorem 44 ([166]) Let H be a connected graph of order p ≥ 4 and cyclomatic number
v(H) ≥ 2. Then ar(Kn, H) cannot be bounded from above by a function which is linear in n.
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Theorem 45 ([166]) Let H be a graph of order p ≥ 5 and cyclomatic number v(H) = 1.
If H contains a cycle with k vertices for some k with 3 ≤ k ≤ p− 2, then

⌊

n

k − 1

⌋(

k − 1

2

)

+

(

r

2

)

+

⌈

n

k − 1

⌉

− 1 ≤ ar(Kn, H) ≤ (p− 2)n− p · p− 3

2
− 1

where n ≥ p and r is the residue of n mod k − 1.

Let B be the bull graph, the unique graph on 5 vertices with degree sequence (1, 1, 2, 3, 3).

Theorem 46 ([166]) ar(K5, B) = 5 and ar(Kn, B) = n+ 1 for n ≥ 6.

Gorgol and Görlich considered anti-Ramsey numbers for disjoint copies of a graph G,
denoted by pG.

Theorem 47 ([85]) For any graph G on n ≥ 3 vertices and for any p, we have

ar(m, pG) ≥ max

{(

pn− 2

2

)

+ 1, ar(m− p+ 1, G) + (p− 1)m−
(

p

2

)}

.

The same authors also offered the following conjecture.

Conjecture 3 ([85]) For any graph G on n ≥ 3 vertices and for any p, if m ≥ p|V (G)|,
then

ar(m, pG) = ar(m− p+ 1, G) + (p− 1)m−
(

p

2

)

if and only if G is a tree.

For specific graphs, the following result was shown.

Theorem 48 ([85]) For any integer m ≥ 6, we have

ar(m, 2P3) =

{

7 if m = 6,

m if m ≥ 7.

For any integer m > 12, we have

ar(m, 3P3) = 2m− 2.

2.6 Generalizations of Anti-Ramsey Theory

For given integers p and q, a (p, q)-coloring of Kn is a coloring in which the edges of every
Kp subgraph uses at least q colors. Let f(n, p, q) be the minimum number of colors in a
(p, q)-coloring of Kn. When q = 2, this reduces down to the classical anti-Ramsey problem

This problem was first considered by Elekes, Erdős and Füredi in [55] and later revisited
by Erdős and Gyárfás in [58]. They used the Local Lemma to provide the following general
upper bound on f(n, p, q).
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Theorem 49 ([58]) For some c depending only on p and q,

f(n, p, q) ≤ cn(p−2)/[(p

2
)−q+1].

In general, they also proved the following.

Theorem 50 ([58]) For any p, let q =
(

p
2

)

− p + 3. Then f(n, p, q) is linear in n while

f(n, p, q − 1) is sublinear (less or equal to cn1−1/(p−1)).

The authors also considered f(n, p, q) for many small fixed values of p and q. In particular,
they struggled with finding upper and lower bounds on f(n, 5, 9) and f(n, 4, 3). Since then,
Mubayi [155], Axenovich [10] and Krop and Krop [127] have improved the bounds on these
small cases.

In similar work, Axenovich, Füredi and Mubayi [13] studied the function r(G,H, q) which
is defined to be the minimum number of colors in a coloring of G in which every copy of
H ⊆ G together receive at least q colors. The paper includes a variety of results concerning
the case when G and H are complete bipartite graphs. Mubayi and West also considered
bipartite graphs in [156]. Improvements were made by Ling in [135].

As another variation, Axenovich and Kündgen [21] defined the function R(n, p, q1, q2) to
be the maximum number of colors in a coloring of Kn such that the number of colors used
on a subgraph A is between q1 and q2 (inclusive) for every subgraph A with |A| = p. The
case when q1 = 1 reduces to the problem studied in [62]. In [21], the authors mention general
results from [1] for a variety of values for p, q1, q2 and bounds are proven for p = 4, q2 = 4 or
5. A similar problem, when q1 = 2, q2 = |E(H)| − 1 and we restrict only the copies of H in
a general graph G, was considered in [15] under the title of mixed anti-Ramsey numbers.

The problem of finding the minimum number of colors f(n, e, L) necessary to color a
graph on n vertices and e edges such that every copy of L has all edges of different colors
was studied in [7, 42, 162]. In [42], the following question was asked.

Question 1 Let L be a connected bipartite graph that is not a star. Is it true that

lim
n→∞

f(n, αn2, L)

n
= ∞?

This question is answered in the affirmative in [162] for the case when L is a connected,
bipartite graph that is not complete bipartite. The function f(n, e, L) was also studied in
[43] where some bounds were provided for some classes of graphs L. These are roughly
described as follows:

• A lower bound when L is bipartite with ∆(L) ≥ 2 and having at least two strongly
independent edges (meaning that the end vertices of the edges induce no other edges),

• A lower bound when L has two strongly independent edges and is not a disjoint union
of cliques, or

• An upper bound when L has no two strongly independent edges.
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A similar question was studied for sub-hypercubes of a hypercube in [7].
Let f(n) denote the largest number of edges in a rainbow subgraph of a properly edge-

colored complete graph on n vertices. Then the following was shown in [24].

Theorem 51 ([24])
(2n)1/3 ≤ f(n) ≤ 8(n lnn)1/3.

Within the class of graphs in which each vertex is incident to many colors, the anti-
Ramsey problem was studied in [19] under the title of local anti-Ramsey numbers. Many
general bounds are presented in [19] while another specific number can be found in [76].

Haxell and Kohayakawa [102] considered an anti-Ramsey type problem for finding rain-
bow cycles in colored graphs with large girth.

Define the size anti-Ramsey number of a graph H , denoted ARs(H), to be the smallest
number of edges in a graph G such that any proper edge-coloring of G contains a rainbow
copy of H . The size anti-Ramsey number was originally defined in [20] along with several
notions of online anti-Ramsey numbers. Relationships between these numbers as well as
general bounds were also proven in [20]. The general behavior of ARs(Kk) was settled in [4]
with the following result, answering a question from [20].

Theorem 52 ([4])
ARs(Kk) = Θ(k6/ log2 k).

