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Abstract 

The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of 

wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless 

coverage. Instead of simply powering on all access points (APs), it becomes an unavoidable challenge to 

dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt 

the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To 

tackle this challenge, this paper formulates a transmit power control (TPC) model that enables both powering 

on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical 

one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet 

simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this 

TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, 

crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally 

validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further 

numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and 

the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and 

the qualification rate of GATPC according to varying target coverage percentage as well as number and 

placement direction of dominant obstacles. 
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1. Introduction 

The dominant wireless local area network (WLAN) technology IEEE802.11 or WiFi is penetrating into 

factories to promote factories of the future (FoF) [1]. Consequently, an industrial WLAN (IWLAN) is 

emerging as a basic infrastructure for manufacturing operations. For instance, production cell controllers can 

connect to other intelligent devices such as robot arms via an IWLAN on the shop floor [2], in order to realize 

agile production. The other industrial operations that increasingly rely on IWLANs are illustrated as intra-

factory transportation by automated guided vehicles, video monitoring, process monitoring, etc. Compared 

to cabled technologies for interconnection of machines or devices, wireless technologies are superior in terms 

of mobility, flexibility and cheap installation and maintenance, although wireless technologies are currently 

less robust in harsh industrial environments. Compared to other wireless technologies, an IWLAN has the 

advantages of low cost, high data rate and considerable coverage distance. 

However, a typical industrial indoor environment is harsh in terms of radio propagation. Firstly, either a 

shop floor or a warehouse is dominated by various metal facilities, such as production machines/lines, storage 

racks, steel bars, metal plates, pipes, automated guided vehicles, cranes and forklifts. These obstacles easily 

shadow radio propagation and cause coverage hole for a WLAN [1, 3]. Secondly, an industrial indoor layout 

may occasionally be altered with the prevalence of flexible manufacturing [4]. These dynamic shadowing 

effects make it increasingly difficult to maintain the expected wireless coverage in a target industrial 

environment. Thirdly, an IWLAN is denser compared to a public WLAN. This is not only due to the large 

size of an industrial indoor environment, but also driven by the increasing industrial need for redundant 

coverage to ensure high network availability [5]. Therefore, it is of strategic importance to conceive a transmit 

power control (TPC) method to dynamically change the coverage of a dense IWLAN according to these 

shadowing effects, in order to guarantee robust wireless connection of personnel, machines, materials and 

products on a large scale. 

Cell breathing by TPC is a well-known concept in cellular networks [6, 7]. For instance, authors in [7] 

investigated a problem of minimizing total WCDMA pilot power subject to a coverage constraint. A 

WCDMA cell shrinks or expands according to the varying coverage rate, following the trade-off between 

power consumption and coverage. Comparatively, TPC of WLANs can only be found in a limited number 

of studies, although dense WLANs are showing up their application significance [8, 9]. A concept of resource 

on demand was proposed in [10] and demonstrated in [11], where redundant APs are powered off when they 

are detected to remain idle according to the volume and location of user demand. However, the idea of TPC 

beyond simple powering-on/off was only highlighted and not investigated in these studies [10, 11].  

Furthermore, empirical radio propagation or path loss model is seldom used in the coverage calculation, 

which is essential for TPC. Power management algorithms were proposed in [12] to control the coverage of 
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access points (APs). However, without using any path loss model, the authors assumed that the received 

power of a client is proportional to the transmission power of the connected AP. Analogously, a lack of 

proper path loss modeling is observed in [13]. While a TPC scheme was proposed, only a linear 

approximation was assumed between the AP transmission power and received signal strength of a client.  

The classical Boolean disk model is widely used to calculate coverage in WSN coverage related 

optimization problems [14, 15]. It is simple, only considering a circular area within which all grid points are 

covered. But its application to the IWALN coverage related optimization problems could drastically simplify 

the problem and degrade the optimal solution’s quality, since it ignores the obstacle shadowing effects and 

cannot calculate the exact received RF power of a GP in the target environment. This RF power is further 

linked to interference estimation, which is an indispensable concern for dense WLANs [16]. On the other 

hand, it is costly and time consuming to undertake a complete site survey, in order to capture the actual 

coverage and interference. As highlighted in [17], a combination of site survey and planning algorithm design 

is a good method to reduce the required measurements without compromising much the coverage prediction. 

While large-scale optimization is increasingly desired [18, 19], most research on coverage optimization 

problems neglects the scalability of an optimization algorithm [14, 20-23]. Large-scale problems are 

characterized in at least one of the following dimensions [24]. Firstly, the search space exponentially grows 

with the increasing number of decision variables. Secondly, the properties of the search space may change 

as the number of dimensions rises. Thirdly, the fitness evaluation is expensive. Fourthly, strong interaction 

exists between variables. Concerning a TPC problem, the factors that may make it large scale are illustrated 

as (1) the environment size, (2) the number of APs, (3) the number of coverage layers (or k-coverage), (4) 

the complexity of coverage calculation which is fundamentally based on a path loss model. To solve large-

scale optimization problems, metaheuristics are extensively recognized as effective approaches [25], among 

which a genetic algorithm (GA) is an important method [26, 27].  

This paper investigates a large-scale TPC problem for dense IWLANs. The contributions of this paper are 

threefold. (1) The proposed TPC model encompasses both transmit power calibration and powering-on/off 

mechanisms. An empirical one-slope path loss model is introduced for precise yet simple coverage 

calculation, including the three-dimensional (3D) obstacle loss which is prevalent in harsh industrial indoor 

environments. (2) An efficient GA, named GATPC, is proposed to solve this TPC model on a large scale. It 

leverages repair mechanism-based GA operators (including population initialization, crossover, and 

mutation), parallelism as well as dedicated speedup measures to achieve large-scale optimization. (3) The 

GATPC is both empirically validated in a small-scale real industrial indoor environment and extensively 

proved in numerical experiments regarding demonstration of effectiveness and scalability, sensitivity 

analysis, and benchmarking. 
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Table 1 

Nomenclature of the transmit power control model 

Symbol Meaning Symbol Meaning 

A Set of over-dimensioned access points p  
Transmit power calibration step (dB) of an access 

point 

ijd  Distance between the i-th grid point and the j-th access point p  Vector of transmit power levels of an access point 

maxjd  
Maximal radius distance the j-th access point can cover with 

its current transmit power jP  P  Set of transmit power levels 

G Total gain of a pair of transmitter and receiver jP  Transmit power level of the j-th access point 

gs Basic grid size to discretize an environment jP  Transmit power (dBm) of the j-th access point 

igp  The i-th grid point in an environment ijP  
Stable power received by the i-th grid point from the 

j-th access point at 99% of the time 

I Set of indices of grid points PL0 
Path loss (dB) at the location of 1 m away from a 

target access point 

ijI  Interference (dBm) of the i-th grid point that connects to the 

j-th access point 
( )ijPL d  

Path loss (dB) between i-th grid point and j-th access 

point 

maxijI  Maximal interference (dBm) of the i-th grid point that 

connects to the j-th access point 
Rx Wireless signal receiver 

J Set of indices of access points Tx Wireless signal transmitter 

onJ  Access points that are powered on THLD Threshold received power (dBm) of a client receiver 

offJ  Access points that are powered off xMin Minimal horizontal coordinate of an environment 

M 
Margin (dB) considering shadowing, fading, and 

interference 
xMax Maximal horizontal coordinate of an environment 

n Path loss exponent yMin Minimal vertical coordinate of an environment 

oN  Total number of dominant obstacles in an environment yMax Maximal vertical coordinate of an environment 

PN  
Total number of transmit power levels (excluding powering 

off) 
  Deviation between measurement and model 

ijOL  
Total obstacle loss (dB) between i-th grid point and j-th 

access point 
  Set of grid points in an environment 

kOL  
Obstacle loss (dB) of the k-th dominant obstacle in the 

environment 
  Percentage of grid points that must be covered by at 

least one access point 

P Set of transmit power (dBm) of an access point ij  
Local coverage variable for the i-th grid point and 

the j-th access point 

maxP  Maximal transmit power 
k

ij  
Logical signal blockage variable for the i-th grid 

point, j-th access point, and k-th dominant obstacle 

minP  Minimal transmit power ij   
Logical variable for connection between the i-th grid 

point and the j-th access point  

 

The rest of this paper is organized as follows. Sect. 2 mathematically formulates this TPC problem.          

Sect. 3 proposes the GATPC algorithm to solve this TPC model. Sect. 4 validates the GATPC in a small 

empty industrial environment. Sect. 5 performs numerical experiments, benchmarking, and sensitivity 

analysis of GATPC. Sect. 6 draws conclusions. 

