15,245 research outputs found

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    An efficient genetic algorithm for large-scale planning of robust industrial wireless networks

    Get PDF
    An industrial indoor environment is harsh for wireless communications compared to an office environment, because the prevalent metal easily causes shadowing effects and affects the availability of an industrial wireless local area network (IWLAN). On the one hand, it is costly, time-consuming, and ineffective to perform trial-and-error manual deployment of wireless nodes. On the other hand, the existing wireless planning tools only focus on office environments such that it is hard to plan IWLANs due to the larger problem size and the deployed IWLANs are vulnerable to prevalent shadowing effects in harsh industrial indoor environments. To fill this gap, this paper proposes an overdimensioning model and a genetic algorithm based over-dimensioning (GAOD) algorithm for deploying large-scale robust IWLANs. As a progress beyond the state-of-the-art wireless planning, two full coverage layers are created. The second coverage layer serves as redundancy in case of shadowing. Meanwhile, the deployment cost is reduced by minimizing the number of access points (APs); the hard constraint of minimal inter-AP spatial paration avoids multiple APs covering the same area to be simultaneously shadowed by the same obstacle. The computation time and occupied memory are dedicatedly considered in the design of GAOD for large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm and a random OD algorithm are taken as benchmarks. In two vehicle manufacturers with a small and large indoor environment, GAOD outperformed GHOD with up to 20% less APs, while GHOD outputted up to 25% less APs than a random OD algorithm. Furthermore, the effectiveness of this model and GAOD was experimentally validated with a real deployment system

    Hybrid multi-objective network planning optimization algorithm

    Get PDF

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Multiobjective algorithms to optimize broadcasting parameters in mobile Ad-hoc networks

    Get PDF
    Congress on Evolutionary Computation. Singapore, 25-28 September 2007A mobile adhoc network (MANETs) is a self-configuring network of mobile routers (and associated hosts). The routers tend to move randomly and organize themselves arbitrarily; thus, the network's wireless topology may change fast and unpredictably. Nowadays, these networks are having a great influence due to the fact that they can create networks without a specific infrastructure. In MANETs message broadcasting is critical to network existence and organization. The broadcasting strategy in MANETs can be optimized by defining a multiobjective problem whose inputs are the broadcasting algorithm's parameters and whose objectives are: reaching as many stations as possible, minimizing the network utilization, and reducing the makespan. The network can be simulated to obtain the expected response to a given set of parameters. In this paper, we face this multiobjective problem with two algorithms: Multiobjective Particle Swarm Optimization and ESN (Evolution Strategy with NSGAII). Both algorithms are able to find an accurate approximation to the Pareto optimal front that is the solution of the problem. ESN improves the results of MOPSO in terms of the set coverage and hypervolume metrics used for comparison
    • …
    corecore