Also introduced in [4] is the concept of degree anti-Ramsey number of a graph H , denoted
ARd(H), to be the minimum value of d such that there is a graph G with maximum degree
at most d such that any proper edge-coloring of G contains a rainbow copy of H . Some
observations about the function ARd(H) are also included in [4].

In [159] and [117], the problem of vertex-coloring plane graphs avoiding rainbow faces
is discussed. Other vertex colorings related to anti-Ramsey theory were discussed in, for
example, [129, 154] and many others. In [146] the author discusses anti-Ramsey concepts
for finding rainbow colored edge-cuts.

The anti-Ramsey problem has also been studied in a variety of other contexts. For
hypergraphs, see [8, 132, 157]. For random graphs, see [37, 123, 124, 161]. For anti-Ramsey
in groups, see [25, 167]. For directed graphs, see [28] among others. Concerning integers and
rainbow arithmetic progressions, see [12, 118, 119, 120].

3 Rainbow Ramsey Theory

3.1 Classical Rainbow Ramsey Numbers

Definition 2 For given two graphs G1, G2, the rainbow Ramsey number (also sometimes
called the constrained Ramsey number) RR(G1, G2) is defined to be the minimum integer
N such that any edge-coloring of the complete graph KN using any number of colors must
contain either a monochromatic copy of G1 or a rainbow copy of G2.

Although commonly called constrained Ramsey numbers, we use the term rainbow Ram-
sey numbers to describe this concept in following the notation of [48]. In [104], the following
is proven.
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Theorem 53 ([104]) The rainbow Ramsey number RR(G1, G2) exists if and only if G1 is
a star or G2 is a forest.

As observed in [104], RR(G1, K1,t+1) is equivalent to the t-local Ramsey number of G1,
introduced in [90, 92]. In [31], the following is proven.

Theorem 54 ([31]) For every positive integer n,

RR(nK2, nK2) = n(n− 1) + 2.

More generally, for G1 = nK2, G2 = mK2, the following natural conjecture is proposed
in [65].

Conjecture 4 ([65]) For any two integers n,m with n ≥ 3, m ≥ 2,

RR(nK2, mK2) = m(n− 1) + 2.

We can easily see that m(n−1)+2 ≤ RR(nK2, mK2) ≤ 2(n−1)m, when n ≥ 2. For the
lower bound, consider a coloring of the graph Km(n−1)+1 as follows. Color all of the edges of
a subgraph isomorphic to K2n−1 with color 1. Choose n− 1 additional vertices and color all
of the edges among these vertices and between these vertices and those already colored with
color 2. For each color i = 3, 4, . . . , m−1, choose n−1 additional vertices and color the edges
among those vertices and between those vertices and the part of the graph already colored
with color i. The resulting graph has 2n− 1 + (m− 2)(n− 1) = m(n− 1) + 1 vertices and
contains no set of n independent edges in the same color. Since only m− 1 colors appear, it
also can not contain a set of m independent edges in different colors.

For the upper bound, notice that it holds for n = 2 and for m = 1 provided n ≥ 2. For any
n ≥ 3 and m ≥ 2, suppose RR(nK2, (m−1)K2) ≤ 2(n−1)(m−1) and RR((n−1)K2, mK2) ≤
2(n−2)m. Consider any edge-coloring of K2(n−1)m. If the resulting graph does not contain a
rainbow mK2, then without loss of generality it must contain a monochromatic (n−1)K2. If
we remove these 2(n− 1) vertices, there are 2(n− 1)(m− 1) vertices remaining. Thus, there
is either a monochromatic nK2 or a rainbow (m− 1)K2 on the remaining vertices. Without
loss of generality, we have a monochromatic (n−1)K2, say in color c, and a disjoint rainbow
(m − 1)K2. Either the rainbow (m − 1)K2 contains an edge in color c or it does not. If it
contains an edge in color c, then this edge along with the monochromatic (n− 1)K2 form a
monochromatic nK2. Otherwise, an edge in color c from the (n− 1)K2 may be added to the
rainbow (m− 1)K2 to produce a rainbow mK2.

In attempts to prove this conjecture the following results are proven in [65].

Theorem 55 ([65]) For any two positive integers n,m with 2 ≤ m < n,

RR(nK2, mK2) = m(n− 1) + 2.

Theorem 56 ([65])

1. RR(3K2, 4K2) = 10.
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2. RR(4K2, 5K2) = 17.

Theorem 57 ([65]) For n > 5 and 2 ≤ m ≤ 3
2
(n− 1),

RR(nK2, mK2) = m(n− 1) + 2.

Next we deal with the case where G1 is a star and G2 is a matching. In [66], the following
results are proven. First there is a general lower bound.

Theorem 58 ([66]) For any positive integers n and m, provided that n is odd or m is even,

RR(K1,n, mK2) ≥ (n− 1)(m− 1) + 2.

If n is even and m is odd, then

RR(K1,n, mK2) ≥ (n− 1)(m− 1) + 1.

Next, the authors found the following upper bounds.

Theorem 59 ([66]) For any positive integers n and m,

RR(K1,n, mK2) ≤ (n− 1)(m− 1) + 2 +

(

m− n+ 3

2

)

.

Theorem 60 ([66]) For any positive integers n and m,

RR(K1,n, mK2) ≤ (n+ 1)(m− 1) + 2.

If (n + 1)(m − 1) ≥ 2m + 1 (for instance, n ≥ 2 and m ≥ 4 or n ≥ 3 and m ≥ 3), then we
may improve the bound above to RR(K1,n, mK2) ≤ (n+ 1)(m− 1).

More specifically, the following special case is proven.

Theorem 61 ([66]) RR(K1,3, 3K2) = 7.

On the other hand, when G1 = nK2, G2 = K1,m, the following upper and lower bounds
are proven in [66].

Theorem 62 ([66]) For any positive integers n ≥ 2 and m ≥ 3,

RR(nK2, K1,m) ≥ (2m− 3)(n− 1) + 1.

Theorem 63 ([66]) For any integers m and n, where m ≥ 2 and n ≥ 2,

RR(nK2, K1,m) ≤ m(m− 1)n− 1

2
(3m+ 1)(m− 2).