 

2. Modeling of transmit power control problem 

The problem under investigation is optimal TPC of a dense WLAN in a metal-dominating industrial indoor 
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environment. This IWLAN is over-dimensioned such that redundant APs are planned to create double full 

coverage for staying robust against shadowing effects of dominant obstacles. As a result, it is unnecessary 

for all APs to always work at the maximal transmit power level, which produces heavy interference. 

Therefore, potential remains to minimize each AP’s transmit power, including powering off.  

A solution to this problem is denoted by .p  It is a vector of the transmit power levels of all over-

dimensioned APs (denoted as A), including the decision of powering off certain APs. Table 1 lists the 

nomenclature for this problem description. Sects. 2.1-2.5 will present the model of this problem in four 

aspects: environment modeling, transmit power setting of APs, path loss calculation, interference calculation, 

and objective function. Sect. 2.6 gives a brief example for this model. 

2.1 Environment 

A target rectangular environment is two-dimensional (2D), i.e., horizontal and vertical. It is represented by 

its two extreme 2D points (Fig. 1): (xMin, yMin) and (xMax, yMax). It is discretized into gs × gs small grids 

(Fig. 1), where gs is the grid size that is preset as an input of the model. A grid point (GP) is represented by 

the upper-left vertex of a grid, and denoted as igp , where i is a unique index for each GP. A lexicographical 

order is applied to all the GPs: 

 ( 0, 0) ( 1, 1) 0 1 0 1 0 1x y x y x x x x y y                     (1) 

where (x0, y0) and (x1, y1) are illustrated coordinates for two arbitrary different GPs. 

Consequently, a target environment is described by a set of ordered GPs denoted as  . The GP index i 

within   starts from one, corresponding to the extreme point (xMin, yMin) of this environment. It increases 

one by one until reaching  following the lexicographical order. Then the set of GPs is denoted by their 

index  1,2,...,I   . The following formula determines the size of  : 

   ( ) / ( ) /ceil xMax xMin gs ceil yMax yMin gs                   (2) 

A receiver (Rx) is placed on each GP except the ones where APs are placed. The received power in the 

downlink is considered to enable the calculation of an AP’s coverage. For an Rx, different physical bitrate 

requirements have different requirements on the lowest received power, named threshold (THLD). The 

quantified relation can be found in [1].  

The i-th GP is considered covered by the j-th AP, if an Rx on this GP connects to this AP and receives 

power values that are higher than or equal to the threshold during at least 99% of the time. This is formulated 

as follows: 
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1, if
, ,

0, otherwise

ij

ij

P THLD
i I j J


     


                     (3) 

where ij  is the logical coverage variable for the i-th GP and  j-th AP, and ijP  is the stable power (dBm) that 

an Rx on the i-th GP receives from the j-th AP at least 99% of the time. The coverage of an AP is represented 

by the GPs that are covered by this AP.  

2.2 Over-dimensioned access points 

In total, J  APs are over-dimensioned with a minimal separation distance in the environment, where J is 

the set of AP index which varies from one to the total number of APs ( A or p ), i.e., {1, 2, ..., }J A .  

In a TPC solution p , the APs are regrouped into a set of APs that are powered off ( offJ ) and a set of APs 

that are powered on with a certain power value ( onJ ): 

 on offJ J J                              (4) 

where the AP indices in onJ  and offJ  are still these in J .  

All APs have the same TPC range P (in dBm) and step p (in dB), i.e., 

 min min min max, , 2 , ...,P P P p P p P    . In total, there are PN  different transmit power values in P, except 

the possibility of powering off. Therefore, jP P  if onj J , where jP  is the transmit power of the j-th AP. 

jP  is not considered if the j-th AP is powered off   (Table 2). 

 

Table 2 

Mapping between physical power, power state, and the digital transmit power level of an access point 

Transmit power set P (dBm)  Power state Transmit power level set P  

- Off 0 

minP  On 1 

minP p   On 2 

min 2P p   On 3 

… On … 

maxP  On PN  

 

As indicated in Table 2, with the possibility of powering off, the TPC range P is discretized into P , which 

is a dimensionless set of all possible transmit power levels, i.e.,  0,1, 2, ..., PN . The discretized transmit 

power level of the j-th AP is denoted as  jP P . Specifically, the level zero stands for powering off. The 

level one represents the minimal transmit power level if an AP is powered on, and so on, until the maximal 
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transmit power level PN  if an AP is powered on. Consequently, the digital variable  jP j J  can be used 

to represent all the possible power states of an AP: powering off/on and if powering on, at which transmit 

power this AP works. 

2.3 Path loss 

In [7], the path loss model was simplified as a multiplier of transmit power. In [14, 15], the Boolean disk-

based path loss model only determined whether an Rx was within the circular coverage of a Tx. In the 

proposed TPC model, a one-slope path loss model considering metal obstacle shadowing loss along the 

propagation path is considered for accurate path loss calculation, which is the basis for calculating the 

received power of a Rx and interference. In total, there are ( 0)oN  dominant obstacles in the investigated 

environment. This path loss model is formulated as:  

10( ) 0 10 log ( )ij ij ijPL d PL n d OL                           (5) 

where PL0 (in dB) is the path loss at the distance of one meter, n is the path loss exponent which is a 

dimensionless parameter indicating the increase of path loss with the distance, ijd  is the distance (in m) 

between the Rx placed on the i-th GP and the j-th AP, 
ijOL  is the total obstacle loss (in dB) caused by the 

metal obstacles that block the line between the Rx placed on the i-th GP and the j-th AP, and  (in dB) is the 

deviation between the measurement and the model, which is attributable to shadowing. 

For an investigated environment, it assumes that the obstacle locations are fixed. The deviation   in         Eq. 

(5) follows a Gaussian distribution, with a mean of zero and a standard deviation . The gain and margin are 

considered in the link budget calculation to be more realistic, which was not taken into account in [7]. The 

total gain G (in dB) is the sum of the AP transmitter’s gain and the Rx’s gain. The margin M (in dB) is the 

sum of shadowing, fading and interference margin.  

The total obstacle loss between the Rx on the i-th GP and the j-th AP is calculated in the following two 

equations. Eq. (6) iterates all the dominant obstacles in the environment and accumulates the additional path 

loss caused by the obstacles that blocks in the line-of-sight radio propagation from the j-th AP to the Rx on 

the i-th GP. Eq. (7) defines the logical signal blockage variable .k

ij  If the k-th dominant obstacle has the 

shadowing effect on the line-of-sight radio propagation from the j-th AP to the Rx on the i-th GP, it equals 

one. Otherwise, it equals zero. The calculations defined by Eqs. (6, 7) are only limited to APs that are powered 

on. 

1
, , , {1, ..., }

oN k

ij ij k on ok
OL OL i I j J k N


                             (6) 
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1, if the -th metal blocks the line between

, , , {1, ..., }the -th GP and the -th AP

0, otherwise

k

ij on o

k

i I j J k Ni j




       



       (7) 

Furthermore, compared to most coverage-related optimization problems that only rely on a 2D environment 

[1, 14, 15, 17, 20, 21], an obstacle is modeled as a 3D geometrical model in the decision making of line-of-

sight propagation between a GP-AP pair (i.e., the logical signal blockage variable k

ij ). Both the j-th AP and 

the Rx placed on the i-th GP have their own heights. An obstacle has a 3D dimension of length × width × 

height. An obstacle blocks the line-of-sight propagation as long as part of it crosses the straight line between 

the top of the j-th AP and the top of the Rx on the i-th GP. A detailed discussion on the 3D obstacle loss 

calculation can be found in [28].  

If the j-th AP is powered on with the transmit power jP , the maximal radius distance this AP can cover (

maxjd ) can then be calculated, without considering the additional shadowing effects that may be caused by 

dominant obstacles. For an AP that is powered off, maxjd  is zero, indicating that it cannot cover any GP. This 

is formulated as follows: 

0

10

max
10 , , ,

0,

jP G M THD PL

n

on jj

off

i I j J P Pd

j J

    
  
 


      
  

           (8) 

2.4 Interference 

An inevitable goal of transmit power management for a dense WLAN is the interference among APs. While 

dedicated frequency planning is out of scope in this paper, it is assumed that non-overlapping channels are 

effectively allocated to the dense APs. If an Rx on the i-th GP connects to the j-th AP ( onj J ), the 

interference ( ijI , in dBm) to this Rx is then all the power this Rx can sense from the other APs that are 

powered on ( ' , 'onj J j j   ) [17, 29]. The interference calculated this way is also interpreted as noise [17]. 

