236,141 research outputs found

    Algorithms and almost tight results for 3-colorability of small diameter graphs.

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3, we establish the complexity of 3-coloring by proving for every ε∈[0,1) that 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ=Θ(nε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ=Θ(nε). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ=ω(1) and for graphs with δ=O(1) and Δ=o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ=Θ(nε), where ε∈[12,1), as its time complexity is 2O(nδlogδ)=2O(n1−εlogn) and the corresponding lower bound states that there is no 2o(n1−ε)-time algorithm

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks

    Bounds for the Generalized Distance Eigenvalues of a Graph

    Get PDF
    Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G) be the distance matrix, DL(G) be the distance Laplacian, DQ(G) be the distance signless Laplacian, and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by Dα(G) the generalized distance matrix, i.e., Dα(G)=αTr(G)+(1−α)D(G) , where α∈[0,1] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue

    ?????? ??? ????????? ????? ???????

    Get PDF
    This study deals with simulate assumed designs for ruby laser resonator from calculate radius of laser beam at the beam waist, diameter of laser beam and curvature radius of laser beam at distance (z). The results found the best design of ruby laser resonator has very small divergence angle and high degree of directionality. Its found the minimum value of divergence angle was about 0.1033 mrad at R1=40 cm and R2=40 cm

    محاكاة صفة الاتجاهية لليزر الياقوت

    Get PDF
    This study deals with simulate assumed designs for ruby laser resonator from calculate radius of laser beam at the beam waist, diameter of laser beam and curvature radius of laser beam at distance (z). The results found the best design of ruby laser resonator has very small divergence angle and high degree of directionality. Its found the minimum value of divergence angle was about 0.1033 mrad at R1=40 cm and R2=40 cm

    Modeling and synthesis of multicomputer interconnection networks

    Get PDF
    The type of interconnection network employed has a profound effect on the performance of a multicomputer and multiprocessor design. Adequate models are needed to aid in the design and development of interconnection networks. A novel modeling approach using statistical and optimization techniques is described. This method represents an attempt to compare diverse interconnection network designs in a way that allows not only the best of existing designs to be identified but to suggest other, perhaps hybrid, networks that may offer better performance. Stepwise linear regression is used to develop a polynomial surface representation of performance in a (k+1) space with a total of k quantitative and qualitative independent variables describing graph-theoretic characteristics such as size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity, minimum dominating set size, and maximum number of prime node and edge cutsets. Dependent variables used to measure performance are average message delay and the ratio of message completion rate to network connection cost. Response Surface Methodology (RSM) optimizes a response variable from a polynomial function of several independent variables. Steepest ascent path may also be used to approach optimum points

    Extremal Properties of Complex Networks

    Get PDF
    We describe the structure of connected graphs with the minimum and maximum average distance, radius, diameter, betweenness centrality, efficiency and resistance distance, given their order and size. We find tight bounds on these graph qualities for any arbitrary number of nodes and edges and analytically derive the form and properties of such networks
    corecore