Finally, we conclude this section by considering the case where G2 is a path. Let
R(G,G), R(G,G,G) be the 2- and 3-coloring Ramsey numbers of G respectively. In [91],
the authors proved the following general results which relate rainbow Ramsey numbers to
classical graph Ramsey numbers.
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Theorem 64 ([91]) For every graph G of order n ≥ 5,

RR(G,P4) = R(G,G).

Theorem 65 ([91]) For n ≥ 3,

RR(Pn, P5) = R(Pn, Pn, Pn).

Theorem 66 ([91]) If G is a connected non-bipartite graph then

RR(G,P5) = R(G,G,G).

Theorem 67 ([91]) For n ≥ 3,

RR(Cn, P5) = R(Cn, Cn, Cn).

Let T5 be the tree obtained from K1,3 by subdividing one edge.

Theorem 68 ([91]) If G = Pn or Cn(n ≥ 3) or G is non-bipartite and connected, then

RR(G, T5) = RR(G,P5).

Alon, Jiang, Miller and Pritikin [6] provided general bounds on the rainbow Ramsey
number for a star versus a complete graph.

Theorem 69 ([6]) For some absolute constants c1 and c2, for t ≥ 3,

c1mt
3

ln t
≤ RR(K1,m+1, Kt) ≤

c2mt
3

ln t
.

Some similar work has been done with rainbow Ramsey in algebraic structures in [69,
145, 137, 144] among many others.

3.2 Bipartite Rainbow Ramsey Numbers

Given two bipartite graphs G1 and G2, the bipartite rainbow Ramsey number BRR(G1, G2)
is the smallest integer N such that any coloring of the edges of KN,N with any number of
colors contains a monochromatic copy of G1 or a rainbow copy of G2. For the existence of
BRR(G1, G2), the following is proved in [67]:

Theorem 70 ([67]) The bipartite rainbow Ramsey number BRR(G1, G2) exists if and only
if G1 is a star or G2 is a star forest (i.e., a union of stars).

Let Sr denote any star forest with r components and let Sr, Br, Tr, and Fr be any star
forest, bipartite graphs, tree or forest, respectively with r edges. In [67], the following general
bounds for the bipartite rainbow Ramsey number are established. We first consider the case
when the rainbow graphs of interest are general bipartite graphs.

17

Fujita et al.: Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

Published by Digital Commons@Georgia Southern, 2014, Last updated 2018



Theorem 71 ([67]) Let Gn be any connected bipartite graph for which the largest partite
set has n vertices. If BRR(Gn, Bm) exists, then

BRR(Gn, Bm) ≥ (n− 1)(m− 1) + 1.

This result easily implies the following two corollaries.

Corollary 72 ([67])

BRR(K1,n, mK2) ≥ (n− 1)(m− 1) + 1.

Corollary 73 ([67])

BRR(Tn, Sm) ≥ (

⌈

n + 1

2

⌉

− 1)(m− 1) + 1.

We next consider the case when the rainbow graph is a forest.

Theorem 74 ([67]) If Gn is any forest with n nontrivial components, then

BRR(Gn, Sm) ≥ (n− 1)(m− 1) + 1.

This result immediately implies the next two corollaries.

Corollary 75 ([67])

BRR(nK2, K1,m) ≥ (n− 1)(m− 1) + 1.

Corollary 76 ([67])

BRR(nK2, Sm) ≥ (n− 1)(m− 1) + 1.

The next two corollaries take the previous bounds and provide exact results.

Corollary 77 ([67])

BRR(K1,n, K1,m) = (n− 1)(m− 1) + 1.

Corollary 78 ([67])

BRR(nK2, mK2) = (n− 1)(m− 1) + 1.

Theorem 79 ([67]) Suppose Fm has no isolated vertices. Then

BRR(K1,n,Fm) = O(mn),
BRR(Tn, K1,m) = O(mn).

Corollary 80 ([67])
BRR(Fn, K1,m) = O(mn).
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Regarding matchings and stars, the following general results were proven in [67].

Theorem 81 ([67]) For any integers n,m ≥ 2,

(n− 1)(m− 1) + 1 ≤ BRR(K1,n, mK2) ≤ n(m− 1) + 1.

Furthermore, if n > 2, the upper bound can be improved to n(m− 1).

Theorem 82 ([67]) For positive integers n ≥ 3 and 1 ≤ m ≤ n+ 2,

BRR(K1,n, mK2) = (n− 1)(m− 1) + 1.

Theorem 83 ([67]) For any integers n,m ≥ 2,

BRR(nK2, K1,m) ≥ max(2(n− 1)(m− 2) + 1, (n− 1)(m− 1) + 1).

Theorem 84 ([67]) For any integers n ≥ 2 and m ≥ 3,

BRR(nK2, K1,m) ≤ (3m− 5)(n− 1) + 1.

More specifically, for a small star or a small matching, the following cases were shown.

Theorem 85 ([67]) For any integer n ≥ 2,

BRR(nK2, K1,2) = n.

Theorem 86 ([67])
BRR(2K2, K1,m) = 2m− 3.

Concerning stars and paths, the following results were shown.

Theorem 87 ([67]) For integers n,m ≥ 3,

2(
⌈n

2

⌉

− 1)(m− 2) ≤ BRR(Pn+1, K1,m) ≤ (n− 1)(m− 1).

Theorem 88 ([67]) For any integers n,m ≥ 2,

(n− 1)(m− 1) + 1 ≤ BRR(K1,n, Pm+1)
≤ max((m− 2)(n− 1) + ⌈m+2

2
⌉, (m− 1)(n− 1) + 1).

This bound implies the following exact result for small paths.

Corollary 89 ([67]) For integers n,m ≥ 2 such that m ≤ 2n− 3,

BRR(K1,n, Pm+1) = (n− 1)(m− 1) + 1.

Theorem 90 ([67]) For any integer p ≥ 1,

BRR(K1,2, P4p−1) ≥ 4p+ 1.
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Also, in [26], the following is shown.

Theorem 91 ([26])
BRR(K1,n, K2,2) = 3n− 2.