If an AP is powered off, it is not considered by this calculation. This is formulated in the following two 

equations: 

'

10
10 ''

10 log 10 , , , ' , ' ,
ij

on

P

ij on jj J
I i I j j J j j P P


                    (9) 

( ), ,ij j ij onP P G M PL d i I j J                           (10) 
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The worst case is that all APs are powered on with the maximal transmit power

max( , , ).j on onP P j J J J     Then the maximal interference ( maxijI , in dBm) to an Rx can be calculated as 

follows: 

'

10
max 10 max'

10 log 10 , , , ' , ' ,
ij

on

P

ij on jj J
I i I j j J J j j P P


                 (11) 

2.5 Transmit power control 

The TPC model is minimization of normalized total interference (Sect. 2.4) under the constraint of wireless 

coverage (Sect. 2.3) of a metal-dominating industrial environment (Sect. 2.1) which is deployed with over-

dimensioned APs (Sect. 2.2). It is described in the following three formulae. 

max

10

1 1

10

1 1

10
: min 100% , , ,

10

GP ij ij

GP ij ij
j

N A I

i j

jN A Ip

i j

Objective p p i I j J



 



 

 
       
 
 

 

 
        (12) 

s. t.: 

1
1,

A

ijj
i I


                                      (13) 

1, if Rx on the -th GP connects to the -th AP
, ,

0, otherwise
ij

i j
i I j J


     


          (14) 

Eq. (12) sets the object of TPC as minimizing the normalized interference (in mW) in the whole over-

dimensioned network. The essential variable that is tunable for this optimization is the transmit power level 

of each AP ( ,jP j J  ) deployed in the environment. 

Eq. (13) sets the constraint that a percentage   of all the GPs must be covered by at least one AP, i.e., a 

coverage rate ( (0,1])   must be ensured in the target environment. 

A logical variable of AP connection ij is introduced in Eq. (14). If an Rx can sense multiple APs that are 

powered on, it connects to the one that achieves the highest received power at this Rx. If there are multiple 

APs that have the same highest received power at this Rx, the Rx randomly connects to one of these APs. An 

Rx can connect to at most one AP, while an AP can have multiple Rx that connect to it. While received power 

of a client plays a vital role in handover and AP association, further discussion on client-AP association 

mechanism is out of scope in this paper. 

Overall, the entire TPC model is mathematically formulated by Eqs. (1-14), and named the interference 

minimization based TPC model (IM-TPC). According to the definition of large-scale problems [24], the scale 

of a TPC model is influenced by (1) the size of a target industrial indoor environment (which is linked to the 
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number of APs), (2) the grid size (gs), (3) the number of dominant obstacles, and (4) .  The first factor 

determines the dimensionality of a search space and impacts the complexity of fitness evaluation. The second 

factor is associated to the density of a search space. The third factor defines the expense of path loss 

calculation and thereby fitness evaluation. The last factor controls the hardness of coverage constraint and 

also the interaction between transmit power levels of APs due to the planned redundancy. Therefore, a TPC 

model is considered as large-scale if the industrial indoor environment is large with a small gs, the presence 

of multiple dominant obstacles, and a high rate of .  

2.6 Illustrative example 

The TPC model is illustrated in a simple example (Fig. 1). A rectangular environment, defined by (xMin, 

yMin) and (xMax, yMax), is discretized into 9 × 6 = 54 grids, each of which is represented by its upper-left 

vertex (GP). A gs × gs grid is considered covered by an AP, if its GP is within the coverage radius of this AP 

which works at its current transmit power. Although 4 APs are deployed as redundancy for robustness, AP1 

is powered off and the other APs work below their maximal transmit power, in order to reduce interference 

while guaranteeing one full coverage layer ( 1  ). Therefore, the 3 APs that are powered on have their 

respective coverage radius: d2max, d3max, and d4max (without considering any obstacles). There are two clients: 

Rx1 and Rx2. While Rx1 connects to AP4 as it is only covered by AP4, Rx2 has to decide between AP2 and 

AP3. Due to the obstacle shadowing between AP2 and Rx2, Rx2 receives lower signal strength from AP2 

than from AP3. Rx2 thus connects to AP3. As a result of these AP associations, AP2 and AP3 produce 

interference to Rx1, while AP2 and AP4 cause interference to Rx2. As there are multiple transmit power 

  
 

Fig. 1.  Illustration of the transmit power calibration model: discretized environment with the presence of a dominant 

obstacle, transmit power minimization of over-dimensioned access points (APs) for only one full coverage layer, AP 

association of two client receivers (Rx), and interference (produced by all APs that are powered on and not connected to). 
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d4max

Rx1
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AP1 
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calibration solutions for one full coverage layer, the optimal solution has to be determined in terms of minimal 

interference. An optimization algorithm is needed for automatic decision making of the transmit power of 

each AP, when the TPC problem size increases and power calibration is frequently performed due to dynamic 

shadowing effects in harsh industrial indoor environments. 

 

3. Solution algorithm 

As an optimum rectangular grid coverage problem is NP-complete [30], metaheuristics are an effective 

technique to solve this type of problem. As a well-known metaheuristic, a GA gives a near-optimum solution 

for a NP-complete combinatorial problem within a reasonable time [31, 32]. This characteristic complies 

with the objective of the investigated TPC problem to fast obtain a high-quality solution without necessarily 

requiring the real optimum. Therefore, a GA is used for this TPC problem.  

The design of this GA follows the objective of simultaneously minimizing memory usage and CPU time 

for solving a large-scale TPC model. This GA based TPC algorithm is named GATPC. Given that the GATPC 

checks the coverage of a GP by iterating all APs that can potentially cover this GP, the following definitions 

are made to facilitate the presentation of GATPC in the subsections. 

Definition 1: covered GPs refer to a set of GPs that are covered by at least one AP. 

Definition 2: uncovered GPs represent a set of GPs that are not yet covered by any AP with the current 

TPC solution .p  

Definition 3: new covered GPs of a given AP stand for a subset of uncovered GPs that can be covered by 

this AP at its current transmit power level. 

Definition 4: a GP-AP link shows that the investigated GP can be covered by the investigated AP at its 

maximal transmit power level. It thus shows an AP’s potential to cover a GP. 

Definition 5: the nearest potential AP of an uncovered GP is the AP that is the nearest to this GP among 

all the APs that have GP-AP links with this GP. 

3.1 Solution encoding and fitness evaluation 

As introduced in Sect. 2, a TPC solution is p , a vector containing p  discretized AP transmit power levels, 

including powering off (Table 2). The index of a value in p  corresponds to the index of the AP that is over-

dimensioned in the environment. The list of over-dimensioned APs is sorted by applying the lexicographical 

order (Eq. (1)) to the GPs on which these APs are placed. Therefore, the j-th value in p  corresponds to the 

transmit power level of the j-th AP. Fig. 2 illustrates an example of encoding and decoding p  in this manner. 
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This encoding scheme has two advantages. The first is to facilitate the definition of crossover and mutation 

operations, which will be described in Sect. 3.3 and Sect. 3.4, respectively. The second advantage is efficient 

memory utilization. As each scalar in p  can be represented only by a 32-bit integer, little encoding memory 

is needed even for evolutionary optimization of a large-scale TPC problem. For instance, 1000 TPC solutions 

for 100 APs only occupy 0.38 MB. 

The fitness of a TPC solution is normalized interference defined by Eq. (12). The entire TPC model        

(Sect. 2) is needed for this calculation. Therefore, the evolution of population in a GA will autonomously 

reduce the interference, which is the objective of TPC. 

3.2 Population initialization  

It is not obliged to generate all qualified initial individuals, since unqualified individuals will be either 

eliminated by the population evolution or improved by the crossover and mutation operations. However, any 

generation of unqualified individuals will produce computation redundancy to the GA search and thus reduce 

the optimization efficiency. Especially for evolutionary optimization of a large-scale TPC problem, the 

computation time to get an acceptable solution is quite sensitive to computation redundancy. Hence, the 

proposed initial population generation algorithm aims to produce 100% qualified initial individuals. 

 

   = (8, 0, 3, 5)

AP4

AP3AP2 (off)

d1max

d4max

d3max

AP1
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x
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Fig. 2.  Example of transmit power calibration solution encoding and decoding. A solution is denoted by a vector p  that 

indicates an access point (AP) and its transmit power level by its element index and element value, respectively. As a result 

of this ,p  the relationship among coverage radiuses of all APs are: d1max > d4max > d3max, while AP2 is powered off. 

  

Algorithm 1 Generation of a random TPC solution (RTPC) 

Input: none 

Output: a qualified random TPC solution p  satisfying the coverage constraint defined by Eq. (13) 

1.    p  A  random numbers ;P  

2.    ( );p repair p   
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Algorithm 1 describes a two-step sequential method to randomly produce a qualified individual. Step 1 

(line 1) randomly generates a TPC solution without considering the coverage constraint defined by Eq. (13). 

Step 2 (lines 2) checks and ensures the random solution’s satisfaction of coverage constraint by potentially 

raising the transmit power of selected APs to the minimal degree. To this end, a procedure for qualification 

check and potential repair is proposed in Algorithm 2. 

