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Abstract

We consider online prediction of a latent dynamic spatiotemporal process and estimation of
the associated model parameters based on noisy data. The problem is motivated by the anal-
ysis of spatial data arriving in real-time and the current parameter estimates and predictions
are updated using the new data at a fixed computational cost. Estimation and prediction is
performed within an empirical Bayes framework with the aid of Markov chain Monte Carlo
samples. Samples for the latent spatial field are generated using a sampling importance resam-
pling algorithm with a skewed-normal proposal and for the temporal parameters using Gibbs
sampling with their full conditionals written in terms of sufficient quantities which are updated
online. The spatial range parameter is estimated by a novel online implementation of an em-
pirical Bayes method, called herein sequential empirical Bayes method. A simulation study
shows that our method gives similar results as an offline Bayesian method. We also find that
the skewed-normal proposal improves over the traditional Gaussian proposal. The application
of our method is demonstrated for online monitoring of radiation after the Fukushima nuclear
accident.

Keywords: Dynamic spatiotemporal process; Empirical Bayes estimation; Fukushima nuclear
disaster; Geostatistics; Online inference; State space models.

1 Introduction

Many problems related to ecology, epidemiology, defense, and economics exhibit a simultaneous
variability in space and time (Cressie and Wikle, 2011; Shaddick and Zidek, 2016). Daily levels
of precipitation, temperature, or other environmental variables across a region in a year, e.g. the
monitoring of pollutants, the estimation of trajectories of biological entities, or the monitoring of
mobile threats within a sensor network (Paci et al., 2013; Ren et al., 2015; Maroulas and Nebenfuhr,
2015; Ren et al., 2016) are a few of a gamut of paradigms which require the careful treatment of
spatiotemporal processes in real time.

Our motivation for this study is the monitoring of radiation after the Fukushima nuclear acci-
dent. Following the accident, radioactive material was released in the environment which rendered
the surrounding areas inhabitable. The authorities established a monitoring program to measure
radiation by sampling at specific locations within the infected area. These samples, which are
collected daily, can be used to produce a heatmap indicating dangerous zones. This requires spa-
tiotemporal modeling of radiation in real-time to incorporate the new information as soon as it
is received. As radiation is measured by the number of nuclear decays emitted each second, a
Gaussian model would be inappropriate in this case and a more flexible model is needed.

In cases concerning the study of radiation, disease spreading, weather, and target tracking,
where there is no indication when the study will terminate while real-time information must be
incorporated to facilitate a rapid-response system, online methods which can assimilate the new
data in a fixed computational cost are urgently needed over offline methods. Indeed, the computing
costs of offline methods increase commensurately with time and become slower as more and more
data are collected. Especially in the modern days of big data, offline methods become inefficient
to run for long time periods while online methods are able to take advantage the often-assumed
Markov property of the model to simplify computations.

The general setup consists of a latent dynamic process with Markovian evolution while the
observation process possesses a conditional independence property. This setup is known as state-
space or hidden Markov model. The problem is to compute the filtering distribution, i.e. the
distribution of the current value of the latent process given the full observation history up to the
present time. A well-known example of an online method is the Kalman filter which gives the
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exact filtering distribution in the case of linear Gaussian models. A widely-applicable alternative
is particle filtering, or sequential Monte-Carlo, which is a sequential importance sampling method
that approximates the filtering distribution by a set of weighted samples (Doucet et al., 2001). On
the other hand, it is well known that particle filtering does not perform well when the dimension of
the latent process is large, as is the case of many spatiotemporal applications (Cressie and Wikle,
2011, Section 8.4.6).

In addition to the filtering problem, it is also required to estimate the unknown parameters of
the model using the observed data on the fly. In a Bayesian setting, this amounts to computing the
posterior distribution of these parameters, however the problem now becomes significantly more
difficult as there is no straightforward way of integrating out the latent process in an online fashion.
A comprehensive review of online estimation methods can be found in Kantas et al. (2015). An
obvious solution is to augment the latent process with the parameters, and estimate the joint dis-
tribution together by standard particle methods. However, this was recognized by Kitagawa (1998)
that this procedure leads to erroneous estimation. An alternative method, proposed by Liu and
West (2001), is to impose artificial dynamics on the parameters and estimate them simultaneously
with the latent process using particle filters. However, this solution introduces bias in the esti-
mation and requires a significant amount of tuning. The alternative, proposed by Storvik (2002);
Fearnhead (2002), is to write the full conditionals of the parameters in terms of sufficient statistics
which can be updated sequentially. This approach facilitates sampling from the full conditional of
the parameters, however it does not avoid the degeneracy problem and is only applicable to those
models where sufficient statistics exist, which is not the case for spatial models where the spatial
range parameter is unknown.

This manuscript focuses on the methodology for online filtering of a dynamic spatiotemporal
process and estimation of the associated static parameters based on data from an exponential
family, i.e. the memory and computing time of our method does not grow with time. The inferential
procedure derived in this paper is outlined below:

1. For a given spatial range, φ, we develop an online algorithm (Algorithm 1) for sampling
from the filtering distribution and the posterior distribution of the other parameters.Our
algorithm takes advantage of the skewness of the filtering distribution (see Lemma 1) and
produces non-degenerate samples.

2. We develop an online estimate of the Bayes factors corresponding to a finite set of φ values
which we then maximize to estimate φ. The asymptotic validity of our method is established
in Theorem 1.

