research

Rainbow Matchings and Hamilton Cycles in Random Graphs

Abstract

Let HPn,m,kHP_{n,m,k} be drawn uniformly from all kk-uniform, kk-partite hypergraphs where each part of the partition is a disjoint copy of [n][n]. We let HP^{(\k)}_{n,m,k} be an edge colored version, where we color each edge randomly from one of \k colors. We show that if \k=n and m=Knlognm=Kn\log n where KK is sufficiently large then w.h.p. there is a rainbow colored perfect matching. I.e. a perfect matching in which every edge has a different color. We also show that if nn is even and m=Knlognm=Kn\log n where KK is sufficiently large then w.h.p. there is a rainbow colored Hamilton cycle in Gn,m(n)G^{(n)}_{n,m}. Here Gn,m(n)G^{(n)}_{n,m} denotes a random edge coloring of Gn,mG_{n,m} with nn colors. When nn is odd, our proof requires m=\om(n\log n) for there to be a rainbow Hamilton cycle.Comment: We replaced graphs by k-uniform hypergraph

    Similar works