At the start of Algorithm 2, the GPs’ coverage information is updated by setting APs with these input 

transmit power levels (line 1). If the required coverage rate is not yet achieved (line 2), this random TPC 

solution will be corrected (lines 3-22). The idea of repair is to iteratively cover the uncovered GPs using the 

potential APs (whose current transmit power is below the maximal level) while maintaining the increase in 

transmit power as slight as possible (to comply with interference minimization). At the first step of correction 

(lines 3-9), uncovered GPs are all found and their GP-AP links are all established. The second step of 

correction (lines 10-22) is an iteration. In each iteration, a GP is randomly selected from uncovered GPs and 

its nearest potential AP is found (line 11). The rationale behind the random selection is to increase the 

diversity of population and prevent premature convergence. In a minor case where a randomly selected GP 

is shadowed by an obstacle such that it cannot be covered by any AP, this GP is removed from uncovered 

Algorithm 2 Repair of an unqualified TPC solution 

Input: a TPC solution p without knowing its qualification 

Output: a qualified TPC solution p  satisfying the coverage constraint defined by Eq. (13)  

1.    covered GPs   new covered GPs of APs A  with ;p  

2.    if (|covered GPs| <   ) 

3.        uncovered GPs  ;  

4.        remove covered GPs from uncovered GPs; 

5.        for j 1: A   

6.            if ( ( )p j < 
PN ) 

7.                set up GP-AP links between uncovered GPs and AP(j) ;A  

8.            end if 

9.        end for  

10.      while (uncovered GPs ≠ Ø && |covered GPs| <   )         

11.          find nearest potential AP of a random GP uncovered GPs; 

12.          if (nearest potential AP == Ø) 

13.              remove this random GP from uncovered GPs; 

14.          else 

15.              assign nearest potential AP with the minimal transmit power level that can cover this random GP; 

16.              remove new covered GPs of nearest potential AP from uncovered GPs; 

17.              covered GPs  new covered GPs   covered GPs 

18.              if (transmit power level of nearest potential AP ==
PN ) 

19.                  remove GP-AP links between nearest potential AP and all the related GPs in uncovered GPs; 

20.              end if 

21.          end if 

22.      end while 

22.   end if 
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GPs (lines 12-13). Otherwise, the transmit power of nearest potential AP is set to the minimal level that can 

cover this random uncovered GP (line 15), followed by updating GP coverage information and GP-AP links 

(lines 16-20). Fig. 3 further presents an example to iteratively correct an unqualified solution (lines 3-22, 

Algorithm 2).  

To produce the entire initial population, Algorithm 1 is iterated for a number of times equal to the size of 

population. As it is extremely hard to produce even a qualified solution for this TPC problem, Algorithm 1 

also serves as a random TPC solution generation algorithm (named RTPC) for benchmarking. 

3.3 Selection and crossover 

Parent solutions are selected using roulette wheel selection for a crossover operation. A crossover operation 

enables two parent solutions to breed two new child solutions by swapping the parents’ genes. A one-point 

crossover is realized in GATPC using two steps. Step 1 (lines 1-4, Algorithm 3) exchanges partial 

Algorithm 3 Crossover for GATPC 

Input: two selected parent TPC solutions parent1 and parent2 

Output: two offspring TPC solutions offspring1 and offspring2 

1.    loci a randomly selected index of parent1; 

2.    divide parent1 and parent2 into two parts along this random loci, respectively 

3.    offspring1  1st part of parent1 + 2nd part of parent2; 

4.    offspring2 1st part of parent2+ 2nd part of parent1; 

5.    for indiv  { offspring1, offspring2} 

6.         indiv   repair(indiv) using Algorithm 2 

7.    end for 

 

 

 

 
Fig. 3.  Example of iterative correction of an unqualified transmit power calibration solution. (a) 7 grids are uncovered by 

any APs. One grid is randomly selected (dark grey) and then AP3 is selected from the 4 APs as it is the closest to this 

random uncovered grid. (b) 1 grid remains uncovered after AP3 is set by the minimal transmit power that can cover this 

random uncovered grid (a grid is represented by its upper-left vertex). Another iterative correction is thereby needed to fully 

cover the entire environment. 
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chromosomes of two parent solutions around a randomly selected loci. Fig.4 illustrates this one-point 

crossover operation. It is simple and intuitive due to the encoding scheme (Sect. 3.2) and lexicographical 

ordering of all APs in Eq. (1). Step 3 (lines 5-7 in Algorithm 3) first checks whether each child solution 

achieves full coverage. If the coverage rate, required by Eq. (13), is not yet achieved, the uncovered GPs will 

be addressed one by one with their nearest potential APs. This potential correction of an unqualified solution 

follows the repair procedure described in Algorithm 2. 

3.4 Mutation 

A GA is known as a global optimization algorithm. A mutation operation plays a vital role to this end. The 

mutation of GATPC is defined by Algorithm 4, comprising two steps. Step 1 (lines 1-5) powers off one AP 

that already reaches the highest transmit power level, i.e., without potential to increase transmit power any 

more. This aims to increase the diversity in the solution space and presents the GA search from being trapped 

a local optimum. A new individual is then created at the end of step 1. Step 2 (line 6 in Algorithm 4) also 

employs the repair mechanism (Algorithm 2). It corrects the new individual produced by the former step 1 

with the “best effort”, if the environment cannot be covered at the required coverage rate at the end of           

step 1. 

Algorithm 4 Mutation for GATPC 

 Input: an offspring TPC solution output by crossover and selected for mutation 

Output: a new TPC solution 

1.    selectedAPs   AP(s) in the input individual that reach(es) the highest transmit power level ( );PN  

2.    if ( 1selectedAPs  ) 

3.        selectedAP a random AP in selectedAPs; 

4.    end if 

5.    new p   power off selectedAP; 

6.    ( )p repair p using Algorithm 2 

 

 

 
Fig. 4.  Example of one-point crossover of two parent transmit power calibration solutions, which exchange a segment of 

transmit power levels in vector .p The offspring would need to be corrected. 
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3.5 Parallel genetic algorithm 

The efficiency of a GA search is sensitive to a large-scale optimization. A conventional GA structure can 

be found in [31]. The fundamental GA operations include: (1) population initialization, where a fixed size of 

individual solutions are generated in a random manner; (2) crossover, which swaps part of genes of two 

chromosomes (i.e., individual solutions); (3) mutation, which swaps genes (i.e., part of a solution) of a 
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Fig. 5. Flowchart of the proposed parallel genetic algorithm 
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chromosome; and (4) elitism, which remains a fixed size of the best individuals in a generation to the child 

generation. 

All the aforementioned and fitness calculation of all individuals in a generation exhibit a common 

characteristic for applying “map-and-reduce” [33] or “divide-and-conquer” [15, 34, 35] parallel computation 

strategy: each GA operation contains multiple independent sub-operations of the same type and with different 

individuals. Therefore, the sub-operations can be conducted in parallel, such as by multithreads of a processor 

[36]. The results of sub-operations are then collected one by one at the end of each sub-operation. As a result, 

the GA search gains speedup as multithreads physically work in parallel in different cores of a processor. 

Fig. 5 demonstrates the procedure of the proposed parallel GA for solving a large-scale TPC problem. 

Generally, parallelism is performed on all genetic operations that use Algorithm 2 to check and repair 

unqualified solutions: initialization (Algorithm 1), crossover (Algorithm 3), and mutation (Algorithm 4). The 

number of parallel operations depends on the peculiarity of a genetic operation type. In initialization, the 

random generation of Npopulation solutions are all independent. Npopulation RTPC (Algorithm 1) instances are 

thereby parallelized. To release the parallelism potential of crossover and mutation, both types of operations 

are performed based on a population instead of conventionally two solutions and one solution, respectively. 

For a generation, the numbers of parallel crossover and mutation are ceil[(Npopulation-Nelites)/2] and 

ceil[(Npopulation -Nelites)· ratemutation], respectively. Moreover, Npopulation fitness evaluations are parallelized at 

the end of a generation.  

A special attention should be paid to the parallelism of multiple crossover operations. Normally, two 

individuals should be selected from the entire population for one crossover operation, in order to ensure that 

the better individuals have higher probability to be involved in breeding the child generation. As all the 

parallelized crossover operations should simultaneously have full access to the entire generation, 

ceil[(Npopulation-Nelites)/2] population pools are created at the start of parallel crossover (Fig. 5). Each 

population pool is a copy of an entire population. 

3.6 Additional speedup measures 

As aforementioned, the design of GATPC in the former subsections follows the idea of decreasing 

computation time and memory, to enable large-scale optimization of TPC. The following measures are 

further taken to speed up the GATPC by reducing the computation redundancy. 

An AP’s maximal coverage distance max( , )jd j J  is extensively calculated by Algorithms 1-3. To 

speedup, maxjd  is calculated by Eq. (8) before the actual start of a GA search. In total, pN  different maxjd

values are pre-calculated according to pN  different AP transmit power values of an AP, and stored as a 
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constant vector. All the maxjd -related calculation during the GA search process will then simply look up to 

this vector, instead of repeating the path loss calculation millions of times. 