3. Given an estimate of φ, we derive a novel importance resampling algorithm (Algorithm 2) for
estimating the latent process and the other parameters in an online fashion.

The rest of the paper is organized as follows. Section 2 discusses the problem formulation
and displays preliminary results related to our model, including the derivation of the skew-normal
proposal and the proposed algorithm for sampling for fixed φ. Next, Section 3 presents the main
contribution of this manuscript and considers the estimation of the spatial correlation via our novel
online implementation of the empirical Bayes technique. In Section 4 we illustrate the application of
the proposed method for online monitoring of radiation. Section 5 offers a summary and discusses
future research directions based on our technique. The proofs to the results presented in the paper
are provided in the Appendix. In the Supplementary Materials for this article we present our
simulation study for assessing the performance of the proposed method, including a comparison
against a typical offline method.
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2 Problem formulation and preliminary results

2.1 Model

We adopt a hierarchical, dynamical spatiotemporal model with the observation process Y hav-
ing conditional independent components from an exponential family distribution given a latent
Gaussian spatiotemporal field X.

Let S denote the continuous spatial domain of interest and let T = {0, 1, 2, . . .} be the temporal
domain. The process model consists of a spatiotemporal Gaussian process X on S × T having an
autoregressive structure, that is, for every finite collection of spatial locations in S, say of size n,
the value of X at the n locations at time t, xt, is described by a perturbation of its values at time
t− 1, xt−1, as follows

x0 = G0β + σǫ0, xt = Gtβ + α(xt−1 −Gt−1β) + σǫt, t = 1, 2, . . . (1)

where the driving noise is a normally distributed isotropic spatial process, ǫt ∼ Nn(0, R(φ)), Gt

defines the n ×m matrix of covariates for each time t associated with an m× 1 parameter vector
β, σ is the diffusion coefficient and φ denotes the range parameter with spatial correlation matrix
R = R(φ). Our model assumes linear transition in time. In general, α is an n × n matrix of
redistribution weights, however, as Cressie and Wikle (2011) argue in Section 7.2, this can be
challenging to estimate at early times. A simpler model that allows stationarity is to let α be a
scalar, where |α| < 1. This implies homogeneous transition between the components of the state
process. The theory developed in this paper applies to either matrix or scalar α but the issues we
wish to address can be illustrated more clearly when α is a scalar so we will focus on this case for
the remainder of this paper.

The observation process Y is defined on S×T and is assumed to have conditionally independent
components given the latent spatiotemporal processX with distribution from an exponential family.
In other words, let yi,t denote the value of the observation process at location i and time t, and let
xi,t denote the value of the corresponding spatiotemporal process. Then

p(yi,t|xi,t) ∝ exp{yi,tg(xi,t) − τi,tb(xi,t)}, (2)

where under the usual regularity assumptions for exponential families the mean of the distribution
in (2) is h(xi,t) with h(·) being the inverse link function, g(·) and b(·) are known functions and τi,t
is a known scalar associated with the underlying distribution of the data. Further, given xi,t, yi,t is
independent of every other component of Y . The main advantage in using the general state space
representation of a dynamic spatiotemporal process is that we do not need to rely on the normality
assumption for the observation process and thus nonlinear and/or non-Gaussian models could be
taken into account.

For the parameters (β, α) we assume a normal prior, although the methodology described here
is valid for truncated normal or improper uniform priors as well, and the variance coefficient σ2 is
assumed to be distributed according to an inverse-gamma conjugate prior, i.e.

β|σ2 ∼ Nm(Q−1
0 b0, σ

2Q−1
0 ),

α|σ2 ∼ N(s−1
0 a0, σ

2s−1
0 ),

σ2 ∼ IG
(c0

2
,
r0
2

)

,

(3)

for suitable hyperparameters b0, Q0, a0, s0, c0, and r0. To make the priors reasonably uninformative
it is common to set Q0 = q0I, i.e. a diagonal with all diagonal elements equal to q0, and assign
small values to q0, s0, c0 and r0. If α is a matrix, as was discussed earlier, then matrix-normal
prior is used instead.
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2.2 Bayesian inference

We assume that observations from n fixed spatial locations are available at times 1, 2, . . ., but we
do not assume that all n locations are observed every time. We denote by y1:t = (y1,y2, . . . ,yt)
the observations up to time t where each ys is an n-dimensional vector, possibly containing missing
values. We denote by x0:t = (x0,x1, . . . ,xt) the value of the spatiotemporal process at the same
n locations up to time t, and θ = (α, β, σ2) denotes the temporal parameters. The problem is to
estimate the parameters θ and φ, as well as the latent process at time t, xt, from the available data
y1:t. The problem of estimating the spatiotemporal process at locations different from the sampled
locations becomes trivial after θ, φ, and x0:t are estimated.

For given φ, we sample from the posterior distribution p(x0:t, θ|y1:t, φ) by combining the particle
filter resampling method with a skewed proposal and the sufficient statistics method of Storvik
(2002) and Fearnhead (2002). The setup of Section 2.1 allows sampling from the full conditional
distribution of the parameters θ via Gibbs sampling.