Theorem 92 ([174]) For fixed t ≥ 3, s ≥ (t− 1)! + 1 and n large,

BRR(Ks,t, K1,n) = Θ(nt).

Theorem 93 ([174]) For n > t ≥ 3,

t2(n− 1) + 1 ≤ BRR(K1,n, Kt,t) ≤ t3(n− 1) + t− 1.

Theorem 94 ([174]) For m = 2, 3, 5, if n→ ∞, then

BRR(C2m, K1,n) ≥ (1 − o(n))nm/(m−1).

Theorem 95 ([174]) For any integers n,m ≥ 2,

(2m− 1)(n− 1) + 1 ≤ BRR(K1,n, C2m) ≤ 2m(n− 2) +
1

2
m(m− 1)(n− 1) + 2.

Let Bs,t denote the broom with s edges in the star part and t edges in the path part.

Theorem 96 ([174]) For any integers n, s, t ≥ 2,

max{(n− 1)(s+

⌈

t

2

⌉

− 1), 2(n− 2)(

⌈

t

2

⌉

− 1)}− 1 ≤ BRR(Bs,t, K1,n) ≤ (2s+ t− 3)(n− 1).

Theorem 97 ([174]) For any integers n, s, t ≥ 2,

(n− 1)(s+ t− 1) + 1 ≤ BRR(K1,n, Bs,t) ≤ (n− 1)(s+ t− 1) + s+
t+ 1

2
.

3.3 Pattern Ramsey Theory

A color pattern is defined to be a graph with colored edges. A family of patterns F is called
a Ramsey family if there exists an integer n0 such that in every coloring of the edges of Kn

with n ≥ n0, there exists some pattern in F .

Definition 3 The pattern Ramsey number for a Ramsey family F of patterns is the small-
est integer n0 such that in every coloring of Kn with n ≥ n0, there exists some pattern in
F .

Notice that this definition is closely related to the definition of the rainbow Ramsey
number except, as opposed to restricting attention to monochromatic or rainbow graphs,
one is allowed to choose any coloring. Also note another similarity in that the number of
colors is unlimited.

In 1950, Erdős and Rado [59] classified which families of patterns are Ramsey. A coloring
of a graph is said to be lexical if there exists an ordering of the vertices (left to right) such
that two edges get the same color if and only if they share a right endpoint. For ease of
notation, let Hmono, Hrain and H lex be the monochromatic, rainbow and lexical colorings of
H respectively. Erdős and Rado showed the following.
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Theorem 98 ([59, 60]) There is a constant Cp such that every coloring of E(Kn) for n >
Cp contains a Kp that is monochromatic, rainbow or lexically colored.

The result was actually proven for hypergraphs. This result was just the beginning of a
very difficult problem, the problem of finding such pattern Ramsey numbers. In honor of
Erdős and Rado, the pattern Ramsey number for finding a monochromatic, rainbow or lexical
complete graph of order k is commonly denoted ER(k). The original proof in [59] provides
an upper bound and Galvin [63] (p. 30) noticed a lower bound on ER(k). These bounds
were improved by Lefmann and Rödl in [130] but in [131], Lefmann and Rödl provided a
new proof of Theorem 98 and better bounds on ER(k) (again for hypergraphs).

Theorem 99 ([131])

2c1k2 ≤ ER(k) ≤ 2c2k2 log k

for some constants c1 and c2.

Similarly, in [130], Lefmann and Rödl considered finding ordered rainbow paths or mono-
chromatic complete graphs in edge-colored totally ordered complete graphs. They proved
that the necessary order is related to the classical Ramsey numbers for finding a path or a
complete graph.

Concerning the more general problem of considering general patterns of colors, Jamison
and West [105] considered a particular family of colorings (equipartitioned stars) while Axen-
ovich and Jamison [16] studied another family (F = {K lex

n , Krain
3 , Hmono}). Notice this is

related to the rainbow triangle free work discussed in Section 4. The following 3 results were
proven in this work. Define f(n,H) to be the smallest integer m such that every coloring of
Km contains either a K lex

n , a Krain
3 or Hmono.

Theorem 100 ([16])

f(n,H) ≤ 3n|H|.

Theorem 101 ([16]) For any connected graph H and any n, there is a constant c = c(n)
such that f(n,H) ≤ cRn−1(H) (the classical n− 1 color Ramsey number for H).

Theorem 102 ([16])

5⌊n/2⌋−1 + 1 ≤ f(n,K3) ≤ 5n/2.

Similar coloring problems were considered in [132, 160] for finding colored subsets in
a k-uniform hypergraph. Another bound on some such Ramsey numbers can be found in
[108]. The authors of [29] also found Mixed Pattern Ramsey numbers for a rainbow or
monochromatic triangle after exclusion of colored graphs H where H is any colored 4-cycle,
almost any colored 4-clique and bounds when H is a monochromatic odd cycle or a star
when the number of colors is sufficiently large.
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4 Gallai-Ramsey Theory

4.1 Gallai Colorings

The avoidance of rainbow colored subgraphs began with Gallai in [80] where the author
studied transitively orientable graphs. The results contained in [80] were reproduced in [95]
where Gyárfás and Simonyi translated them to the terminology of graph coloring.

Definition 4 A coloring of a complete graph G is said to be a Gallai coloring if this coloring
contains no rainbow triangle.

Gyárfás and Simonyi restated the following theorem attributed to Gallai and also to
Cameron and Edmonds in [44].

Theorem 103 ([44, 80, 95]) Any Gallai coloring can be obtained by substituting Gallai
colored complete graphs into the vertices of a 2-colored complete graph.

This theorem follows from the lemma below, which provides another useful description
of Gallai colorings.

Lemma 1 ([80, 95]) Every Gallai coloring with at least three colors has a color which spans
a disconnected graph.

One may also note that Theorem 103 is equivalent to the following result.

Theorem 104 In any Gallai colored complete graph, there exists a partition of the vertices
(called a Gallai partition) such that there are at most two colors on the edges between the
parts and only one color on edges between each pair of parts.

Using Theorem 103, Cameron, Edmonds and Lovász [45] proved the following extension
of the Perfect Graph Theorem (see [138]).