GP-AP links of all APs are very frequently established or removed in the correction procedure of 

Algorithms 1-3, which requires an extensive iteration of all possible GP-AP pairs ( A   in the worst case). 

This certainly becomes a tedious and time-consuming operation for a large environment that has more than 

10,000 GPs as well as at least dozens or hundreds of APs. The corresponding speedup measure consists of 

the following four sequential steps. (1) For the j-th AP, search in the aforementioned 
maxjd vector for its 

maximal coverage distance corresponding to the current transmit power level. (2) Set up a 
maxjd × 

maxjd  

rectangular region that is centered at the j-th AP. (3) Iterate the GPs within this rectangular area and set up 

GP-AP links of the j-th AP. (4) Iterate all APs and conduct steps (1-3) in each iteration. The obtained speedup 

is especially significant for a large environment, since the area to set up GP-AP links is substantially reduced 

from the entire environment to the 
maxjd × 

maxjd  small square. 

Besides, Algorithms 1-3 frequently judge whether an obstacle shadows the signal between the j-th AP and 

an Rx on the i-th GP, and then calculate the accumulated obstacle loss, i.e., Eq. (6, 7). The speedup measure 

is inspired from the fact that, for a certain GA search, all the obstacles and APs are static in terms of quantity 

and location. Consequently, the signal blockage between the i-th GP and the j-th AP can be judged before 

the GA search, and the corresponding obstacle loss (including zero loss) can be pre-stored in a table. The GA 

search will then only need to enquire the pre-stored table of obstacle loss by inputting the indexes of GP and 

AP, instead of on-the-fly judgment. 

Last but not least, Algorithms 1-3 extremely frequently judge whether a GP is covered by an AP at its 

current transmit power level, i.e., Eq. (3). Thereby, the path loss calculation considering the shadowing 

effects of dominant obstacles should extensively be performed. As a speedup measure, Eq. (3) is implemented 

in the following sequential steps for the i-th GP and the j-th AP. (1) Look up to the aforementioned 
maxjd

vector for the corresponding 
maxjd of the j-th AP. (2) Set up a 

maxjd ×
maxjd  square that is centered at the j-th 

AP. (3) Calculate the path loss between the j-th AP and the i-th GP, without considering the shadowing 

effects. (4) Look up to the aforementioned obstacle loss table, and add the obstacle loss to the path loss that 

is obtained in step (3), and get the final path loss value. (5) Obtain 
ijP  with the final path loss value and judge 

whether it is above the preset sensitivity threshold. 
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4. Experiment validation 

 The TPC model and the GATPC algorithm were validated in a small open industrial environment (10 m 

×   10 m) in the factory hall of a manufacturer of automated guided vehicles, in Flanders, Belgium. 

4.1 Configurations 

A measurement control system [1] accommodating the GATPC and four Siemens® industrial APs 

(Scalance W788-2 M12) with individual power supply (Fig. 6a) were used.  

More specifically, an AP has two radio ports (Fig. 6a). One was configured for measurements at 2.4 GHz 

and the other was configured for remote control at 5 GHz, such that the interference between measurements 

and control is mitigated. For an AP, 44 dB attenuation was added to each of the three ports of the measurement 

radio, to mimic a larger environment needing four APs for double full coverage. Individual power supply 

plus an extension power cable was applied to every AP, to enable deployment without the distance limitation. 

The remote AP control was realized by SSH (secure shell). The central PC thus sent control wireless 

commands to an AP, such as setting the transmit power and powering on/off a radio. 

 The four APs were over-dimensioned on the boundary of the environment, such that each side was placed 

with one AP and double full coverage was planned [1]. The AP locations are indicated in Table 3, of which 

the coordinates are these used by the localization system of an automated guided vehicle. 

The coverage measurement facilities that were used have been introduced in [1] in detail. They mainly 

include a measurement control software system, two Zotac® mini-PCs as two individual wireless clients, four  

 
Fig. 6.  Experimental facilities, including a measurement control computer system, four commercial off-the-shelf industrial 

access points, an automated guided vehicle (AGV) with a wireless client, and a mobile robot with a wireless client. 
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Table 3 

Configurations of the measurement campaign 

AP transmit power range with attenuation -39:1:-27 dBm 
WLAN standard IEEE 802.11n 
AP working frequency band 2.4 GHz 
AP remote control frequency band 5 GHz 
AP height 2 m 
AP1 location (8, 40) m 
AP2 location (14, 31) m 
AP3 location (6, 35) m 
AP4 location (16, 36) m 
Required physical bitrate of a wireless client 24 Mbps 
Required receiving sensitivity -79 dBm 
Mobility speed of the automated guided 
vehicle and robot 

20 cm/s 

Grid size for coverage monitoring 1 m 
Shadowing margin (95%) 1 dB 
Fading margin (99%) 0 dB
Interference margin 0 dB 
GATPC stop criterion 30 iterations

 

poles with tripods to support the APs at the height of 2 m (Fig. 6a), an automated guided vehicles as a 

controllable mobile vehicle which carries one client on the top (Fig. 6b), a w-iLab.t mobile robot [37] which 

carries the other client on the top (Fig. 6c).  

Instead of manual measurements, the two clients automatically kept on moving around in the environment 

and measuring the coverage of the AP that they connected to, and fed the collected samples back to the central 

PC for monitoring. These samples were stored in database of the measurement control system. Samples from 

the same AP and within the same spatial grid were further aggregated to one value (dBm) to enable stable 

coverage monitoring (Sect. 2.1). For the minority of grids that might contain no sample, interpolation [1, 38] 

was applied based on the surrounding samples. Table 3 lists the key measurement configurations. 

 
(a) Solution suggested by GATPC  (b) Coverage monitored by two robots 

 
Fig. 7.  Transmit power control solution given by the GATPC algorithm (Fig. 7a) and actual coverage monitored by an 
automated guided vehicle and a mobile robot which carry wireless clients (Fig. 7b). The simulated and measured coverage 
maps are highly matched. 
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In total, 3745 RF power samples were collected. Regression [3] was applied to these data to build an 

empirical path loss model formulated by Eq. (5), where PL0 was 39.87, n was 1.78, and the obstacle loss 

( , )ijOL i I j J    was zero dB due to the empty environment. The R-squared value was 97.38%, indicating 

that the path loss model was highly fitted to the samples.  

4.2 Validation results 

The TPC solution given by the GATPC algorithm is illustrated by Fig. 7a. AP1 and AP2 are powered on 

at -36 dBm and -27 dBm, respectively. AP3 and AP4 are both powered off. The colored GPs (grid points) 

represent the highest received RF power from the existing APs. All the received RF power values are above 

the required lowest sensitivity (-79 dBm, Table 3), indicating one full coverage layer in the environment. In 

a conventional full power-on scheme, all the four APs are simply powered on with the maximal transmit 

power (-27 dBm). In comparison, in the obtained TPC solution, AP1 decreases the transmit power to -36 

dBm, and AP3 and AP4 are powered off. 

The power states and transmit power levels of the four deployed APs were then set according to this optimal 

TPC solution. The coverage was monitored. As visualized in Fig. 7b, the received RF power values vary 

between -60.4 dBm and -78.8 dBm. They are above the threshold sensitivity (-79 dBm, Table 3), 

demonstrating that the environment is fully covered. Therefore, the solution given by GATPC are effective 

to satisfy the major constraint (i.e., coverage, Eq. (13)) of the TPC model. 

 

 

 
   (a) Solution suggested by GATPC (b) Coverage monitored by two robots 

 

Fig. 8.  The two industrial indoor environments for numerical experiments: a factory hall of an automated guided vehicle 

(AGV) and a warehouse of a car manufacturer. Both environments are placed with metal racks, which creates a challenge 

for radio propagation or robust wireless connection.  
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5. Numerical experiments 

Numerical experiments were further conducted on the proposed GATPC algorithm. A 64-bit Win7 PC was 

used, with an Intel i5-3470 CPU and an 8 GB RAM.  

5.1 Configurations 

The two investigated industrial indoor environments are a factory hall of an automated guided vehicle 

manufacturer and a warehouse of a car manufacturer, both located in Flanders, Belgium. 