More precisely, the full conditional distribution of the parameter β is

p(β|x0:t,y1:t, α, σ
2, φ) ∝ p(β)

t
∏

s=1

p(xs|xs−1, α, β, σ
2, φ),

which is easily shown to be normal β|(x0:t,y1:t, α, σ
2, φ) ∼ Nm(Q−1

t bt, σ
2Q−1

t ), where

Qt = Q0 +G′

0R
−1G0 +

t
∑

s=1

(Gs − αGs−1)
′R−1(Gs − αGs−1),

bt = b0 +G′

0R
−1x0 +

t
∑

s=1

(Gs − αGs−1)
′R−1(xs − αxs−1),

(4)

and similarly for α and σ2. Note that the full conditional distributions of θ = (α, β, σ2) de-
pend on some sufficient quantities, ut = ut(x0:t, φ), which are updated recursively. (We use
the term “sufficient quantities” instead of “sufficient statistics” because they depend on the un-
known parameter φ.) For example, to update β, from (4), we need to keep a record of the sums
∑

G′

sR
−1Gs,

∑

G′

sR
−1Gs−1,

∑

G′

sR
−1xs,

∑

G′

sR
−1xs−1, and

∑

G′

s−1R
−1xs where the summa-

tion is over s = 1, . . . , t. Having stored the sufficient quantities ut−1(x0:t−1, φ) at time t − 1, we
update them by adding the corresponding terms at time t, i.e. ut(x0:t, φ) = U(ut−1(x0:t−1, φ),xt, φ).

To sample (xt, θ) we take marginal samples from p(x0:t, θ|y1:t, φ). The key element in the process
for doing so, given a sample from p(x0:t−1|y1:t−1, φ), is

p(x0:t, θ|y1:t, φ) ∝ p(yt|xt)p(θ|x0:t−1, φ)p(xt|xt−1, θ, φ)p(x0:t−1|y1:t−1, φ),

which suggests a separate, two-step, update for θ and xt. In the first step we sample θ from
p(θ|x0:t−1, φ) = p(θ|ut−1(x0:t−1, φ)). Because this distribution is not available in closed form but
the full conditional distributions for each component of θ given the other components are, sampling
is done by running a few Gibbs iterations for each component of θ. The final θ obtained at the end
of the sequence of Gibbs iterations, together with xt−1 and yt are used to sample xt. To that end,
let q(xt|xt−1,yt, θ, φ) be a proposal distribution which generates N particles x̃(1), . . . , x̃(N). Each
particle carries a weight proportional to

w(i) =
p(yt|x̃(i)

t )p(x̃
(i)
t |xt−1, θ, φ)

q(x̃
(i)
t |xt−1,y1:t, θ, φ)

. (5)
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Algorithm 1 One step sampling for fixed φ at time t.

Input: yt;
Sample xt−1 ∼ p(xt−1|y1:t−1, φ);
Sufficient quantities ut−1 = ut−1(x0:t−1, φ).

Execute:

1: Sample θ from p(θ|ut−1) by running a few Gibbs iterations.
2: Compute the proposal q(xt|xt−1,yt, θ, φ).

3: Sample x̃
(1)
t , . . . , x̃

(N)
t ∼ q(xt|xt−1,yt, θ, φ).

4: Compute the weight w(i) according to (5) for i = 1, . . . , N .
5: Sample index j from {1, . . . , N} with weights proportional to w(1), . . . , w(N).

6: Set xt = x̃
(j)
t

7: Update the sufficient quantities ut = U(ut−1,xt, φ).
Return: xt, ut, θ.

The sample xt is chosen from among the x̃(1), . . . , x̃(N) with weights proportional to w(1), . . . , w(N).
Algorithm 1 outlines the steps from this procedure.

On the other hand, implementing the same approach for the estimation of the range parameter
φ is far from trivial and it cannot be updated using sufficient quantities as before, making it
impractical for online applications. Furthermore, each update of φ requires the inversion of a large
matrix which could be computationally expensive when the dimension of the random field, n, is
large. Therefore a technique other than Gibbs sampling (or in general an MCMC framework) is
required. We circumvent this problem by using a novel particle filter with an online implementation
of an empirical Bayes method. This technique is treated next in Section 3.

2.3 A skewed-normal proposal density

A measure of the quality of the proposal distribution is the effective sample size (ESS), defined as

ESS =
(
∑

iw
i
t)
2

∑

i(w
i
t)
2
.

It can take values between 1 and N and is used for assessing the loss of variance in the importance
weights (Robert and Casella, 2010, Section 4.4). A value close to N would mean that the samples
are nearly equally weighted and there is diversity among the samples so no samples are lost. A
value close to 1 would indicate that all but one sample will have weight close to 0 and lead to the
well-known problem of sample degeneracy.

Importance sampling methods allow flexibility in the choice of the proposal distribution q but
as Doucet et al. (2000) point out the optimal proposal distribution in the sense that it minimizes
the variance of the importance weights is

q(xt|xt−1,y1:t, θ, φ) = p(xt|xt−1,yt, θ, φ). (6)

Although not helpful by itself, equation (6) is still useful since it can serve as a basis for deriving
suboptimal proposal distributions. One way of doing this approximates (6) by a multivariate
Gaussian distribution as was done by Doucet et al. (2000) in the univariate case. When the state
process is multivariate it is imperative to use a good proposal density as this increases the effective
sample size. In view of this, we introduce next a novel importance density. First, Lemma 1
shows that the optimal proposal distribution is skewed when the observation process has a skewed
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distribution. This suggests using a proposal distribution which is skewed and motivates our use of
the skewed-normal distribution for this purpose.