Theorem 105 ([45]) Let G be a Gallai 3-coloring of a complete graph. If the graphs induced
on two of the colors are perfect, then the graph induced on the third color is also perfect.

In the same note, the authors go on to conjecture that if Kn is 3-colored so that no
configuration from a given class occurs and two of the colors induce perfect graphs, then
the third color also induces a perfect graph. This conjecture follows from the Strong Perfect
Graph Theorem which was proven in [52] and is stated as follows.

Theorem 106 (Strong Perfect Graph Theorem [52]) A graph is perfect if and only if
no induced subgraph is an odd cycle of length at least 5 or the complement of one.

In honor of Berge who conjectured the above, the class of graphs having no such induced
odd cycle or its complement have been called Berge graphs.

Also using Theorem 103, Gyárfás and Simonyi prove the following three results, each of
which extends older results from 2-colorings to Gallai colorings. For the first result, a broom
is a path with a star at one end. Although the following three results are also stated in [122],
we present them here for the sake of completeness.
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Theorem 107 ([95]) In every Gallai coloring of a complete graph, there exists a spanning
monochromatic broom.

This result generalizes a result of Burr [41] which states that any 2-colored complete
graph contains a monochromatic spanning broom. Theorem 108 generalizes a result of
Bialostocki, Dierker and Voxman [30] who proved the same result in the case of 2-colored
complete graphs.

Theorem 108 ([95]) In every Gallai coloring, there is a monochromatic spanning tree with
height at most two.

Theorem 108 is proven, as in the following, using the structure provided by Theorem 103.

Theorem 109 ([95]) Any Gallai coloring of the complete graph Kn contains a monochro-
matic star St for some t ≥ 2n

5
.

Theorem 109 is sharp by the following construction. Consider 5 copies of Kn/5 labeled as
G0, G1, . . . , G4 each colored entirely in color 1. Color the edges between Gi and Gi+1 with
color 2 and color all edges between Gi and Gi+2 with color 3 for all i (modulo 5). This graph
contains the aforementioned monochromatic star but not a larger one.

Theorems 107, 108 and 109 answer questions posed by Bialostocki and Voxman in [33].
More recently, Gyárfás, Sárközy, Sebő and Selkow [93] provided even more monochro-

matic structure in Gallai colorings. A double star is defined to be a tree of diameter 3, or
in other words, two disjoint stars with centers joined by an edge. In the first result, they
extend Theorem 109 to a double star.

Theorem 110 ([93]) Every Gallai coloring of Kn contains a monochromatic double star
with at least 3n+1

4
vertices. This is asymptotically best possible.

Continuing in the tradition of extending 2-coloring results to Gallai colorings, the authors
also extend results from [56] and [89] which find a monochromatic diameter 2 subgraph of a
2-colored complete graph.

Theorem 111 ([93]) In every Gallai coloring G of Kn, there is a monochromatic diameter
2 subgraph with at least

⌈

3n
4

⌉

vertices. This is best possible for every n.

This result is best possible by the following construction. Consider a 2-coloring of K4

in which each color is isomorphic to P4. Then substitute an equal (or as close to equal as
possible) number of vertices for each vertex of the K4. The coloring of these new blocks is
arbitrary. This construction contains a monochromatic diameter 2 subgraph of order

⌈

3n
4

⌉

but no larger.
Others have studied exact Gallai cliques which are colorings of cliques in which every

copy of a smaller clique has exactly a predetermined number of colors. In [53], an upper
bound of approximately 5k/2 was found for the number of vertices in an exact Gallai clique
using k colors. As an extension of Theorem 103, a characterization of exact Gallai cliques
was given by Ball, Pultr and Vojtěchovský [27].

23

Fujita et al.: Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

Published by Digital Commons@Georgia Southern, 2014, Last updated 2018



More specifically, Chung and Graham [53] studied the function f(s, t; k) defined to be the
largest value of m such that it is possible to k-color the edges of Km so that every Ks ⊆ Km

has exactly t different colors. Using this notation, the aforementioned result can be restated
as:

Theorem 112 ([15, 53, 93])

f(3, 2; k) =

{

5k/2 if k is even
2 · 5(k−1)/2 if k is odd.

In [15] and [93], the previous result was stated in terms of Gallai colorings and proven
using the decomposition from Theorem 103. Axenovich and Iverson, in [15], even classified
all rainbow colorings of a complete graph with no rainbow or monochromatic triangle. In
[53], Chung and Graham also proved the following.

Theorem 113 ([53]) For k ≥ 4,

f(4, 3; k) = k + 2.

Furthermore, Chung and Graham also stated, without proof, the following two results.
The first extends the previous theorem for all values of s ≤ k while the second demonstrates
the extreme change in behavior if s is allowed to be larger than k.

Theorem 114 ([53]) For 5 ≤ s ≤ k,

f(s, s− 1; k) = k + 1.

Theorem 115 ([53])

(1 + o(1))k2 ≤ f(k + 1, k; k) ≤ k2 + k.

The idea of Gallai colorings has also been considered in the context of multigraphs. In
another generalization of Theorem 103, the authors of [101] provided a construction of all
finite Gallai multigraphs similar to that of Gallai for graphs. Concerning Gallai multigraphs,
Diwan and Mubayi asked the following question.

Question 2 ([54]) Let R, G, and B be graphs on the same vertex set of size n. How large
must min{e(R), e(G), e(B)} be to guarantee that R ∪G ∪ B contains a rainbow triangle?

Using the partition result from [101], Magnant [139] recently provided the following
solution to the question of Diwan and Mubayi in the case where the graph is large and
complete, meaning that between every pair of vertices, there is at least one edge.

Let G be a G-colored multigraph on n vertices using three colors and let m(G) be the
minimum number of edges in a single color in G. Let M be limit of the maximum value
of m(G) over all G-colored, complete, multigraphs G on n vertices as n → ∞. With this
notation, the main result is the following.

Theorem 116 ([139])

M =
26 − 2

√
7

81
n2 ∼ 0.25566n2.
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4.2 General Gallai-Ramsey Theory for Rainbow Triangles

In [93], the authors introduced a restricted Ramsey number which they called RG(r,H)
to be the minimum m such that in every Gallai coloring of Km with r colors, there is a
monochromatic copy of H . This concept naturally extends to any rainbow colored graph in
the following sense.

