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Abstract

Given an edge-colored complete graph Kn on n vertices, a perfect (respectively,
near-perfect) matching M in Kn with an even (respectively, odd) number of vertices
is rainbow if all edges have distinct colors. In this paper, we consider an edge coloring
of Kn by circular distance, and we denote the resulting complete graph by K•n. We
show that when K•n has an even number of vertices, it contains a rainbow perfect
matching if and only if n = 8k or n = 8k + 2, where k is a nonnegative integer. In the
case of an odd number of vertices, Kirkman matching is known to be a rainbow near-
perfect matching in K•n. However, real-world applications sometimes require multiple
rainbow near-perfect matchings. We propose a method for using a recursive algorithm
to generate multiple rainbow near-perfect matchings in K•n.

1 Introduction

Given an edge-colored undirected graph G, a rainbow matching (or heterochromatic match-
ing) M in G is a matching (a set of edges without common vertices) such that all edges have
distinct colors. While it is possible to find a maximum matching in G in polynomial time,
computing a maximum rainbow matching is known to be an NP-hard problem. Indeed, the
decision version of this problem is a classical example of NP-complete problems, even for
edge-colored bipartite graphs [1].

If a graph G has an even number of vertices, a rainbow perfect matching in G is a
rainbow matching that matches all vertices of the graph. If the number of vertices is odd, a
rainbow near-perfect matching M in G is a rainbow matching in which exactly one vertex is
unmatched. Note that in this paper, we use RPM to mean either a rainbow perfect matching
or a rainbow near-perfect matching in the corresponding graph.

Over the past decade, finding RPMs in edge-colored graphs or hypergraphs has been stud-
ied for several classes of graphs, including complete bipartite graphs [2], r-partite graphs [3],
Dirac bipartite graphs [4], random geometric graphs [5], and k-uniform, k-partite hyper-
graphs [6]. Most of the above studies assume that there are more colors used for coloring
than there are colors among matchings. If we do not insist on perfect matchings, other stud-
ies have demonstrated the existence of large rainbow matchings in arbitrarily edge-colored
graphs. Letting δ̂(G) denote the minimum color degree of an edge-colored graph G, Wang

and Li [7] first showed the existence of a rainbow matching whose size is
⌈

5δ̂(G)−3
12

⌉
, and

conjectured that a tighter lower bound
⌈
δ̂(G)

2

⌉
exists if δ̂(G) ≥ 4 holds. LeSaulnier et al. [8]

proved a weaker statement, that an edge-colored graph G always contains a rainbow match-

ing of size at least
⌊
δ̂(G)

2

⌋
. Kostochka and Yancey [9] completed a proof of Wang and Li’s

conjecture. Letting n be the size of vertices of a graph G, Lo [10] showed that an edge-colored

graph G contains a rainbow matching of size at least k, where k = min
{
δ̂(G), 2n−4

7

}
. If

the graph is properly edge-colored (i.e., no two adjacent edges have the same color), sev-
eral results [11, 12, 13, 14] have provided lower bounds for the size of a maximum rainbow
matching. Other recent studies [15, 16, 17] have focused on finding large rainbow matchings
under the stronger assumption that the given is strongly edge-colored. See Kano and Li [18]
for a deeper analysis of rainbow subgraphs in an edge-colored graph.
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To the best of our knowledge, there has been no research on finding RPMs in edge-colored
complete graphs with exactly

⌊
n
2

⌋
colors. If we consider any exact

⌊
n
2

⌋
-edge coloring of Kn

where n ≥ 4, the results in [19] show that the size of a maximum rainbow matching is
bounded by O

(√
n
2

)
. This indicates that there does not always exist an RPM in Kn by an

arbitrary
⌊
n
2

⌋
-edge coloring. Thus, we consider RPMs in edge-colored complete graphs by

a special
⌊
n
2

⌋
-edge coloring, called a circular-distance edge coloring. Such an edge-colored

complete graph with n nodes is denoted as K•n.
Scheduling for round robin tournaments is known as an important application for search-

ing RPMs in K•n. For generating a feasible round-robin tournament schedule, Kirkman [20]
proposed a method based on a special RPM (Kirkman matching) in K•n. Although Kirk-
man’s method is popular for generating schedules for round-robin tournaments in European
soccer leagues [21], it can produce unbalanced or unfair schedules [22, 23]. Other feasible
solutions to the round-robin tournament scheduling problem may thus be needed for the
next scheduling stage. Anderson [24] proposed an approach by enumerating all RPMs in K•n
for balancing carry-over effects in tournaments with up to 24 teams. However, even though
multiple RPMs in the graph K•n with an odd number of vertices are required in real-world
applications, it has not been confirmed whether RPMs other than Kirkman matching exist
for an arbitrary n.