Lemma 1. Consider the stochastic dynamics in equation (1) and the observation process given
in equation (2) which corresponds to data from a general exponential family. Then the optimal
proposal distribution given in equation (6) is skewed when the likelihood of yi,t|xi,t is skewed.

Proof. See Appendix. �

Consider first a Gaussian approximation to (6). Note that the optimal proposal is p(xt|xt−1,yt, θ, φ) ∝
p(yt|xt)p(xt|xt−1, θ, φ) and let

f(xt) = − log{p(yt|xt)p(xt|xt−1, θ, φ)}. (7)

Next define
x̂t = argmin

xt

f(xt), Ĥt = ∇∇′f(x̂t).

The Gaussian proposal is constructed by setting the mean equal to x̂t and the variance to Ĥ−1
t .

To capture the skewness of the distribution we use a skewed-normal copula correction to the
Gaussian proposal. The probability density function (pdf) of the univariate skewed-normal distri-
bution is (Azzalini and Capitanio, 1999)

2

ω
ψ

(

z − ξ

ω

)

Ψ

(

a
z − ξ

ω

)

where ψ(·) and Ψ(·) denote the pdf and cumulative distribution function (cdf) of the standard
normal distribution respectively. The parameters ξ, ω > 0, and a correspond to the location, scale,
and skewness parameter respectively.

To derive the skewed-normal corrections we expand the marginals of (7) to third order terms
and match the first three moments to the skewed-normal distribution. For details see Appendix B
of Rue et al. (2009). Let x̃t be a sample from the Gaussian approximation to (6). The idea
is to transform x̃t marginally using the skewed-normal correction. Ferkingstad and Rue (2015)
propose two copula corrections which we also use here: a mean-only skewness correction where
the proposal distribution remains Gaussian but the mean is corrected using the skewed-normal
approximations to the marginals; and a mean-plus-skewness correction where the particles are
sampled from the Gaussian approximation and then are marginally transformed using the skewed-
normal approximation. In our simulation study (see Supplementary Materials, Section 1) we find
that the two skewed-normal proposals have similar ESS but the Gaussian proposal has significantly
lower ESS. We therefore recommend the mean-only corrected proposal because it is simpler than
the mean-plus-skewness correction, while it also has better ESS than the Gaussian proposal.

3 A methodology for online estimation and prediction

In this section we present an empirical Bayes approach for the estimation of the range parameter
φ. Unlike the parameter θ = (α, β, σ2), it is not possible to include φ as an extra step in the Gibbs
algorithm without sacrificing the online feature of the method since the sufficient quantities for
the update of θ depend on φ and consequently they must be recomputed from time one at every
update of φ. Instead we adopt a novel empirical Bayes method in order to estimate φ in a way
that is similar in spirit to Doss (2010). Another argument in favor of the empirical Bayes approach
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instead of a full Bayesian approach is that it is unclear how a suitable prior for φ should be chosen.
Berger et al. (2001) discuss some objective priors in the case of Gaussian responses. However for
non-Gaussian data these priors, and indeed any improper prior, result in an improper posterior for
φ (Christensen et al., 2000). When it comes to online inference, it is unclear how a fully Bayesian
approach would be implemented. If a Monte-Carlo algorithm is used, the sufficient quantities will
be computed for those φ values in the Monte-Carlo sample only. This restricts the φ values at
subsequent times to only those which were sampled at all previous time points, something that is
undesirable. The goodness-of-fit of the empirical Bayes method for estimating the range parameter
has been demonstrated in the case of the spatial-only model by Roy et al. (2016). Extending it
to an online version requires careful treatment of the sufficient quantities needed to compute the
Bayes factors. Theorem 1 presents the main result of this section. The approach discussed below
may be also viewed as equivalent to the maximum likelihood estimation for φ after integrating out
the parameter θ.

We consider first the marginal density p(y1:t|φ) and define the estimator for φ at time t given
data y1:t by

φ̂t = argmax
φ

p(y1:t|φ), (8)

where

p(y1:t|φ) =

∫

p(y1:t,x0:t, θ|φ)d(x0:t, θ). (9)

In general, the integral in (9) has no closed form and thus a numerical approximation must be
employed. Define the sequential Bayes factor between φ and φ̃ with respect to the data y1:t by

B1:t(φ; φ̃) =
p(y1:t|φ)

p(y1:t|φ̃)
.

Note the dependence of the Bayes factor on the whole data sequence y1:t. Then, for a fixed
parameter φ̃, (8) is equivalent to

φ̂t = argmax
φ

B1:t(φ; φ̃).

Furthermore, the sequential Bayes factor, B1:t(φ; φ̃) in a filtering framework is computed as follows:

B1:t(φ; φ̃) =

∫

p(y1:t,x0:t, θ|φ)

p(y1:t,x0:t, θ|φ̃)
p(x0:t, θ|y1:t, φ̃)d(x0:t, θ)

=

∫

p(y1:t|x0:t)p(x0:t|θ, φ)p(θ)

p(y1:t|x0:t)p(x0:t|θ, φ̃)p(θ)
p(x0:t, θ|y1:t, φ̃)d(x0:t, θ)

=

∫

p(x0:t|θ, φ)

p(x0:t|θ, φ̃)
p(x0:t, θ|y1:t, φ̃)d(x0:t, θ).

