119 research outputs found

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces

    Rainbow Matchings and Hamilton Cycles in Random Graphs

    Full text link
    Let HPn,m,kHP_{n,m,k} be drawn uniformly from all kk-uniform, kk-partite hypergraphs where each part of the partition is a disjoint copy of [n][n]. We let HP^{(\k)}_{n,m,k} be an edge colored version, where we color each edge randomly from one of \k colors. We show that if \k=n and m=Knlognm=Kn\log n where KK is sufficiently large then w.h.p. there is a rainbow colored perfect matching. I.e. a perfect matching in which every edge has a different color. We also show that if nn is even and m=Knlognm=Kn\log n where KK is sufficiently large then w.h.p. there is a rainbow colored Hamilton cycle in Gn,m(n)G^{(n)}_{n,m}. Here Gn,m(n)G^{(n)}_{n,m} denotes a random edge coloring of Gn,mG_{n,m} with nn colors. When nn is odd, our proof requires m=\om(n\log n) for there to be a rainbow Hamilton cycle.Comment: We replaced graphs by k-uniform hypergraph

    On rainbow tetrahedra in Cayley graphs

    Full text link
    Let Γn\Gamma_n be the complete undirected Cayley graph of the odd cyclic group ZnZ_n. Connected graphs whose vertices are rainbow tetrahedra in Γn\Gamma_n are studied, with any two such vertices adjacent if and only if they share (as tetrahedra) precisely two distinct triangles. This yields graphs GG of largest degree 6, asymptotic diameter V(G)1/3|V(G)|^{1/3} and almost all vertices with degree: {\bf(a)} 6 in GG; {\bf(b)} 4 in exactly six connected subgraphs of the (3,6,3,6)(3,6,3,6)-semi-regular tessellation; and {\bf(c)} 3 in exactly four connected subgraphs of the {6,3}\{6,3\}-regular hexagonal tessellation. These vertices have as closed neighborhoods the union (in a fixed way) of closed neighborhoods in the ten respective resulting tessellations. Generalizing asymptotic results are discussed as well.Comment: 21 pages, 7 figure

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs
    corecore