The rest of the paper is organized as follows. In Section 2, we introduce basic notations,
and we describe an application in tournament scheduling problem. In Section 3, we show
results for the existence and non-existence of such RPMs in K•n when n is even. For K•n
with an odd number of vertices, Kirkman showed there exists an RPM [20], which we call
Kirkman matching. In Section 4, we show that there exists other RPMs different from
Kirkman matching when n is an odd number larger than or equal to 7, and we then propose
a method to generate multiple RPMs by using a recursive algorithm.

2 Preliminaries

In this paper, all graphs are simple and undirected. A graph G is defined as G = (V,E),
where V (or V (G)) is the set of vertices and E (or E(G)) is the set of edges. We define a
vertex set V containing n vertices as V = {0, 1, . . . , n−1}, unless indicated otherwise. Given
a graph G and a set of distinct colors C = {c1, c2, . . .}, the circular-distance edge coloring of
a graph G is a mapping h : E(G)→ C, where an edge {i, j} ∈ E(G) is colored as

h({i, j}) = cmin{|i−j|,n−|i−j|}. (1)

We denote by K•n the edge-colored complete graph Kn with each edge e colored by h(e).
According to coloring (1), K•n is colored in exactly

⌊
n
2

⌋
colors, and it is not properly colored

if n ≥ 3. Here, we aim to find an RPM M in K•n, that is, a rainbow matching M where
|M | =

⌊
n
2

⌋
. Figures 1 and 2 respectively show examples of K•7 and K•8 with their RPMs.

Given an RPM M in K•n, an α-rotated matching of M denoted by rot(M,α) is defined
as

rot(M,α) = {{(i+ α) mod n, (j + α) mod n} | ∀{i, j} ∈M}. (2)

2
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(a) The edge-colored graph K•7
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(b) A rainbow near-perfect matching in K•7

Figure 1: Examples of K•7
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(a) The edge-colored graph K•8
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(b) A rainbow perfect matching in K•8

Figure 2: Examples of K•8

Figure 3 shows the 1-rotated matching rot(M, 1) for the RPM M in Figure 1b. This example
shows that if we arrange vertices 0, 1, . . . , n− 1 around a cycle in clockwise order, rot(M,α)
matches by rotating matching M by 2α

n
π in the clockwise direction.

If M is an RPM in the graph K•n, we observe that the following property holds from
definition (2):

Property 2.1. ∀α ∈ Z, rot(M,α) is an RPM.

Next, we define the reversed matching of M as rev(M):

rev(M) = {{n− 1− i, n− 1− j} | ∀{i, j} ∈M}. (3)

Figure 4 shows the reversed matching rev(M) for the RPM M in Figure 2b. Given an RPM
M in the graph K•n, the following property holds by definition (3):

Property 2.2. The matching rev(M) is also an RPM in the graph K•n.

3
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(a) A rainbow near-perfect matching M for K•7
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(b) The 1-rotated matching rot(M, 1)

Figure 3: Example 1-rotated RPM
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(a) A rainbow perfect matching M in K•8
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(b) The reversed matching rev(M)

Figure 4: Example reversed RPM

2.1 Round-robin tournament scheduling problem

In real-world applications, some combinatorial problems and their sub-problems are related
to searches for an RPM in K•n. A well-known example is scheduling for round-robin tourna-
ments.

Given n teams (where n is even), a tournament organizer must decide which games take
place in which rounds. The round-robin tournament scheduling problem (RTSP) aims to
generate a schedule with n− 1 rounds such that each pair of teams is matched exactly once,
and each team plays exactly one game in each round.

Translating this problem into the language of graph theory, let each team be a vertex,
and let an edge connecting vertices i and j represent a game between teams i and j. A
perfect matching in the complete graph Kn thus describes a round of n/2 games. Therefore,
the RTSP with n teams is the problem of decomposing the complete graph Kn into n − 1
perfect matchings [25, 26, 27].

Next, we show that a decomposition of Kn can be formed based on any rainbow near-
perfect matching M in K•n−1.
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(a) Games in round 1
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(b) Games in round 2
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(c) Games in round 3
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(d) Games in round 4
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(e) Games in round 5
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(f) Games in round 6
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(g) Games in round 7

Figure 5: Feasible schedule of 8 teams based on a perfect rainbow matching of K•7
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Letting vertex i′ ∈ V (K•n−1) be a vertex not matched by M ,

rot(M, i) ∪ {{(i′ + i) mod (n− 1), n− 1}}, ∀i ∈ {0, 1, . . . , n− 2} (4)

is a feasible decomposition of Kn. Another decomposition using the reversed RPM rev(M)
can be similarly constructed as

rot(rev(M), i) ∪ {{(n− 1− i′ + i) mod (n− 1), n− 1}}, ∀i ∈ {0, 1, . . . , n− 2}. (5)

Figure 5 shows a feasible schedule for n = 8 teams (a decomposition of K8) using
method (4) based on the RPM in Figure 1b. The matchings, generated by method (4)
or method (5), partition the edge set of K8 into 7 perfect matchings. Kirkman [20] first
proposed this framework for scheduling round-robin tournaments. This approach uses a
Kirkman matching Mkir

n in K•n as

Mkir
n =

{
{i, n− 1− i}

∣∣∣ ∀i ∈ {0, 1, . . . ,
⌊n

2

⌋
− 1
}}

. (6)

We call a schedule generated from Kirkman matching a Kirkman schedule. Figure 5 shows
a Kirkman schedule with 8 teams. A Kirkman matching Mkir

n has the following special
properties:

Property 2.3. A Kirkman matching Mkir
n in K•n is an RPM if and only if n = 2 or n is

odd.