(10)

A naive approach for estimating φ relying on equation (10) would be to obtain a large sample
for (x0:t, θ) from p(x0:t, θ|y1:t, φ̃) using Algorithm 1, and to approximate (10) by Monte-Carlo
integration; call the result B̂1:t(φ; φ̃). Then an estimate would be obtained by maximizing B̂1:t(φ; φ̃)
over φ.

Remark 1. There are several issues concerning the above naive approach that need to be addressed:

1. Unless φ̂t and φ̃ are close to one another, the Monte-Carlo approximation will have a large
error and in this case the estimate may not be accurate no matter how large the Monte-Carlo
sample is.
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2. In order to compute p(x0:t|θ, φ) for any φ at time-point t, we need p(x0:t−1|θ, φ) for the same
φ at time t− 1 something that we could not anticipate prior to time t.

3. After obtaining φ̂t we need to run Algorithm 1 once more in order to update xt and θ condi-
tional on φ̂t. However the algorithm requires samples from x0:t−1|y1:t−1, φ̂t which is unknown
at time t− 1.

Bypassing the issues raised in Remark 1, our strategy for resolving issue 1 is to replace the
importance density in (10) by a mixture over a set of φ values instead of a single fixed φ̃. This
is demonstrated in our simulation study (see Supplementary Materials, Section 2) where we show
that the naive approach can give biased estimates for a badly chosen φ̃. For 2 we only evaluate the
Bayes factors over a dense grid Φ which covers reasonable values of φ and keeps a record of the
sufficient quantities needed to evaluate p(x0:t|θ, φ) at the next time. To resolve 3 we resample the
available samples from the mixture with appropriate weights. In the remainder of this section we
expand on these ideas. Algorithm 2 puts them together.

Consider a set ΦK = {φ1, . . . , φK} such that φ̃ ∈ ΦK , is sufficiently spread-out over a range
of interesting values of φ. The meaning of “interesting values of φ” is well defined in our context:
the range parameter is a scaling factor of the spatial distances within the domain of interest which

define a possible range for φ. Suppose (x
(l,k)
0:t , θ(l,k)), k = 1, . . . ,K, l = 1, . . . , Lk are samples from

p(x0:t, θ|y1:t, φk). The augmented sample can be seen as drawn from the mixture distribution

pmix(x0:t, θ|y1:t,ΦK ,ΛK) =
K
∑

k=1

λkp(x0:t, θ|y1:t, φk), (11)

where λk = Lk/(
∑

Lk′) and ΛK = {λ1, . . . , λK}. Let bkt = B1:t(φk; φ̃). Then bkt can be estimated
by maximizing the so-called reverse logistic log-likelihood (Geyer, 1994)

ℓ(bt) =
K
∑

k=1

Lk
∑

l=1

log
λkp(x

(k,l)
0:t , θ(k,l)|y1:t, φk)

pmix(x
(k,l)
0:t , θ(k,l)|y1:t,ΦK ,ΛK)

.

Furthermore, let b̂kt denote the estimate for bkt . Then, the following sum

B̂1:t(φ; φ̃) =
K
∑

k=1

Lk
∑

l=1

p(x
(k,l)
0:t |θ(k,l), φ)

∑

k′ Lk′/b̂
k′
t p(x

(k,l)
0:t |θ(k,l), φk′)

, (12)

estimates B1:t(φ; φ̃). The key Theorem 1 summarizes this property.

Theorem 1. Consider a coarse grid ΦK = {φ1, φ2, . . . , φK}, where the grid points, φk, k =
1, . . . ,K, are spaced across the parameter space for φ. Suppose that for k = 1, . . . ,K, we draw

samples (x
(k,l)
1:t , θ(k,l)), l = 1, . . . , Lk from the distribution p(x0:t, θ|φk,y1:t) for φk ∈ ΦK . Then, for

an arbitrarily fixed pair (φ, φ̃), the estimate,

B̂1:t(φ; φ̃)
a.s.−→ B1:t(φ; φ̃), Lk → ∞, (13)

where B̂1:t(φ; φ̃) is given by equation (12).

Proof. See Appendix. �
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The likelihood in the numerator and denominator of (12) must be computed for the whole

history of samples x
(k,l)
0:t for the new θ(k,l) and for different values of φ. This is not as straight-

forward as a product of the prior p(x0:t−1|θ, φ) times the transition p(xt|xt−1, θ, φ) since in online
implementations we cannot anticipate the value of θ and φ at time t − 1. If φ is held fixed, then
p(x0:t|θ, φ) can be written in terms of sufficient quantities as before which do not depend on θ but
do depend on φ.

To this end, let z
(φ,k,l)
t−1 denote the aforementioned sufficient quantities at time t − 1 for the

(k, l)th sample. These are updated at time t by

z
(φ,k,l)
t = Z

(

z
(φ,k,l)
t−1 ,x

(k,l)
t , φ

)

,

and the joint likelihood is expressed as a function of z
(φ,k,l)
t and θ(k,l), i.e.

p(x
(k,l)
0:t |θ(k,l), φ) = P

(

z
(φ,k,l)
t , θ(k,l)

)

.

In practice, we do not consider the entire parameter space for φ but a fine discretization of
it. More precisely, we augment the coarse grid, ΦK , with the finer grid, say Φ, i.e. ΦK ⊂ Φ, and

compute the sufficient quantities z
(φ,k,l)
t , and consequently B̂1:t(φ; φ̃), only for those φ ∈ Φ. Then,

we estimate φ by
φ̂t = argmax

φ∈Φ
B̂(φ; φ̃).