Definition 5 Given two graphs G and H, the k-colored Gallai Ramsey number grk(G : H)
is defined to be the minimum integer n such that every k-coloring (using all k colors) of the
complete graph on n vertices contains either a rainbow copy of G or a monochromatic copy
of H.

Notice that this definition is similar to the rainbow (or constrained) Ramsey numbers (see
Definition 2) except, in this case, the number of colors is fixed. This definition is also very
closely related to the function MaxR(G,H) studied in [11, 15]. Essentially these functions
are duals. Similarly, we define the following notation for when the number of colors used in
the coloring is at most a fixed value k.

Definition 6 Given two graphs G and H, the k-colored upper Gallai Ramsey number
gr′k(G : H) is defined to be the minimum integer n such that every k-coloring (using at
most k colors) of the complete graph on n vertices contains either a rainbow copy of G or a
monochromatic copy of H.

Note that if grk(H : G) is a monotone increasing function of k (on an interval a ≤ k ≤ b),
then these two functions will be equal (on the same interval). Somewhat surprisingly, this
is not always the case (see Theorem 131 and Conjecture 5).

In particular, using this definition, Theorem 109 can be restated as follows, which was
also noted in [143].

Theorem 117 ([143])

gr′k(K3 : St) =

{

5t−3
2

for odd t,
5t−6
2

otherwise.

Theorem 112 can also be restated in this notation. In [93], the authors provide the
asymptotic behavior of grk(K3 : H) for a general graph H .

Theorem 118 ([93]) Let H be a fixed graph with no isolated vertices. If H is not bipartite,
then grk(K3 : H) is exponential in k. If H is bipartite, then grk(K3 : H) is linear in k.

The lower bound for the case when H is not bipartite comes from the following inductive
construction. Certainly there exists a small graph in one color containing no H . Suppose
there exists Gk using k colors which contains no monochromatic copy of H . Then let Gk+1

be two copies of Gk with all possible edges in between using the new color. The graph Gk+1

also contains no monochromatic copy of H . For the lower bound when H is bipartite, the
construction involves adding vertices to the graph with all edges in a single color. If H is a
star, this result becomes more complicated in light of the difference between grk(· : ·) and
gr′k(· : ·).

In [68], Faudree, Gould, Jacobson and Magnant proved the following specific Gallai
Ramsey numbers
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Theorem 119 ([68])

1. grk(K3 : C4) = k + 4 for k ≥ 2.

2. grk(K3 : P4) = k + 3 for k ≥ 1.

3. grk(K3 : P5) = k + 4 for k ≥ 1.

4. grk(K3 : P6) = 2k + 4 for k ≥ 1.

The authors of [68] also found the Gallai Ramsey numbers for all trees of order at most 6.
Regarding paths in general, the following represents the best known bounds.

Theorem 120 ([68], [100]) Given integers n ≥ 3 and k ≥ 1,

⌊

n− 2

2

⌋

k +
⌈n

2

⌉

+ 1 ≤ grk(K3 : Pn) ≤
⌊

n− 2

2

⌋

k + 3
⌈n

2

⌉

.

Regarding cycles, the following are the best known general bounds.

Theorem 121 ([75], [100]) Given integers n ≥ 2 and k ≥ 1,

(n− 1)k + n+ 1 ≤ grk(K3 : C2n) ≤ (n− 1)k + 3n.

Theorem 122 ([75], [100]) Given integers n ≥ 2 and k ≥ 1,

n2k + 1 ≤ grk(K3 : C2n+1) ≤ (2k+3 − 3)n logn.

For specific small cycles, Fujita and Magnant obtained the following.

Theorem 123 ([75]) For any positive integer k,

grk(K3 : C6) = 2k + 4.

Theorem 124 ([75]) For any positive integer k ≥ 2,

grk(K3 : C5) = 2k+1 + 1.

For non-bipartite graphs, the picture is not clear. Given a graph H , call a graph H ′ a
reduction of H if H ′ can be obtained from H by identifying sets of non-adjacent vertices
(and removing any resulting repeated edges). Let H be the set of all possible reductions
of H . For the sake of the following main definition, let R2(H ) be the minimum integer n
such that every 2-coloring of Kn contains a monochromatic copy of some graph in the set
H . Since this quantity is bounded above by the Ramsey number R(H,H), its existence is
obvious. Now a critical definition.

Definition 7 ([140]) If H is the set of all reductions of a given graph H, define the func-
tion m(H) to be

m(H) = R2(H ).
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Using this definition, a lower bound on the Gallai-Ramsey number for any non-bipartite
graph H has been shown.

Theorem 125 [[140]] For a connected non-bipartite graph H and an integer k ≥ 2, we have
that grk(K3 : H) is at least

{

(R(H,H) − 1) · (m(H) − 1)(k−2)/2 + 1 if k is even,

(χ(H) − 1) · (R(H,H) − 1) · (m(H) − 1)(k−3)/2 + 1 if k is odd.

In summary of the known sharp values of Gallai-Ramsey numbers concerning rainbow
triangles, we present the following tables. For the tables, we describe some special trees as
follows:

• P+
4 is the graph consisting of a P4 with the addition of a pendant vertex adjacent to

an interior vertex of the P4,

• P+
5 is the graph consisting of a P5 with the addition of a pendant vertex adjacent to

an interior vertex (but not the center) of the P5,

• P++
4 is the graph consisting of a P4 with the addition of two pendant vertices adjacent

to different interior vertices of the P4,

• P+2
4 is the graph consisting of a P4 with the addition of two pendant vertices adjacent

to a single interior vertex of the P4,

• P+′

5 is the graph consisting of a P5 with the addition of a pendant vertex adjacent to
the center vertex of the P5,

• Bm is the book on m pages, or rather K2 +Km.