Property 2.4. For an RPM M in the graph K•n, if there exists α such that rot(M,α) =
rev(M), then there exists β such that M = rot(Mkir

n , β).

Property 2.4 indicates that Kirkman matching Mkir
n and its α-rotated matchings are the

only matchings that make decomposition (4) and decomposition (5) the same.

2.2 Normalization

To obtain different solutions by using method (4) and method (5), we first design an algo-
rithm norm(M) that normalizes an RPM M using reverse and rotate operations. Algorithm 1
shows details of this normalization. We first clockwise rotate the matching M until edge
{0, n − 1} ∈ M meets (lines 1–4). We then check each edge {i, j} in M in ascending order
of their color indexes. For the current edge {i, j}, if i+ j > n− 1, the normalization finishes
and returns rev(M); if i+j < n−1, the normalization ends with the current M (lines 5–12).
The normalization procedure returns the current M when all edges have been checked (line
13).

Properties 2.1 and 2.2 ensure that if M is an RPM in the graph K•n, the normalization
norm(M) is still an RPM. We call an RPM M a normalized PRM (N-RPM) if norm(M) = M .

Regarding N-RPMs in the graph K•n, the following properties hold:

Property 2.5. If two N-RPMs M and M ′ are different, M ′ cannot be obtained from M by
using α-rotate operators and reverse operators,

Property 2.6. A Kirkman matching Mkir
n is an N-RPM.
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Algorithm 1 Normalize a rainbow perfect matching: norm(M)

Require: an RPM M .
1: Let {i, j} be the edge colored in c1 in M and j > i.
2: if {i, j} 6= {0, n− 1} then
3: M ← rot(M,−j).
4: end if
5: for k = 2 to k =

⌊
n
2

⌋
do

6: Let {i, j} be the edge colored in ck in M .
7: if i+ j < n− 1 then
8: return M .
9: else if i+ j > n− 1 then

10: return rev(M).
11: end if
12: end for
13: return M .

3 Rainbow perfect matchings in K•n with an even num-

ber of vertices

Letting k be a nonnegative integer, we show the results of considering the following two
cases:

• n = 8k or n = 8k + 2;

• n = 8k + 4 or n = 8k + 6.

3.1 Non-existence of an RPM when n = 8k + 4 or n = 8k + 6

We show the non-existence of RPM in the graph K•n for any n ∈ {8k + 4, 8k + 6}.

Theorem 3.1. For any k ∈ Z≥0, no RPM exists in the graph K•n if n ∈ {8k + 4, 8k + 6}.

Proof. We color all vertices in K•n using a function χ: V (K•n)→ {black, white}:

χ(v) =

{
black if the label of v is odd,

white if the label of v is even.
(7)

First consider the case where n = 8k + 4. Function χ obtains 4k + 2 black vertices and
4k + 2 white ones in K•8k+4. Assume there exists an RPM M in K•8k+4; that is, M is a
matching in K•8k+4 containing colors c1, c2, . . . , c4k+2. According to the edge coloring in (1),
edges with colors c1, c3, . . . , c4k+1 in M occupy 2k + 1 black vertices and 2k + 1 white ones,
because the endpoints of each edge are colored in different colors. The remaining edges in
M with colors c2, c4, . . . , c4k+2 consume an even number of vertices in both white and black,
because the endpoints of each edge are same-colored. This contradicts the fact that numbers
of white and black vertices in K•8k+4 are both even.
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A similar result holds for the case of n = 8k + 6, where using function χ in (7) obtains
4k + 3 black vertices and 4k + 3 white ones. Assume there exists an RPM M in K•8k+6

containing colors c1, c2, . . . , c4k+3. The edges in M with colors c1, c3, . . . , c4k+3 account for
2k+2 black vertices and 2k+2 white ones because the endpoints of each edge are differently
colored. Edges colored c2, c4, . . . , c4k+2 in M require an even number of both black and white
vertices, because the endpoints of each edge are same-colored. This contradicts the fact that
the numbers of white and black vertices in K•8k+6 are both odd.