The drawback is the loss of precision in estimation but the benefit is that the required computing
memory remains fixed. From experience, we find that a small bias in the value of φ does not
affect prediction or the estimation of the other parameters. In particular in the simulation study
presented in Section 2 of the Supplementary Materials we find that the parameters α and β are
immune to the possible bias in φ̂t.

The empirical Bayes approach proceeds with the update of the estimate for (xt, θ) using the

estimate φ̂t. These estimates are obtained as a weighted sum of the existing samples (x
(k,l)
0:t , θ(k,l)),

k = 1, . . . ,K, l = 1, . . . , Lk. The distribution of the existing samples is the mixture distribu-
tion (11). These samples can be scaled with reference to the distribution conditioned on φ = φ̂t
using the following importance weights

v
(k,l)
t =

p(x
(k,l)
0:t , θ(k,l)|y1:t, φ̂t)

pmix(x
(k,l)
0:t , θ(k,l)|y1:t,ΦK ,ΛK)

=
p(x

(k,l)
0:t , θ(k,l)|y1:t, φ̂t)

∑

k′ λk′p(x
(k,l)
0:t , θ(k,l)|y1:t, φk′)

=
p(y1:t|x(k,l)

0:t )p(x
(k,l)
0:t |θ(k,l), φ̂t)p(θ(k,l))/p(y1:t|φ̂t)

∑

k′ λk′p(y1:t|x(k,l)
0:t )p(x

(k,l)
0:t |θ(k,l), φk′)p(θ(k,l))/p(y1:t|φk′)

=
p(x

(k,l)
0:t |θ(k,l), φ̂t)/B1:t(φ̂t; φ̃)

∑

k′ λk′p(x
(k,l)
0:t |θ(k,l), φk′)/B1:t(φk′ ; φ̃)

. (14)

In practice B1:t(φ̂t; φ̃) and B1:t(φk′ ; φ̃) in equation (14) are replaced by their estimates which are
already available. Then, we obtain the estimates for the latent state process and the remaining
parameters by

x̂t =
K
∑

k=1

Lk
∑

l=1

v̄
(k,l)
t x

(k,l)
t , θ̂t =

K
∑

k=1

Lk
∑

l=1

v̄
(k,l)
t θ(k,l),
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Algorithm 2 Main estimation and prediction algorithm at time t.

Input: yt;

Samples x
(k,1:Lk)
t−1 ∼ p(xt−1|y1:t−1, φk), k = 1, . . . ,K;

Sufficient quantities u
(k,1:Lk)
t−1 , k = 1, . . . ,K;

Sufficient quantities z
(φ,k,1:Lk)
t−1 , φ ∈ Φ, k = 1, . . . ,K.

Execute:

1: for k ∈ {1, . . . ,K} do concurrently

2: for l = 1, . . . , Lk do concurrently

3: Sample l′ uniformly in {1, . . . , Lk}.
4: Call Algorithm 1 with input yt, x

(k,l′)
t−1 , u

(k,l′)
t−1 , and output θ(k,l), x

(k,l)
t , u

(k,l)
t .

5: for φ ∈ Φ do concurrently

6: Update the sufficient quantities z
(φ,k,l)
t = Z

(

z
(φ,k,l)
t−1 ,x

(k,l)
t , φ

)

.

7: Compute p(x
(k,l)
0:t |θ(k,l), φ) = P

(

z
(φ,k,l)
t , θ(k,l)

)

.

8: end for φ
9: end for l

10: end for k
11: Call the reverse logistic regression algorithm with input {p(x(k,1:Lk)

0:t |θ(k,1:Lk), φ) : φ ∈ Φ, k =

1, . . . ,K} and output b̂t.
12: Compute B̂1:t(φ; φ̃), φ ∈ Φ using (12).
13: Set φ̂t = argmaxφ∈Φ B̂1:t(φ; φ̃).

14: Compute importance weights v
(k,l)
t according to equation (14) and normalize them to get v̄

(k,l)
t .

15: Set x̂t =
∑K

k=1

∑Lk

l=1 v̄
(k,l)
t x

(k,l)
t , θ̂t =

∑K
k=1

∑Lk

l=1 v̄
(k,l)
t θ(k,l).

Return: x̂t, θ̂t, φ̂t,

x
(k,1:Lk)
t , θ(k,1:Lk), u

(k,1:Lk)
t , k = 1, . . . ,K,

z
(φ,k,1:Lk)
t , φ ∈ Φ, k = 1, . . . ,K.

where v̄
(k,l)
t is the normalized version of (14). This is the final step at time t. The main algorithm

of this paper which shows how to combine Algorithm 1 with the online empirical Bayes for the
estimation of φ is displayed in Algorithm 2.

We evaluated the performance of our method in a simulation study which we include in the
Supplementary Materials with this article. Our study shows that the obtained parameter estimates
are unbiased and consistent. As more data are assimilated, the credible intervals obtained from
the Monte-Carlo samples become narrower as expected with rate in the order of the square root of
the number of the elapsed time. The posterior distributions obtained by our method, conditioned
on the data y1:t, are compared against those derived from a typical offline, fully Bayesian, MCMC
method. Indeed, the two distributions match which indicates the Monte-Carlo samples are taken
from the correct distribution. Overall, this study verifies our theoretical conclusions and justifies
the use of our method for online inference.