Graph grk(K3 : H) Cite Graph grk(K3 : H) Cite
P4 k + 3 [68] C4 k + 4 [68]
P5 k + 4 [68] C5 2k+1 + 1 [75]
P6 2k + 4 [68] C6 2k + 4 [75]
P7 2k + 5 [141] C7 3 · 2k + 1 [40]
P8 3k + 5 [141] C8 3k + 5 [88]
P+
4 k + 4 [68] C9 4 · 2k + 1 [38]
P+
5 k + 5 [68] C11 5 · 2k + 1 [38]
P++
4 2k + 4 [68] C13 6 · 2k + 1 [39]
P+2
4 2k + 4 [68] C15 7 · 2k + 1 [39]

P+′

5 k + 5 [68]
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Graph grk(K3 : H) Cite

K3

{

5k/2 k even

2 · 5(k−1)/2 k odd
[15, 53, 93]

K4

{

17k/2 + 1 k even,

3 · 17(k−1)/2 + 1 k odd
[136]

sK3, (k − s)C4



























































(k − s + 3) · 2 · 5(s−1)/2 + 1

if s is odd and k − s > 1,

(k − s + 3) · 5s/2 + 1

if s is even and k − s > 1,

6 · 5(s−1)/2 + 1

if s is odd and k − s = 1,

3 · 5s/2 + 1

if s is even and k − s = 1

[175]

Bm (2 ≤ m ≤ 5)











m+ 2 if k = 1,

(R(Bm, Bm) − 1) · 5(k−2)/2 + 1 if k is even,

2 · (R(Bm, Bm) − 1) · 5(k−3)/2 + 1 otherwise

[176]

4.3 General Gallai-Ramsey Theory for Other Rainbow Graphs

In a similar work, Theorem 103 was extended by Fujita and Magnant as follows.

Theorem 126 ([76]) In any rainbow S+
3 -free coloring G of a complete graph, one of the

following holds:

1. V (G) can be partitioned such that there are at most 2 colors on the edges between the
parts; or

2. There are three (different colored) monochromatic spanning trees, and moreover, there
exists a partition of V (G) with exactly 3 colors on edges between parts and between
each pair of parts, the edges have only one color.

Each conclusion of this result is best possible. In general, the following slightly weaker
result also holds.

Theorem 127 ([76]) For k ≥ 4, in any rainbow S+
k -free coloring G of a complete graph,

there exists a partition of V (G) such that between the parts, there are at most k colors.
Furthermore, there exists a coloring with k colors between parts.

Using Theorems 107 and 126, the authors also proved the following extension of The-
orem 107. In light of Theorem 107, one may be inclined to ask whether there exists a
monochromatic spanning broom in a rainbow S+

3 -free coloring. Unfortunately, this is not
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the case by the following example. Consider G = G1 ∪ G2 ∪ G3 ∪ G4 where each Gi is a
complete graph with all edges colored with color 1. The edges E(G1, G2) and E(G3, G4)
are also colored with color 1 while the edges of E(G1, G3) ∪ E(G2, G4) have color 2 and
E(G1, G4) ∪ E(G2, G3) have color 3 (where E(A,B) denotes the set of all edges between A
and B). This coloring contains no rainbow S+

3 and no monochromatic spanning structure.

Theorem 128 ([76]) In any rainbow S+
3 -free coloring of a complete graph, there exists a

spanning 2 colored broom.

Extending Theorem 119, Fujita and Magnant proved the following collection of results.
The proof of Item 1 uses the decomposition from Theorem 126 whereas the proofs of Items 2
and 3 use techniques similar to those of Theorem 113 and Item 1 in Theorem 119, respectively.

Theorem 129 ([76]) For all k ≥ 1,

1. grk(S
+
3 : P4) = k + 3.

2. grk(S
+
3 : K3) = λ(k) where λ(k) = 5k/2 + 1 for k even and λ(k) = 2 · 5(k−1)/2 + 1 for k

odd.

3. grk(S
+
3 : C4) = k + 4.

As an extension of Theorem 118, Fujita and Magnant also proved the following for rain-
bow S+

3 -free colorings.

Theorem 130 ([76]) Let H be a fixed graph with no isolated vertices. If H is not bipartite,
then grk(S

+
3 , H) is exponential in k. If H is bipartite, then grk(S

+
3 , H) is linear in k.

Note that the results of Theorems 129 and 130 provide the same numbers as the rainbow
triangle free cases but the proofs are more complicated due to the weaker structure from
Theorem 126.

When we consider monochromatic stars, the picture becomes far more complicated.

Conjecture 5 ([76]) For all k ≥ 4,

grk(S
+
3 : St) = 3t− 2k + 4.

This conjecture would be sharp by the following example. Given an integer k, let G =
A1 ∪A2 ∪ A3 ∪H where H is a rainbow triangle free coloring of a complete graph on k − 2
vertices where using colors 4, . . . , k, and Ai is a complete graph of order n−k+2

3
colored

entirely with color i for each i = 1, 2, 3. The edges of E(A1, A2) have color 3, E(A2, A3) have
color 1 and E(A1, A3) have color 2. Also, E(H,A1) have color 3, E(H,A2) have color 1 and
E(H,A3) have color 2. The graph G contains no rainbow S+

3 but contains a star of order
n+2k−4

3
.

Fortunately, the following result shows that if we allow the use of fewer colors on the
edges, then things become much easier.
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Theorem 131 ([76]) For all t ≥ 1, and k ≥ 3, we have gr′k(S
+
3 : St) = 3t− 1.

This problem was also considered in [105]. Using different notation, the authors of
[72] consider the cases grk(P4, K1,3), grk(K1,3, P4), grk(P4, P4), grk(K1,3, K3), grk(P4, K3),
grk(K3, P4), and show the following result.

Theorem 132 ([72]) For m ≤ k,

grk(K1,m, K1,n) = (n− 1)(m− 1) + 2.

4.4 Gallai Colorings and Other Properties

In [49], Chen and Li considered using a color degree condition in Gallai colored complete
graphs to find long rainbow paths. Recall that δc denotes the minimum, over all vertices
v ∈ V (G), number of colors on the edges incident to v.

Theorem 133 ([49]) Any Gallai colored complete graph G has a rainbow path of length at
least δc(G).

For general graphs, Chen and Li also proved the following.