The automated guided vehicle factory hall (Fig. 8a) measures 102 m × 24 m. It represents a small-scale 

industrial indoor environment. It is placed with metal racks for component storage. Vehicles of varying sizes 

are usually placed and waiting for integration, maintenance, or shipment. Wide WiFi coverage is needed for 

 

Table 4 

Configurations of the numerical experiments 

Path Loss Model 

PL0 39.87 dB 

n 1.78 

Shadowing margin (95%) 7 dB 

Fading margin (99%) 5 dB 

Interference margin 0 dB 

Access Point (AP) 

Height 2 m 

Gain 3 dB 

WiFi standard IEEE 802.11n 

Transmit power range {-5:1:7} dBm 

Locations Output by over-dimensioning 

Numbre of APs 
4 (small-scale environment) 

75 (large-scale environment) 

Wireless Client 

Height  1.4 m 

Gain 2.15 dB 

Required physical bitrate 54 Mbps 

Required minimal sensitivity  -68 dBm 

Environment 

Factory hall 
Size (small scale)  2448 m2 (102 m × 24 m) 

Grid point number 2600 

Warehouse 
Size (large scale) 83,000 m2 (415 m × 200 m) 

Grid point number 83,616 

Grid size (gs) 1 m  

Radio frequency 2.4 GHz 

Antenna type Omnidirectional 

Metal rack size 20 m × 3 m × 9 m 

Path loss caused by one metal rack 7.37 dB 

GATPC algorithm 

Population size 60 (small-scale environment), 100 (large-scale environment) 

Elitism rate 4% 

Crossover rate 70% 

Mutation rate 40% 

Stop criterion 50 iterations 
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vehicle communication and Internet access of the workers’ laptops. 

The warehouse (Fig. 8b) measures 415 m × 200 m. It represents a large-scale industrial indoor environment. 

It is placed with metal racks at a height of nine meters. These racks are filled with wooden boxes that contains 

metal components. Wide WiFi coverage is required to support voice picking. Human pickers are equipped 

with microphones and earphones. They communicate with the control center via WLANs, to pick up from 

and place a stuff to a specific location. 

For the TPC model, a metal rack in both cases is an obstacle that potentially causes evident shadowing 

effects to radio propagation. In the following numerical experiments, an obstacle measures 20 m × 3 m × 9 

m. It can be placed either horizontally (i.e., the length side is parallel to the length side of the environment)  

or vertically (i.e., the length side is parallel to the width side of the environment). The direction and location 

of an obstacle are randomly generated by following a uniform distribution, while the entire part of a rack 

must be enclosed in the environment. The number of racks is an input of the TPC model. The GPs occupied 

by obstacles are not considered in the path loss calculation. 

The network parameters are summarized in Table 4, including the path loss model, AP Tx, Rx, and 

environment. APs deployed by using the over-dimensioned algorithm such that two full coverage layers are 

created in the target environment [1]. Each AP has 14 different transmit power levels, including powering 

off. 

As pointed out in [15], the grid size (gs) influences the computational accuracy of coverage, gs should be 

as small as possible without significantly compromising the computational complexity. Consequently, gs is 

set as one meter, which is within 10 wave length (1.2 m). This means that the path loss within this distance 

can be considered as constant without sacrificing the precision of path loss calculation. The two parameters 

PL0 and n of the one-slope path loss model are same as these in Sect. 4. The path loss caused by a metal rack 

(7.37 dB) is the mean of measured path loss samples. The GA parameters are shown in Table 4. The stop 

criterion is 50 iterations, during which the GA was found to usually stagnate.  

Compared with the two environment sizes (68 m × 59 m and 12 m × 67 m) and around 30 APs involved in 

large-scale WLAN design in [17], our investigated two environments, especially the warehouse environment, 

show their hyper-large property for optimization. 

5.2 Effectiveness in empty environments 

The GATPC was first performed in the small-scale and large-scale environments without any presence of 

metal obstacles while one full coverage layer was guaranteed ( 1).   Two other transmit power management 

schemes were used for benchmarking. One is the RTPC scheme (Algorithm 1). The other is the full power-

on scheme, where all APs are powered on with maximal transmit power, i.e., no TPC is deployed.  
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5.2.1 Small-scale empty environment with full coverage 

Overall, the GATPC is demonstrated to have notable superiority over the two benchmark schemes, in terms 

of reducing transmit power of wireless nodes and minimizing total interference in the network. More detailed 

results will be described as follows. 

The GATPC significantly decreases the coverage of two APs while ensuring one full coverage layer in the 

environment. The transmit power of the four over-dimensioned APs is -4 dBm, 6 dBm, -3 dBm and 7 dBm, 

respectively, from the left to the right of Fig. 9a. In contrast, the RTPC exhibits very limited performance in 

reducing the redundant transmit power. Its coverage map (Fig. 9b) is close to that of the full power-on scheme 

(Fig. 9c). Its suggested transmit power is 6 dBm, 6 dBm, 6 dBm and 5 dBm, respectively.  

As indicated in Table 5, the GATPC evidently reduces the total interference (-32.04 dBm). In comparison, 

the RTPC shows limited capacity in mitigating interference. Its interference level (-24.95 dBm) is close to 

that produced by the worst case (-23.83 dBm in full power-on scheme). 

Besides, the runtime of GATPC is short (64 sec, Table 6). The RTPC has nearly zero runtime  (Table 5), 

since optimization is not involved and the environment is small. 

 

 
(a) GATPC 

 
(b) RTPC  

 
(c) Full power-on 

Fig. 9.  Three transmit power control schemes for an empty small-scale environment. The proposed GATPC algorithm is 

notably superior in reducing the transmit power or coverage of over-dimensioned wireless nodes while ensuring full 

coverage in the environment. 

  



 25 

5.2.2 Large-Scale Empty Environment with Full Coverage 

The GATPC exhibits superior interference minimization performance in the large-scale empty 

environment. It achieves an interference level of -9.71 dBm in comparison to -9.29 dBm in the RTPC scheme 

and -7.02 dBm in the full power-on scheme (Table 5). 

The GATPC is effective in AP transmit power reduction (Fig. 10). Besides the four powered-off APs, most 

of the powered-on APs are set by a transmit power level that is lower than the maximum (7 dBm, Table 4), 

and many are even set by a level which is very close or equal to the minimum (-5 dBm, Table 4). 

The GATPC’s runtime obviously increases (102,841 sec or about 28.5 h, Table 6) compared with that in a  

 

 

Table 5 Interference of different transmit power control (TPC) schemes and runtime of RTPC 

Environment type Small empty Small obstructed Large empty Large obstructed 

GATPC Interference (dBm) -32.04 -26.59 -9.71 -10.02 

RTPC 
Interference (dBm) -24.95 -24.97 -9.29 -9.56 

Runtime (s) 0 0 103 131 

Full power-on Interference (dBm) -23.83 -24.04 -7.02 -7.52 

 

Table 6 Speedup performance of the GATPC algorithm using high performance computing (HPC) 

Runtime Small empty Small obstructed Large empty Large obstructed 

With HPC (s) 64 73 102,841 167,504 

Without HPC (s) 94 172 3,866,700 4,670,300 

Reduction rate (%) 31.9 57.6 97.3 96.4 

Speedup times 0.5 1.4 37.6 27.9 

 

 

Fig. 10.  Transmit power control solution suggested by the GATPC algorithm for an empty large-scale environment. Among 

the 75 over-dimensioned APs, 4 are powered off and most are set by transmit power lower than the maximum, while still 

having full coverage. 
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small-scale empty environment (64 s, Table 6). This is explained by the 34 times larger area and the 

consequently 603 times more AP-GP pairs in the large-scale environment. 

 

5.3 Effectiveness in Obstructed Environments 

The GATPC was then performed in these small-scale and large-scale environments which are obstructed 

while one full coverage layer is still guaranteed ( 1).   To mimic the shadowing effects in industrial indoor 

environments, one metal rack (Table 4) was placed in the small-scale environment and ten in the large-scale 

environment with a 100% qualification rate. The two aforementioned benchmark schemes were also used to 

measure GATPC’s performance. 

 

5.3.1 Small-Scale Obstructed Environment  

The GATPC obviously demonstrates superior TPC effectiveness in the small-scale obstructed 

environment. According to its output solution, it not only powers off one of the four APs, but also decreases 

the other two’s transmit power (0 dBm and 6 dBm) while keeping the fourth one at the maximum (Fig. 11a). 

 
(a) GATPC 

 
(b) RTPC  

 
(c) Full power-on 

Fig. 11.  Three transmit power control schemes for a small-scale environment placed with a metal rack. The proposed 

GATPC algorithm is evidently superior in reducing the transmit power or coverage of over-dimensioned wireless nodes 

while ensuring full coverage in the environment. 
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In contrast, the RTPC scheme exhibits little capacity to reduce the transmit power. Its output TPC solution 

(Fig. 11b) is quite close to that of the full power-on scheme (Fig. 11c). 

The GATPC also shows up as the best in interference mitigation in the small-scale obstructed environment. 

It suppresses the inference down to -26.59 dBm (Table 5). This is lower than -24.97 dBm in the RTPC scheme 

and -24.04 dBm in the full power-on scheme (Table 5). 

