1,668 research outputs found

    Induced subgraphs of graphs with large chromatic number. XII. Distant stars

    Full text link
    The Gyarfas-Sumner conjecture asserts that if H is a tree then every graph with bounded clique number and very large chromatic number contains H as an induced subgraph. This is still open, although it has been proved for a few simple families of trees, including trees of radius two, some special trees of radius three, and subdivided stars. These trees all have the property that their vertices of degree more than two are clustered quite closely together. In this paper, we prove the conjecture for two families of trees which do not have this restriction. As special cases, these families contain all double-ended brooms and two-legged caterpillars

    Induced trees in graphs of large chromatic number

    Get PDF

    Equality of Lifshitz and van Hove exponents on amenable Cayley graphs

    Get PDF
    We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth Novikov-Shubin invariant. The random model we consider is given in terms of an adjacency Laplacian on site or edge percolation subgraphs of the Cayley graph. The asymptotic behaviour of the spectral distribution is exponential, characterised by the Lifshitz exponent. We show that for the adjacency Laplacian the two invariants/exponents coincide. The result holds also for more general symmetric transition operators. For combinatorial Laplacians one has a different universal behaviour of the low energy asymptotics of the spectral distribution function, which can be actually established on quasi-transitive graphs without an amenability assumption. The latter result holds also for long range bond percolation models

    Induced trees in graphs of large chromatic number

    Get PDF

    Random enriched trees with applications to random graphs

    Full text link
    We establish limit theorems that describe the asymptotic local and global geometric behaviour of random enriched trees considered up to symmetry. We apply these general results to random unlabelled weighted rooted graphs and uniform random unlabelled kk-trees that are rooted at a kk-clique of distinguishable vertices. For both models we establish a Gromov--Hausdorff scaling limit, a Benjamini--Schramm limit, and a local weak limit that describes the asymptotic shape near the fixed root
    corecore