4 Example: Spatiotemporal monitoring of the Cs-137 isotope

The Fukushima Daiichi nuclear disaster was a catastrophic failure at the Fukushima Nuclear Power
Plant on 11 March 2011, resulting in a meltdown of three of the plant’s six nuclear reactors. The
failure occurred when the plant was hit by the tsunami following an earthquake. The Japanese
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authorities started to collect data about the radioactive material released from the power station
which were reported to the International Atomic Energy Agency (IAEA). At an early stage of the
accident, online methods were needed to incorporate new measurements in real-time. The data ana-
lyzed in this paper consist of daily measurements of radioactive decay for the Caesium-137 (Cs-137)
isotope found on leaves collected between 16 March 2011 and 26 December 2011. The measurements
were collected from different locations and the number of nuclear decays of the isotope in one second
were counted. We refer the reader to the IAEA relevant website https://iec.iaea.org/fmd for
more information and access to the datasets.

The samples were taken at n = 17 distinct locations across T = 146 days. However some
locations were sampled more than once on the same day so the total of all the measurements
were used for that day. An intercept term, a time trend, and the distance from the power plant
were used as covariates. Our aim is to estimate the parameters (α, β, σ2, φ) as well as predict the
spatiotemporal field xt at time t from observations y1:t. In other words the hidden spatiotemporal
process is given by

xt = β0 + β1g + β2t+ ηt,

ηt = αηt−1 + ǫt, (15)

where g is the distance from the station, ǫt ∼ N (0, σ2R(φ)), and Corr(xi,t, xj,t) = e−dij/φ. Moreover,
the ith collected observation is conditionally distributed according to,

yi,t|xi,t ∼ Poisson(τi,te
xi,t),

where τi,t corresponds to the number of times that location i was sampled at day t. These locations
are shown in Figure 1.

The priors for (α, β, σ2) were used as in Section 2 with the following parameters: a0 = 0,
s0 = 0.1, b0 = 0, q0 = 0.01, d0 = 0.1, e0 = 0.1. The fine grid Φ for estimating φ consists of
51 equally spaced points in [0, 0.1] and the coarse grid ΦK consists of 7 equally spaced points in
[0.002,0.098]. Algorithm 2 was used for estimation and prediction with particle size N = 1000,
MCMC size L = 500 and Gibbs burn-in B = 100.

Figure 2 shows the evolution of the parameter estimates in time. There is an apparent “jump”
in the parameter estimates for β and φ at around time t = 70 after which the estimates become
stable. A closer examination of the data reveals that this may be due to a lower trend after time
50 and to reduced sampling after time 40.

Figure 3 shows the prediction at 2659 locations around the sampling area for selected times.
To sample from the unmonitored locations we simulate from its conditional distribution given the
samples at the monitored locations and the parameters, p(x∗

t |x0:t, θ, φ), where x∗

t is the value of the
state process at the prediction locations. Figure 4 shows the standard deviation of our predictions.
From the plots we can identify some radiation hot-spots and an apparent decrease of radiation over
time.
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Figure 1: Sampled locations of the Cs-137 isotope, shown by a •. The location of the power plant
is shown by a ×.
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Figure 2: Estimates and 90% credible intervals for the parameters of the Fukushima power plant
example.
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5 Summary and discussion

In this paper we propose a method for online estimation and prediction of dynamic spatiotem-
poral processes. We consider a latent Gaussian autoregressive spatial process with data arriving
sequentially in time with distribution from an exponential family conditional on the spatiotemporal
process. Our model is expressed in terms of unknown parameters which are estimated along with
the latent process within an empirical Bayes framework. We distinguish two types of parameters,
the temporal parameters, which have a full conditional distribution that can be written in terms
of sufficient quantities, and the spatial correlation parameters, which don’t. The spatial range
parameter belongs to the latter type.

An algorithm is proposed for sampling from the filtering distribution of the spatiotemporal
process and the posterior distribution of those parameters whose full conditional can be written in
terms of sufficient quantities. These sufficient quantities are updated when new samples are taken
for a fixed value of the range parameter, and because the filtering distribution can be skewed, we
show how to use the skew-normal distribution to generate good candidate samples. The advantage
of using sufficient quantities is that the storage requirements do not increase in time. These sufficient
quantities depend on the spatial range parameter, thus, they are computed at a fixed set of values
of that parameter across different times. Estimation of the range parameter is performed by
maximizing the Bayes factors over this fixed set. The Bayes factors are estimated sequentially by
importance sampling using the Monte Carlo samples.

Our method was compared against a typical offline MCMC method which samples from the
posterior distribution of all parameters and the spatiotemporal field. We find that the distribution
of the samples from our method matches the one obtained when the offline method is used. Finally,
we demonstrate the application of our method on radiation measurements from a nuclear accident
which can be used to assess the radiation risk in real time and provide helpful insight about its
distribution.

Although the empirical Bayes estimation was applied to a single spatial correlation parameter,
the theory is more general to allow more parameters to be estimated this way, e.g. a smoothness
or a nugget parameter. For an application of this approach to the isotropic spatial model see Roy
et al. (2016). On the other hand, when many parameters are included, the sampling and evaluation
grids must be chosen carefully as a larger grid takes longer to compute.

Another extension of our model, is the use of a spatially-varying temporal autocorrelation
parameter. Although this model allows us to capture the influence across spatial components, it
becomes challenging to fit as there are more parameters to estimate.