GATPC’s runtime is short (73 s, Table 6), due to the small scale of the investigated environment. It slightly 

increases compared to that in the small-scale empty environment. This is because of the additional obstacle 

loss calculation (Eqs. (6-7)), though the GPs taken up by the metal rack are excluded in the interference 

calculation. For the same two reasons (Sect. 5.2.1), the RTPC scheme has almost zero runtime. 

5.3.2 Large-Scale Obstructed Environment 

The GATPC also exhibits superiority in interference mitigation in the large-scale obstructed environment. 

It achieves a total interference level of -10.02 dBm, while the RTPC and full power-on schemes produce 

interference of -9.56 dBm and -7.52 dBm, respectively (Table 5). 

The effectiveness of GATPC in TPC is further demonstrated in Fig. 12, which presents the corresponding 

coverage map. One AP is powered off and three APs are powered on with the minimal transmit power of -5 

dBm. Among the APs that are powered on, many have transmit power levels that are lowered close to the 

minimum.  

For the same two reasons explained in Sect. 5.2.2, the runtime of the GATPC rises to 167,504 s compared 

to 73 s in the small-scale obstructed environment (Table 6). Due to the additional obstacle loss calculation, 

it is also larger than that in the large-scale empty environment (102,841 s, Table 6). 

 

Fig. 12.  Transmit power control solution suggested by the GATPC algorithm for an obstructed large-scale environment (the 

10 while rectangles represent 10 randomly placed metal racks). Besides one AP that is powered off, many of the rest APs 

reduce their transmit power close to the minimum, while still ensuring full coverage. 
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5.4 Effectiveness in Speedup 

To further benchmark the GATPC’s speedup performance, a derived version was used. It is the GATPC 

without high performance computing (HPC), including the parallel processing (Sect. 3.5) and speedup 

measures (Sect. 3.6). As it turned out to be very time-consuming to obtain an optimal solution in the large-

scale environment (at the unit of months), the following means was taken to gauge its runtime. 

First, the runtime to generate one random solution in the initial population was measured (at the scale of 

thousands of seconds). It was then multiplied by the population size to get the total runtime for population 

initialization. This derived GATPC version was rerun by enabling HPC in population initialization (Sect. 

3.2) and followed by population evolution (Sects. 3.3 & 3.4) without HPC. Once the population went through 

one evolution and its corresponding runtime was got (at the scale of ten thousands of seconds), this algorithm 

stopped and this runtime was multiplied by the number of evolutions to obtain the runtime for evaluating the 

entire population. Finally, the estimated overall runtime was the sum of the runtime for the population 

initialization and that for the population evolutions. 

The GATPC with HPC demonstrates significant speedup performance, as presented in Table 6. In the 

small-scale environment, its speedup times stay around one. The runtime of both algorithms are acceptable. 

However, in the large-scale environment, the speedup times boost to around 30. This makes it feasible to run 

the GATPC algorithm in a dramatically-reduced time horizon (1 - 2 days), in contrast to the infeasible runtime 

of the version with HPC. Given that a factory’s major layout cannot change too frequently, this optimized 

runtime is acceptable from the perspective of adapting TPC to a factory layout while minimizing the network 

interference. 

5.5 Sensitivity of Qualification Rate  

As the “best effort” philosophy (Sects. 3.2-3.4) is applied in the GATPC algorithm, the qualification rate  

 

Fig. 13.  Transmit power control (TPC) qualification rate to satisfy the required coverage rate in a metal-dominating 

environment. For each coverage rate, the rack location iterates over all the possible grid points with horizontal and vertical 

placement direction. As shown, 90% coverage can be guaranteed by the GATPC algorithm in more than 95% shadowing 

cases. 
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is investigated. This rate means the probability for this algorithm to intrinsically satisfy the TPC model’s 

fundamental constraint (i.e., coverage, Eq. (13)) when all APs are powered on with the maximal transmit 

power. During this experiment, the correspondent interference was calculated each time when one metal rack 

was shifted to a different GP in the small-scale environment. This calculation was iterated over all the 

possible GPs. Consequently, the relationship between this qualification rate and the required coverage rate 

was captured. 

As depicted in Fig. 13, 90% coverage can be guaranteed in more than 95% shadowing cases, demonstrating 

the GATPC’s effectiveness in a general obstructed environment. The qualification rate is insensitive to the 

placement direction of a metal rack. It achieves as high as 96.5% at the coverage rate of 90%. It gradually 

decreases with the rising coverage rate, and finally drops to 8.1% in the case of full coverage. This decrease 

is explained by some specific rack locations on which a rack shadows all the potential over-dimensioned APs 

for some specific GPs. If a coverage level higher than 90% is desired for 95% shadowing cases, this 

improvement would rely on the over-dimensioning algorithm, instead of the TPC algorithm. 

5.6 Sensitivity of Interference  

The correlation between the interference and required coverage rate was further investigated under a 

varying number of metal racks placed in the small-scale environment. For each configuration, 30 independent 

runs were conducted and the average interference was collected, in order to get representative optimization 

results. 

As indicated in Fig. 14, the interference declines from about -30 dBm at full coverage to -37 dBm at 50% 

coverage, regardless of the number of metal racks. This insensitivity to the number of metal racks implies 

that the limited number of GPs occupied by metal racks does not contribute much to the overall interference.  

 
Fig. 14.  Overall network interference under varying coverage rate and number of metal racks 
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This drop is explained by the continuously decreased AP transmit power to satisfy the TPC model’s 

coverage constraint which consistently becomes less strict. This is further demonstrated by the optimization 

results, where the number of APs that are powered off generally increases with the reduction of required 

coverage rate. 

Furthermore, the 10% coverage reduction from 100% to 90% contributes to more than 60% of the overall 

decreased interference (Fig. 14). This implies that lowering the required coverage rate cannot be highly 

effective when the desired coverage rate drops below 90%. When the coverage falls in the range between 

90% and 65%, the interference nearly remains stable. This is further proved by the optimization results, where 

the number of APs that are powered off almost remains 1 when the coverage declines from 95% to 65%. In 

spite of the slight decrease in interference when the coverage continues to drop from 65% to 50% (Fig. 14), 

the seriously-affected coverage should dramatically overweight this gentle decrease. Therefore, when using 

GATPC, a coverage rate between 90% and 100% not only guarantees a high coverage level for wireless 

clients, but also is an effective range to control the overall interference. 

5.6 Performance Comparison with Benchmark Algorithms 

Besides the demonstrated effectiveness and scalability of the proposed GA, its performance is further 

compared with other state-of-the-art algorithms. The benchmark algorithms include (1) the proposed 

GATPC, (2) the proposed GA with the Boolean disk model which is commonly used in literature (GABD) 

[14, 15], (3) the proposed GA without repair mechanism (GAW), (4) a discrete version of particle swarm 

optimization (PSO) algorithm [39], and (5) an ant colony optimization (ACO) algorithm [40] which were 

used in two similar wireless coverage problems, as well as (6) the former PSO with the repair mechanism 

proposed in this paper (Algorithm 2), which is named PSOR. 

Only the option of powering on/off APs is enabled in the GABD, due to the Boolean disk model. As no 

repair mechanism is used in GAW, PSO, and ACO, a solution is assigned the maximal fitness if it does not 

satisfy the required coverage rate, aiming to eliminate unqualified solutions. To get tailored for the TPC 

problem, the ACO in [40] has the following adaptations. The construction graph in Fig. 3 of [40] is a 

 1PN A   matrix. An ant goes from the leftmost to the rightmost column and selects one vertex in each 

column. This constructs a TPC solution. The upper bound of the solution ( )C  is the interference when all 

APs are powered on. The construction rule guides an ant to select the transmit power level of an AP. The 

pheromone is deposited between two APs and is calculated by Eq. (10) in [40]. The heuristic information is 

based on the increment in the actual coverage rate. The probability to select a transmit power level is 

calculated by Eq. (12) in [40], except that the index k refers to a transmit power level of an AP. An ant selects 

a transmit power level using Eq. (13) in [40]. The pheromone is updated by Eq. (15) in [40]. The local search 
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procedure is similarly to check and power off redundant APs after a best-so-far solution is updated at the end 

of each iteration.  

For all algorithm instances, the required coverage rate is 1; the maximal iteration is 50; the other 

configurations remain these in the original literature. 30 runs and 1 run of each algorithm instance are 

performed for a small and large problem size, respectively, in order to evaluate the optimization efficiency 

and scalability effectiveness of these algorithms, respectively. The performance comparison among these 6 

algorithms is conducted in three dimensions: the interference produced the optimal TPC solution, the runtime  

of an algorithm, and the percentage of runs that comply with the required coverage rate. An algorithm 

instance terminates if it has a runtime longer than 48 h. 

