3,386 research outputs found

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    A Channel-Aware Adaptive Modem for Underwater Acoustic Communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    A channel aware adaptive modem for underwater acoustic communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    Experimental verification of multi-antenna techniques for aerial and ground vehicles’ communication

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201
    • …
    corecore