Theorem 134 ([49]) Any Gallai colored graph G with δc(G) ≥ k ≥ 6 has a rainbow path
of length at least 3k

4
.

Gallai colored non-complete graphs still have large monochromatic connected subgraphs.

Theorem 135 ([94]) Every Gallai colored graph G contains a monochromatic connected
subgraph of order at least (α(G)2 + α(G) + 1)−1|G| vertices.

In fact, Gallai colorings contain almost spanning highly connected subgraphs but more
forbidden rainbow subgraphs have this property as well.

Theorem 136 ([77]) Let H be the set of all graphs H such that if G is a colored Kn

containing no rainbow copy of H, then G contains a monochromatic k-connected subgraph of
order at least n−f(k,H) where f is a function not depending on n. Then H = {K3, P6, P

+
4 }

(and the connected subgraphs of these graphs) where P+
4 is a path on 4 vertices with a pendant

edge hanging off of one of the interior vertices.

More generally, the following holds for hypergraphs.

Theorem 137 ([94]) If the edges of an r-uniform hypergraph H are colored so that there
is no rainbow copy of a fixed F , then there is a monochromatic connected subhypergraph of
order at least c|H| where c is a function only of F , r and α(H).

Another general graph result is the following. This result was actually proven by showing
that for any integer β, there exists an integer h = h(β) such that ifD is a multipartite digraph
with no cyclic triangles and the largest independent set of vertices in different partite sets is
β, then the smallest number of partite sets needed to dominate D is at most 4.

Theorem 138 ([96]) The vertices of a Gallai colored graph G can be covered by the vertices
of at most k monochromatic components where k depends only on α(G).
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5 Other Generalizations

5.1 Sub-Ramsey Theory

Definition 8 Given a graph G and a positive integer k, the sub-Ramsey number sr(G, k)
is said to be the minimum number n such that if the edges of Kn are colored with no color
appearing more than k times, then the colored graph contains a rainbow G.

When the edges of Kn are colored with no color appearing more than k times, define a
new edge coloring with at most k colors with each new color class containing at most one
edge from each original color class. In the new edge-coloring, if there exists a monochromatic
G, then it corresponds to a rainbow G in the original edge-coloring. Therefore we know that
sr(G, k) ≤ r(G1, G2, · · ·Gk), where Gi ≈ G for all 1 ≤ i ≤ k, so in general, sr(G, k) is finite
for any graph G and any positive integer k.

Galvin [81] gave a result on the sub-Ramsey problem, that is, sr(K3, k) = k + 2. For
the complete graph, Hell and Montellano-Ballesteros [103] showed that cn3/2 ≤ sr(Kn, k) ≤
(2n−3)(n−2)(k−1) + 3 for some constant c, which improves upon a result due to Alspach,
Gerson, Hahn and Hell [9].

The sub-Ramsey number of a cycle or a path have also been considered. Hahn and
Thomassen [99] conjecture that there exists a linear function f such that sr(Cn, k) = n for
k ≤ f(n). They showed that k could grow as fast as n1/3, and this was improved by Frieze
and Reed [71] to n

lnn
for sufficiently large n. Recently Albert, Frieze and Reed [2] settled the

conjecture by Hahn and Thomassen; they showed that if n is sufficiently large and k ≤ cn
for c < 1

32
, then sr(Cn, k) = n.

For graphs other than the complete graph, cycle and path, Hahn [98] and Fraisse, Hahn
and Sotteau [70] studied the sub-Ramsey number of a star. On the other hand, sub-Ramsey
number for arithmetic progressions are also studied [5, 22].

5.2 Monochromatic Degree

Let k and d be positive integers and n be a sufficiently large integer. An edge coloring of
a graph G is called a (k, d)-coloring if it uses k colors and each vertex has degree at least
d in each color. Given a graph F and k ≥ E(F ), for any n > k, let d(n, F, k) denote the
minimum integer d such that every (k, d)-coloring of Kn contains a rainbow copy of F . If
there is no such d, we say d(n, F, k) = ∞.

This topic was first studied in [64], this topic was recently revisited by Tuza in [172] with
the following problems.

Problem 1 ([172]) Given a graph F and k ≥ E(F ), describe the behavior of d(n, f, k) as
a function of n.

Problem 2 ([172]) Does every (k, ⌊(n−1)/k⌋)-coloring of Kn contain all graphs with fewer
than k edges as rainbow subgraphs?

Any counterexample to an affirmative answer to this claim must satisfy some necessary
conditions [64].
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Problem 3 ([172]) Characterize those graphs F with the property that for k = |E(F )|, a
rainbow copy of F occurs in every (k, d)-coloring of Kn for all sufficiently large n where

(i) d = ⌊(n− 1)/k⌋;

(ii) d ≤ (1 − c)n/k for some constant c > 0;

(iii) d = 1.

Some partial results were proven in [64]. In particular, there is the following case.

Problem 4 ([172]) Is every tree in category (iii) of Problem 3?

5.3 Others

Let f(n) be the minimum number such that there is a proper edge coloring of Kn with f(n)
colors with no path or cycle of four edge using one or two colors, Axenovich [10] proved that
1+

√
5

2
n− 3 ≤ f(n) ≤ 2n1+c/

√
logn for a positive constant c.

Based on Voloshin’s definition in [173], several groups [23, 46, 109, 126, 169, 170] have
worked on coloring the vertices of hypergraphs to avoid both monochromatic and rainbow
hyper-edges.
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[55] P. Erdős. Solved and unsolved problems in combinatorics and combinatorial num-
ber theory. In Proceedings of the Twelfth Southeastern Conference on Combinatorics,
Graph Theory and Computing, Vol. I (Baton Rouge, La., 1981), volume 32, pages
49–62, 1981.

35

Fujita et al.: Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

Published by Digital Commons@Georgia Southern, 2014, Last updated 2018
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[117] V. Jungić, D. Král, and R. Škrekovski. Colorings of plane graphs with no rainbow
faces. Combinatorica, 26(2):169–182, 2006.
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and T. Sós. J. Graph Theory, 52(2):147–156, 2006.

[163] I. Schiermeyer. Rainbow 5- and 6-cycles: a proof of the conjecture of erdős, simonovits
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