35,874 research outputs found

    Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes

    Get PDF
    We consider online prediction of a latent dynamic spatiotemporal process and estimation of the associated model parameters based on noisy data. The problem is motivated by the analysis of spatial data arriving in real-time and the current parameter estimates and predictions are updated using the new data at a fixed computational cost. Estimation and prediction is performed within an empirical Bayes framework with the aid of Markov chain Monte Carlo samples. Samples for the latent spatial field are generated using a sampling importance resampling algorithm with a skewed-normal proposal and for the temporal parameters using Gibbs sampling with their full conditionals written in terms of sufficient quantities which are updated online. The spatial range parameter is estimated by a novel online implementation of an empirical Bayes method, called herein sequential empirical Bayes method. A simulation study shows that our method gives similar results as an offline Bayesian method. We also find that the skewed-normal proposal improves over the traditional Gaussian proposal. The application of our method is demonstrated for online monitoring of radiation after the Fukushima nuclear accident

    Feasibility of remote sensing for detecting thermal pollution. Part 1: Feasibility study. Part 2: Implementation plan

    Get PDF
    A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined

    Technology for large space systems: A special bibliography with indexes (supplement 04)

    Get PDF
    This bibliography lists 259 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1980 and December 31, 1980. Its purpose is to provide information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology Program. Subject matter is grouped according to systems, interactive analysis and design. Structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented

    Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts

    Get PDF
    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.Comment: Accepted for publication by Nature Microgravity (2018
    • …
    corecore