3.2 Existence of an RPM when n = 8k or n = 8k + 2

First consider the case where k = 0. The existence of an RPM is obvious because ∅ and
{{0, 1}} are the RPMs in K•0 and K•2 , respectively. We then focus on n = 8k and n = 8k+ 2
with k ≥ 1. For such cases, we design the following matching Tn in the graph K•n:

Tn = T ′n ∪ T ′′n ∪ T ′′′n ∪ T̄n (8)

where

T ′n =

{
{{1 + i, 8k − 2− i} | i = 0, 1, . . . , 2k − 3} if n = 8k,

{{1 + i, 8k − i} | i = 0, 1, . . . , 2k − 2} if n = 8k + 2;
(9)

T ′′n =

{
{{2k + i, 6k − i} | i = 0, 1, . . . , k − 1} if n = 8k,

{{2k + 1 + i, 6k + 1− i} | i = 0, 1, . . . , k − 1} if n = 8k + 2;
(10)

T ′′′n =

{
{{3k + i, 5k − 2− i} | i = 0, 1, . . . , k − 2} if n = 8k,

{{3k + 1 + i, 5k − 1− i} | i = 0, 1, . . . , k − 2} if n = 8k + 2;
(11)

T̄n =

{
{{0, 4k − 1}, {2k − 1, 8k − 1}, {5k − 1, 5k}} if n = 8k,

{{0, 2k}, {4k, 8k + 1}, {5k, 5k + 1}} if n = 8k + 2.
(12)

Theorem 3.2. For any n = 8k or 8k + 2 with k ∈ Z≥1, Tn is an RPM in the graph K•n.

Proof. Tables 1 and 2 summarize the features of T ′n, T ′′n , and T ′′′n from (9)–(11). The columns
“vertices” and “colors” show the covered vertices and colors, respectively.

For the case where n = 8k, Table 1 shows that T ′n, T ′′n , and T ′′′n share neither vertices nor
colors, and that vertices

0, 2k − 1, 4k − 1, 5k − 1, 5k, 8k − 1

and colors

c1, c2k, c4k−1

remain unmatched. The edge set T̄8k = {{0, 4k− 1}, {2k− 1, 8k− 1}, {5k− 1, 5k}} satisfies
all the remaining requirements, so Tn is an RPM.

For the case where n = 8k+ 2, the same result that Tn is an RPM can be obtained from
Table 2 and the definition of T̄n.

Figure 6 shows the examples of T16 and T18.
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Table 1: Features of T ′n, T ′′n , and T ′′′n when n = 8k

vertices colors size

T ′n {1, 2, . . . , 2k − 2} ∪ {6k + 1, 6k + 2, . . . , 8k − 2} {c3, c5, . . . , c4k−3} 2k − 2

T ′′n {2k, 2k + 1, . . . , 3k − 1} ∪ {5k + 1, 5k + 2, . . . , 6k} {c2k+2, c2k+4, . . . , c4k} k

T ′′′n {3k, 3k + 1, . . . , 4k − 2} ∪ {4k, 4k + 1, . . . , 5k − 2} {c2, c4, . . . , c2k−2} k − 1

Table 2: Features of T ′n, T ′′n and T ′′′n when n = 8k + 2

vertices colors size

T ′n {1, 2, . . . , 2k − 1} ∪ {6k + 2, 6k + 3, . . . , 8k} {c3, c5, . . . , c4k−1} 2k − 1

T ′′n {2k + 1, 2k + 2, . . . , 3k} ∪ {5k + 2, 5k + 3, . . . , 6k + 1} {c2k+2, c2k+4, . . . , c4k} k

T ′′′n {3k + 1, 3k + 2, . . . , 4k − 1} ∪ {4k + 1, 4k + 2, . . . , 5k − 1} {c2, c4, . . . , c2k−2} k − 1

4 Rainbow near-perfect matchings in K•n with an odd

number of vertices

Kirkman proposed Kirkman matching nearly 180 years ago. Property 2.3 indicates that an
N-RPM exists in the graph K•n with an odd number of vertices. In this section, we first show
the existence of an RPM through what we call arch-recursive-slide (ARS) matching, whose
N-RPM is different from the Kirkman matching when n ∈ {7, 9, 11, . . .}. We then propose
an algorithm for generating multiple N-RPMs based on ARS matching.

4.1 Arch-recursive-slide (ARS) matching

In general, any odd number n can be expressed as

8k + 1, 8k + 3, 8k + 5, or 8k + 7 k ∈ Z≥0. (13)

For the graph K•n with an odd number of vertices, we define the ARS matching Ξn as

Ξn = Ξ′n ∪ Ξ′′n ∪ Ξ′′′n (14)

where

Ξ′n =


∅ if n = 1,

{{i, 2k − 1− i} | i = 0, 1, . . . , k − 1} if n = 8k + 1 or n = 8k + 3,

{{i, 2k + 1− i} | i = 0, 1, . . . , k} if n = 8k + 5 or n = 8k + 7;

(15)