Fig. 15 further presents the convergence and runtime trends of these six algorithms in a small obstructed 

environment, both of which are averaged over 30 runs to have statistical significance. As demonstrated by 

Fig. 15a, GATPC achieves the fastest convergence by rapidly dropping during the first 5 generations, nearly 

staying stable after the 10th generation, and slightly decreasing at the 26th generation. PSOR has a slower 

convergence trend compared to GATPC by steadily dropping until the 34th iteration. ACO has a relatively 

unstable convergence trend. It fast drops in the first 4 iterations, and stays on a plateau with a gentle decrease 

until the 22nd iteration. This process iterates until the 49th iteration. A reason for this phenomenon could be 

that ACO cannot fully get stable in 50 iterations, revealing its relatively weaker search competence compared 

to GATPC and PSOR. 

 

(a) Convergence trend (b) Runtime trend
 

Fig. 15.  Convergence and runtime trends of six optimization algorithms in a small obstructed environment (both trends are 

averaged over 30 independent runs) 
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Table 7 Performance comparison of six optimization algorithms for the transmit power calibration (TPC) 

problem in small and large-scale obstructed environments (best performance is in bold)  

Algorithm 

Small obstructed environmenta Large obstructed environmentb 

Interference 

(dBm) 

Runtime 

(s) 

Coverage requirement 

compliance 

Interference 

(dBm) 

Runtime 

(s) 

Coverage requirement 

compliance 

GATPC -26.51±0.11 207±4 100% -10.02 167,504 100% 

GABD -25.28±0 182±2 100% n.a.c > 187 h n.a.c 

GAW -27.80±2.54 14±5 85% -9.72 172,563 100% 

PSO -27.83±3.86 20±3 87% -12.85 45,170 72% 

PSOR -26.52±0.12 80±5 100% -10.24 105,070 100% 

ACO -25.47±0.07 290±8 100% n.a.c > 600 h n.a.c 
a: mean±standard deviation are used to evaluate the performance of 30 independent runs 
b: the optimal solution obtained by one run is used due to the long runtime required by a large-scale TPC problem 
c: unavailable performance data due to a runtime longer than 48 h 

 

On the other hand, GABD, GAW, and PSO cannot effectively improve the best solution across iterations 

by having constant fitness value of one in Fig. 15a. This phenomenon is explained by two reasons. For 

GABD, this would be caused by a lack of fine-tuned transmit power control mechanism, such that the best 

solution in the initial population cannot be further enhanced by only powering on/off APs. For GAW and 

PSO, this is due to the missing repair mechanism for unqualified solutions. Consequently, a population cannot 

make effective progress toward better solutions through iterations. 

In terms of average runtime trends of these six algorithms (Fig. 15b), all algorithms have a runtime which 

linearly increases with the number of iterations, except GAW of which the rise of runtime rises slows after 

the 16th iteration. This common linear increase in runtime is explained by the fact that the number and type 

of operations performed in each iteration of these optimization algorithms are more or less the same. ACO 

has the most rapidly-increasing runtime, which is evidently longer than that of other algorithms in each 

iteration. PSO and GAW have the most slowly-rising runtime before and after the 25th generation, 

respectively. GATPC has a runtime which increases slightly faster than that of GABD. This implies that the 

consideration of fine-tuned transmit power control does not obviously increase the computational burden of 

an optimization algorithm. However, the consideration of repair mechanism for unqualified solutions 

evidently slows down the evolutionary search, by comparing the runtime of GATPC and GAW in Fig. 15b. 

It also moderately slows down the particle swarm search, by comparing the runtime of PSOR and PSO        

(Fig. 15b). This highlights the computational overhead of repairing unqualified solutions during an 

optimization process. 

Table 7 tabulates the performance comparison of these six algorithms on both small and large problem 

sizes, regarding interference minimization, runtime, and compliance with full coverage requirement. 

Although GAW and PSO produce solutions with the lowest mean interference (-27.80 dBm and -27.83 dBm) 

in a small obstructed environment, they cannot fully satisfy the required coverage rate and lead to the highest 
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variance in interference (2.54 dBm and 3.86 dBm, which are both at least one order of magnitude larger than 

that variance in interference of other algorithms). On the other hand, GATPC and PSOR, both using the 

proposed repair mechanism (Algorithm 2), achieve the lowest mean interference (-26.51 dBm and                        

-26.52 dBm) among algorithms that 100% comply with the coverage requirement as well as low variance in 

interference (0.11 dBm and 0.12 dBm). This comparison underlines the undeniable importance of the 

proposed repair mechanism in reducing ineffectiveness of a search. Comparatively, assigning maximal 

fitness values to unqualified solutions is not an effective method to search for qualified solutions in the 

solution space. 

Similarly, due to a lack of repair mechanism, GAW and PSO have the shortest mean runtime (14 s and     

20 s) of on a small scale (Table 7), respectively, while breaking the hard constraint of required coverage 

percentage. GATPC achieves both moderate average (207 s) and variance (4 s) in runtime on a small scale. 

A remarkable observation is on PSOR. It has a mean runtime evidently shorter than that of GATPC (80 s vs. 

207 s), while remaining a superior level in interference and full coverage requirement compliance. 

Conversely, the mean interference and runtime of ACO are inferior on a small scale (-25.47 dBm and 290 s), 

though it can effectively eliminate unqualified solutions by assigning maximal fitness values to unqualified 

solutions. A reason would be that an ACO-based algorithm highly needs a tailored design for a specific 

problem (e.g., transmit power control in this paper), in terms of construction graph, construction rule, 

pheromone management, and local search procedure. These observations of runtime in a small-sized problem 

in Table 7 comply with the runtime trend depicted in Fig. 15b. 

The contribution of the proposed path loss model or coverage calculation method is also underlined by 

comparing GABD to GATPC in the small obstructed environment (Table 7). As only the option of powering 

on/off is available in GABD, the produced mean interference is the highest (-25.28 dBm). Its zero variance 

in interference is also explained by a lack of fine-tuned transmit power control mechanism such that the local 

optimum can be easily found by randomizing a number of solutions in the initial population and no better 

solution is found through the evolutionary search. This reason is further justified by Fig. 15a, where GABD 

cannot improve the best solution in the initial population with the rising number of generations. 

The former observations remain in the large obstructed environment (Table 7) except the following two 

points. Firstly, though the mean runtime of GABD (182 s) is comparable to that of GATPC (207 s) for a 

small problem size, this gap evidently rises (> 187 h vs. 167,504 s, i.e., more than 4-times difference) for a 

large problem size. This should be due to the characteristic of the proposed repair mechanism. Once an AP 

is powered on, it achieves the maximal transmit power, losing the potential to collaborate with other APs for 

further coverage. This thus triggers lines 18-20 in Algorithm 2 much more frequently to remove the invalid 

GP-AP links due to a loss of capability to fine-tune the coverage. Secondly, ACO is still the slowest 
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optimization algorithm (> 600 h). But it has an even larger runtime gap with other algorithms. This indicates 

that ACO especially requires tailored design for large-scale optimization despite the common challenge faced 

by the other algorithms to work on a large problem size. 

 

6. Conclusion 

With the ongoing trend toward factories of the future, wireless technologies are penetrating to shop floors 

and warehouses, which include not only wireless sensors networks (WSNs) but also wireless local area 

networks (WLANs). This paper formulates a transmit power control (TPC) model for dense industrial WLAN 

(IWLANs). It addresses the drawbacks of existing coverage-related optimization models, by focusing on 

scalability, simple yet accurate coverage prediction considering three-dimensional shadowing effects in harsh 

industrial indoor environments, complete power management schemes (with both powering on/off and 

transmit power calibration mechanisms), and empirical validation. To solve this TPC model, this paper 

proposes genetic algorithm based TPC (GATPC). Repair mechanism-based population initialization, 

crossover and mutation are designed to reduce the GA search redundancy. Parallelism and dedicated speedup 

measures are further proposed to speed up a GATPC instance for both small- and large-scale optimization. 

 The GATPC was experimentally validated with a real IWLAN deployed in a small-scale industrial 

environment, and numerically demonstrated in both small and large problem sizes. The solution quality of 

the GATPC was proven in terms of effectively conducting adaptive coverage and minimizing interference 

even in the presence of metal obstacles. The speedup performance of GATPC was measured to be as high as 

37 times compared to the serial GATPC without speedup measures. The effectiveness and scalability of 

GATPC was further demonstrated by comparing to other state-of-the-art algorithms. In sensitivity studies, 

the produced interference and qualification rate of GATPC are revealed according to varying required 

coverage rate as well as number and placement direction of dominant obstacles. 

The formulated TPC problem and the proposed GAPTC algorithm can also be applied to other types of 

wireless network besides WLANs, e.g., optimal coverage maintenance of WSNs [20] as well as RFID 

network planning and configuration [41]. Regarding the future work, further speedup measures or high-

performance algorithm design paradigms may be explored to additionally reduce the runtime of the GAPTC. 
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