Ξ′′n =



∅ if n = 1,

{{2k + i, 4k + 1 + 2i} | i = 0, 1, . . . , 2k − 1} if n = 8k + 1,

{{2k + i, 4k + 1 + 2i} | i = 0, 1, . . . , 2k} if n = 8k + 3,

{{2k + 2 + i, 4k + 4 + 2i} | i = 0, 1, . . . , 2k} if n = 8k + 5,

{{2k + 2 + i, 4k + 4 + 2i} | i = 0, 1, . . . , 2k + 1} if n = 8k + 7;

(16)

9
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(b) T18

Figure 6: Examples of RPM matchings T16 and T18

Ξ′′′n =



∅ if n = 1,

{{4k + 2i, 4k + 2j} | {i, j} ∈ Ξ2k+1} if n = 8k + 1,

{{4k + 2 + 2i, 4k + 2 + 2j} | {i, j} ∈ Ξ2k+1} if n = 8k + 3,

{{4k + 3 + 2i, 4k + 3 + 2j} | {i, j} ∈ Ξ2k+1} if n = 8k + 5,

{{4k + 5 + 2i, 4k + 5 + 2j} | {i, j} ∈ Ξ2k+1} if n = 8k + 7.

(17)

We show Ξ33 as an example. According to (15)–(16), we obtain

Ξ′33 = {{0, 7}, {1, 6}, {2, 5}, {3, 4}} , (18)

Ξ′′33 = {{8, 17}, {9, 19}, {10, 21}, {11, 23}, {12, 25}, {13, 27}, {14, 29}, {15, 31}} . (19)

From recursive formulation (17), to obtain Ξ′′′33 we must compute Ξ3 and Ξ9 beforehand, as

Ξ3 = Ξ′3 ∪ Ξ′′3 ∪ Ξ′′′3
= ∅ ∪ {{0, 1}} ∪ ∅
= {{0, 1}} ,

Ξ9 = Ξ′9 ∪ Ξ′′9 ∪ Ξ′′′9
= {{0, 1}} ∪ {{2, 5}, {3, 7}} ∪ {{4 + 2i, 4 + 2j} | {i, j} ∈ Ξ3}
= {{0, 1}} ∪ {{2, 5}, {3, 7}} ∪ {{4, 6}}
= {{0, 1}, {2, 5}, {3, 7}, {4, 6}}

Thus, by using (17), we obtain Ξ′′′33 as

Ξ′′′33 = {{16 + 2i, 16 + 2j} | {i, j} ∈ Ξ9}
= {{16, 18}, {20, 26}, {22, 30}, {24, 28}} . (20)
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Finally, Ξ33 is formed by (18)–(20):

Ξ33 = Ξ′33 ∪ Ξ′′33 ∪ Ξ′′′33

= {{0, 7}, {1, 6}, {2, 5}, {3, 4}, {8, 17}, {9, 19}, {10, 21}, {11, 23}, {12, 25}, {13, 27},
{14, 29}, {15, 31}, {16, 18}, {20, 26}, {22, 30}, {24, 28}} . (21)

The ARS matching Ξ33 is an RPM for the graph K•33 because the edges in (21) share no
common vertices and cover all colors. Figure 7 shows Ξ33 and its corresponding N-RPM.

Edges in Ξ′33: Edges in Ξ′′33: Edges in Ξ′′′33:
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(a) ARS matching Ξ33
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(b) The N-RPM of Ξ33

Figure 7: ARS matching Ξ33 and its N-RPM

In this paper, we call an RPM M in K•n a cuttable RPM if

∀{i, j} ∈M, |i− j| ≤ n− |i− j| (22)

holds. A necessary and sufficient condition for (22) is

∀{i, j} ∈M, |i− j| ≤ n

2
. (23)

Note that the Kirkman matching Mkir
n is not cuttable where n ≥ 3, but for any n ∈ Z≥0,

matchings

rot

(
Mkir

n ,

⌊
n+ 1

4

⌋)
, rot

(
Mkir

n ,−
⌊
n+ 1

4

⌋)
(24)

are cuttable RPMs. Using this definition, we can prove that Ξn is an RPM:

Theorem 4.1. For any odd number n, ARS matching Ξn is an RPM in the graph K•n.
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Proof. The proof is by mathematical induction. For any t ∈ Z≥1, let P (t) denote the
statement that Ξn is a cuttable RPM for each n ∈ {1, 3, 5, . . . , 8t− 1}.
Base step (t = 1): P (1) is true because according to (15)–(17)

Ξ1 = ∅,
Ξ3 = {{0, 1}},
Ξ5 = {{0, 1}, {2, 4}},
Ξ7 = {{0, 1}, {2, 4}, {3, 6}}.

Each of these is an RPM in the corresponding graph K•n, all involved edges {i, j}, satisfy
|i− j| ≤ n/2.
Inductive step P (t)→ P (t+ 1): Fix some t ≥ 1, assuming that

Assumption 4.1. for any n ∈ {1, 3, 5, . . . , 8t− 1}, Ξn is a cuttable RPM.

To prove P (t+ 1), we must show that for any n ∈ {8t+ 1, 8t+ 3, 8t+ 5, 8t+ 7}, Ξn is a
cuttable RPM in the graph K•n. Table 3 summarizes the features of Ξ′n and Ξ′′n according to
(15)–(16), such as covered vertices (in the column “vertices”), covered colors (in the column
“colors”), and size.

Table 3 shows that Ξ′n and Ξ′′n share neither common vertices nor colors. The values in
the last column indicate that statement |i − j| ≤ n/2 holds for all edges {i, j} ∈ Ξ′n ∪ Ξ′′n.
Table 4 lists the unmatched vertices and colors to be considered in Ξ′′′8t+1,Ξ

′′′
8t+3,Ξ

′′′
8t+5, and

Ξ′′′8t+7.
From t ≥ 1 and Assumption 4.1, Ξ2t+1 is a cuttable RPM for the graph K•2t+1, using 2t

distinct vertices in {0, 1, . . . , 2t}. Thus, Ξ′′′8t+1, Ξ′′′8t+3, Ξ′′′8t+5, and Ξ′′′8t+7 constructed by (17)
cover 2t distinct vertices in the column “vertices” in Table 4.

Table 3: Features of Ξ′n and Ξ′′n

Ξ′n

n vertices colors |Ξ′n| max{i,j}∈Ξ′n
|i− j|

8k + 1 {0, 1, . . . , 2k − 1} {c1, c3, . . . , c2k−1} k 2k − 1

8k + 3 {0, 1, . . . , 2k − 1} {c1, c3, . . . , c2k−1} k 2k − 1

8k + 5 {0, 1, . . . , 2k + 1} {c1, c3, . . . , c2k+1} k + 1 2k + 1

8k + 7 {0, 1, . . . , 2k + 1} {c1, c3, . . . , c2k+1} k + 1 2k + 1

Ξ′′n

n vertices colors |Ξ′′n| max{i,j}∈Ξ′′n
|i− j|

8k + 1 {2k, 2k + 1, . . . , 4k − 1} ∪ {4k + 1, 4k + 3, . . . , 8k − 1} {c2k+1, c2k+2, . . . , c4k} 2k 4k

8k + 3 {2k, 2k + 1, . . . , 4k} ∪ {4k + 1, 4k + 3, . . . , 8k + 1} {c2k+1, c2k+2, . . . , c4k+1} 2k + 1 4k + 1

8k + 5 {2k + 2, 2k + 3, . . . , 4k + 2} ∪ {4k + 4, 4k + 6, . . . , 8k + 4} {c2k+2, c2k+3, . . . , c4k+2} 2k + 1 4k + 2

8k + 7 {2k + 2, 2k + 3, . . . , 4k + 3} ∪ {4k + 4, 4k + 6, . . . , 8k + 6} {c2k+2, c2k+3, . . . , c4k+3} 2k + 2 4k + 3

Table 4: Unmatched vertices and colors

n vertices colors
8t+ 1 {4t, 4t+ 2, . . . , 8t} {c2, c4, . . . , c2t}
8t+ 3 {4t+ 2, 4t+ 4, . . . , 8t+ 2} {c2, c4, . . . , c2t}
8t+ 5 {4t+ 3, 4t+ 5, . . . , 8t+ 3} {c2, c4, . . . , c2t}
8t+ 7 {4t+ 5, 4t+ 7, . . . , 8t+ 5} {c2, c4, . . . , c2t}
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We next show that all colors in the column “colors” are covered. Assumption 4.1 guar-
antees that

{|i− j| | {i, j} ∈ Ξ2t+1} = {1, 2, . . . , t}, (25)

so Ξ′′′8t+1, Ξ′′′8t+3, Ξ′′′8t+5, and Ξ′′′8t+7 constructed by (17) cover all colors in the column “colors”
in Table 4. Note that (25) also indicates that

|i− j| ≤ 2t ≤ n/2

holds for each {i, j} in Ξ′′′8t+1, Ξ′′′8t+3, Ξ′′′8t+5, and Ξ′′′8t+7.
Therefore, for each n ∈ {8t+1, 8t+3, 8t+5, 8t+7}, Ξn is an RPM in K•n, and |i−j| ≤ n/2

holds for all edges {i, j} in Ξn.

For n ∈ {1, 3, 5}, all RPMs in the graph K•n are derived from the same N-RPM. However,
if n ∈ {7, 9, . . .}, the N-RPM of ARS matching is different from Kirkman matching Mkir

n in
the graph K•n:

Property 4.1. For any n ∈ {7, 9, 11, . . .}, norm(Ξn) 6= Mkir
n .

Proof. From the definition of Ξ′′n in (16), |Ξ′′n| ≥ 2 holds when n ∈ {7, 9, . . .}. When n = 8k+1
or n = 8k + 3, edges {2k, 4k + 1} and {2k + 1, 4k + 3} belong to Ξ′′n. If we arrange vertices
0, 1, . . . , n − 1 around a cycle in clockwise order, these two edges cross each other, and
this cannot be changed by applying reverse and rotation operators. However, all edges in
Kirkman matching Mkir

n are parallel, so the N-RPM of ARS matching is different from Mkir
n

if n = 8k + 1 or n = 8k + 3. For n = 8k + 5 or n = 8k + 7, the same holds for edges
{2k + 2, 4k + 4} and {2k + 3, 4k + 6} in Ξ′′n.

4.2 Generating many N-RPMs based on ARS matching

We showed in the previous subsection that the ARS matching Ξn = Ξ′n∪Ξ′′n∪Ξ′′′n is an RPM
in K•n if n is odd. In this subsection, we propose a method for generating many N-RPMs,
based on the idea that valid variants of Ξ′′′2k+1 lead to RPMs whose N-RPMs are different.

Given an RPM M in K•n where n is odd, we consider the following functions f(M) and
g(M):

f(M) =

{
rot(M,−2k) if n = 8k + 1 or n = 8k + 3,

rot(M,−2k − 2) if n = 8k + 5 or n = 8k + 7;
(26)

g(M) =

{
rot(rev(M), 2k) if n = 8k + 1 or n = 8k + 3,

rot(rev(M), 2k + 2) if n = 8k + 5 or n = 8k + 7.
(27)

From Property 2.1, Property 2.2, and Theorem 4.1, f(Ξn), rev(Ξn), and g(Ξn) are RPMs in
K•n. Note that the four RPMs Ξn, f(Ξn), rev(Ξn), and g(Ξn) are all cuttable, and each is
derived from the same N-RPM by Property 2.5.

We demonstrate how to generate many N-RPMs by example. In (21), we showed that
Ξ33 = Ξ′33 ∪ Ξ′′33 ∪ Ξ′′′33 is an RPM in K•33. We used Ξ9 in constructing Ξ′′′33. If we use
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f(Ξ9), rev(Ξ9) and g(Ξ9) instead of Ξ9 when constructing Ξ′′′33, RPMs whose N-RPMs are
different can be obtained for K•33. Note that other cuttable RPMs such as rot(Mkir

9 , 2) and
rot(Mkir

9 ,−2) in (24) are also valid alternatives to Ξ9.
Let Ξ′′′n (M) denote

Ξ′′′n (M) =


{{4k + 2i, 4k + 2j} | {i, j} ∈M} if n = 8k + 1,

{{4k + 2 + 2i, 4k + 2 + 2j} | {i, j} ∈M} if n = 8k + 3,

{{4k + 3 + 2i, 4k + 3 + 2j} | {i, j} ∈M} if n = 8k + 5,

{{4k + 5 + 2i, 4k + 5 + 2j} | {i, j} ∈M} if n = 8k + 7.

(28)

We design a collection of RPMs Fn in the graph K•n as

Fn =



{∅} if n = 1,

{Ξ′n ∪ Ξ′′n ∪ Ξ′′′n (M) |M ∈ F2k+1}
∪{Ξ′n ∪ Ξ′′n ∪ Ξ′′′n (f(M)) |M ∈ F2k+1}
∪{Ξ′n ∪ Ξ′′n ∪ Ξ′′′n (rev(M)) |M ∈ F2k+1}
∪{Ξ′n ∪ Ξ′′n ∪ Ξ′′′n (g(M)) |M ∈ F2k+1} if n = 8k + 1, 8k + 3, 8k + 5, 8k + 7.

(29)

Using this method, we obtain θ(n) different N-RPMs in the graph K•n, where n is odd.
The following confirms the size of Fn in detail. For n = 1, we obtain |Fn| = 1 from (29);

For n = 3, 5, 7, we construct Fn based on F1 = {∅}. Since ∅ = rev(∅) = f(∅) = g(∅),
Fn = {Ξn} holds for n = 3, 5, 7. When M = Ξ3 or M = Ξ5, since M = g(M) and
rev(M) = f(M) hold for n = 9, 11, . . . , 23, Fn based on Ξ3,Ξ5 has 2 elements. For the
other n = 8k + i, i ∈ {1, 3, 5, 7}, |Fn| = 4|F2k+1| holds. From the observations above, we can
summarize that the size of Fn is bounded as:

1

12
n < |Fn| ≤ n.

5 Conclusion

We studied a problem that searches for rainbow perfect/near-perfect matchings (RPM) in
edge-colored complete graphs by a circular-distance edge coloring. Applications such as
scheduling for round-robin tournaments are related to this problem. Letting k be a nonneg-
ative integer, for the case when the number of the vertices n is even, we showed the existence
of an RPM when n = 8k or n = 8k+2, and the non-existence when n = 8k+4 or n = 8k+6.
For the case when n is an odd number larger than 7, we showed there always exists an RPM
different from the RPM discovered by Kirkman, Based on a special property of this new
RPM, we proposed a recursive algorithm to generate θ(n) different RPMs.
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matchings and hamilton cycles in the random geometric graph. Random Structures &
Algorithms, 51(4):587–606, 2017.

[6] Deepak Bal and Alan Frieze. Rainbow matchings and hamilton cycles in random graphs.
Random Structures & Algorithms, 48(3):503–523, 2016.

[7] Guanghui Wang and Hao Li. Heterochromatic matchings in edge-colored graphs. the
electronic journal of combinatorics, pages R138–R138, 2008.

[8] Timothy D LeSaulnier, Christopher Stocker, Paul S Wenger, and Douglas B West.
Rainbow matching in edge-colored graphs. The Electronic Journal of Combinatorics
[electronic only], 17(1):v17i1n26–pdf, 2010.

[9] Alexandr Kostochka and Matthew Yancey. Large rainbow matchings in edge-coloured
graphs. Combinatorics, Probability and Computing, 21(1-2):255–263, 2012.

[10] Allan Lo. Existences of rainbow matchings and rainbow matching covers. Discrete
Mathematics, 338(11):2119–2124, 2015.

[11] Guanghui Wang. Rainbow matchings in properly edge colored graphs. the electronic
journal of combinatorics, pages P162–P162, 2011.

[12] Jennifer Diemunsch, Michael Ferrara, Casey Moffatt, Florian Pfender, and Paul S
Wenger. Rainbow matchings of size\delta (g) in properly edge-colored graphs. arXiv
preprint arXiv:1108.2521, 2011.

[13] András Gyárfás and Gábor N Sárközy. Rainbow matchings and cycle-free partial
transversals of latin squares. Discrete Mathematics, 327:96–102, 2014.

[14] Ron Aharoni, Eli Berger, Maria Chudnovsky, David Howard, and Paul Seymour. Large
rainbow matchings in general graphs. European Journal of Combinatorics, 79:222–227,
2019.

[15] Jasine Babu, L Sunil Chandran, and Krishna Vaidyanathan. Rainbow matchings in
strongly edge-colored graphs. Discrete Mathematics, 338(7):1191–1196, 2015.

[16] Guanghui Wang, Guiying Yan, and Xiaowei Yu. Existence of rainbow matchings in
strongly edge-colored graphs. Discrete Mathematics, 339(10):2457–2460, 2016.

15

Saitoh et al.: Rainbow Perfect Matchings in Edges-Colored Complete Graphs

Published by Digital Commons@Georgia Southern, 2022



[17] Yangyang Cheng, Ta Sheng Tan, and Guanghui Wang. A note on rainbow matchings
in strongly edge-colored graphs. Discrete Mathematics, 341(10):2762–2767, 2018.

[18] Mikio Kano and Xueliang Li. Monochromatic and heterochromatic subgraphs in edge-
colored graphs-a survey. Graphs and Combinatorics, 24(4):237–263, 2008.

[19] Shinya Fujita, Atsushi Kaneko, Ingo Schiermeyer, and Kazuhiro Suzuki. A rainbow
k-matching in the complete graph with r colors. the electronic journal of combinatorics,
pages R51–R51, 2009.

[20] T.P. Kirkman. On a problem in combinations. The Cambridge and Dublin Mathematical
Journal, 2:191–204, 1847.

[21] Dries R Goossens and Frits CR Spieksma. Soccer schedules in europe: an overview.
Journal of scheduling, 15(5):641–651, 2012.

[22] Ryuhei Miyashiro and Tomomi Matsui. Minimizing the carry-over effects value in a
round-robin tournament. In Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetabling, pages 460–463. PATAT, 2006.

[23] Erik Lambrechts, Annette MC Ficker, Dries R Goossens, and Frits CR Spieksma.
Round-robin tournaments generated by the circle method have maximum carry-over.
Mathematical Programming, 172(1-2):277–302, 2018.

[24] Ian Anderson. Balancing carry-over effects in tournaments. Chapman and Hall CRC
Research Notes in Mathematics, pages 1–16, 1999.

[25] Dominique De Werra. Geography, games and graphs. Discrete Applied Mathematics,
2(4):327–337, 1980.

[26] Dominique De Werra. Scheduling in sports. Studies on Graphs and Discrete Program-
ming, 11:381–395, 1981.

[27] Tiago Januario, Sebastián Urrutia, Celso C Ribeiro, and Dominique De Werra. Edge
coloring: A natural model for sports scheduling. European Journal of Operational Re-
search, 254(1):1–8, 2016.

16

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 1, Art. 9

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/9
DOI: 10.20429/tag.2022.090109


	Rainbow Perfect and Near-Perfect Matchings in Complete Graphs with Edges Colored by Circular Distance
	Recommended Citation

	Rainbow Perfect and Near-Perfect Matchings in Complete Graphs with Edges Colored by Circular Distance
	Cover Page Footnote

	Rainbow Perfect and Near-Perfect Matchings in Complete Graphs with Edges Colored by Circular Distance