Our model for the latent process assumes linear transition in time. Although not considered in
this paper, it would be possible to apply the methodology to non-linear models using local linear
approximations.

A potential research avenue is the application of this methodology to the dynamic spatiotem-
poral design problem, see e.g. Wikle and Royle (1999) incorporating parameter uncertainty in the
design as well. Many interesting applications can be found in the point-process framework and it
would be interesting to see how the suggested methodology performs in this case. Finally, the ideas
of this paper can be applied to other models beyond the spatial framework.
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6 Appendix

6.1 Proof of Lemma 1

We examine the limits for i = 1, . . . , n, of the ratio

lim
u→∞

p(xt = µt + uei|xt−1,yt, θ, φ)

p(xt = µt − uei|xt−1,yt, θ, φ)
,

where µt = Gtβ + α(xt−1 − Gt−1β) and ei is a vector whose ith component is 1 and all other
components are 0. If the limit is 0 or ∞, then the distribution is left or right skewed respectively.

Then, by the symmetry of the normal distribution around its mean,

lim
u→∞

p(xt = µt + uei|xt−1,yt, θ, φ)

p(xt = µt − uei|xt−1,yt, θ, φ)
= lim

u→∞

p(yt|xt = µt + uei)p(xt = µt + uei|xt−1, θ, φ)

p(yt|xt = µt − uei)p(xt = µt − uei|xt−1, θ, φ)

= lim
u→∞

p(yt|xt = µt + uei)

p(yt|xt = µt − uei)

= lim
u→∞

p(yi,t|xi,t = µi,t + u)

p(yi,t|xi,t = µi,t − u)
,

where the last limit is either 0 or ∞ since the distribution of yi,t|xi,t is skewed.

6.2 Proof of Theorem 1

The estimate of the sequential empirical Bayes factor, B̂1:t(φ; φ̃) in equation (12), depends on the
associated sequential empirical Bayes factors, bt = (b1t , . . . , b

K
t ), on the coarse grid for φk ∈ ΦK .

Consequently, we need to first establish the convergence of b̂kt , k = 1, . . . ,K.

Because θ(k,l) is drawn using Gibbs sampling, and because x
(k,l)
t is sampled by importance

sampling conditioned on θ(k,l), the sample (x
(k,l)
0:t , θ(k,l)), l = 1, . . . , Lk is a Harris ergodic Markov

chain for each k ∈ {1, . . . ,K} from the distribution p(x0:t, θ|y1:t, φk).

Let λk = Lk/
∑

Lk′ and ΛK = {λ1, . . . , λK}. Then the concatenated sample (x
(k;l)
1:t , θ(k;l)),

l = 1, . . . , Lk, k = 1, . . . ,K is a Harris ergodic Markov chain from the mixture distribution with
components the p(x0:t, θ|y1:t, φk) and corresponding weights λk. The probability that the (k, l)th
sample is drawn from the kth mixture component is given by

f(x
(k,l)
0:t , θ(k,l)|y1:t, φk) =

λkp(x
(k,l)
0:t , θ(k,l)|y1:t, φk)

pmix(x
(k,l)
0:t , θ(k,l)|y1:t,ΦK ,ΛK)

,

where pmix(x0:t, θ|y1:t,ΦK ,ΛK) denotes the mixture distribution of p(x0:t, θ|y1:t, φk) for k = 1, . . . ,K
with weights λk defined in (11). Define the reverse logistic log-likelihood

ℓ(bt) =
K
∑

k=1

Lk
∑

l=1

log f(x
(k,l)
0:t , θ(k,l)|y1:t, φk). (16)

Then using similar arguments as in Buta and Doss (2011) one may show that the maximizing
argument of ℓ, i.e. b̂t = argmax ℓ(bt) converges a.s. to the sequential empirical Bayes factors bt.

Next, observe that B̂1:t(φ; φ̃) can be written as

K
∑

k=1

1

Lk

Lk
∑

l=1

λkp(x
(k,l)
0:t |θ(k,l), φ)

∑K
k′=1

λk′

b̂k
′

t

p(x
(k,l)
0:t |θ(k,l), φk′)

a.s.−→
K
∑

k=1

∫

λkp(x0:t|θ, φ)
∑K

k′=1
λk′

bk
′

t

p(x0:t|θ, φk′)
p(x0:t, θ|y1:t, φk)d(x0:t, θ).

(17)
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The right hand side of equation (17) equals

B1:t(φ; φ̃) ×
K
∑

k=1

∫

λkp(x0:t|θ, φ)/p(y1:t|φ)
∑K

k′=1 λk′p(x0:t|θ, φk′)/p(y1:t|φk′)
p(x0:t, θ|y1:t, φk)d(x0:t, θ), (18)

and multiplying and dividing by p(y1:t|x0:t)p(θ), one deduces that the finite sum of equation (18)
equals 1. The proof is thus complete.
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Simulation Results

The general setup of our simulations is as follows. The spatial dimension is the closed interval
[0, 1] and the spatial sampling locations consist of n = 11 equidistant points covering the spatial
domain. The final sampling time is denoted by T . The latent spatiotemporal process xt is simulated
with constant mean β = 1, autoregressive coefficient α = 0.5, and variance σ2 = 1. The correlation
between components of xt is calculated using the exponential spatial correlation function, i.e.

Corr(xi,t,xj,t) = exp(−dij/φ),

where dij stands for the distance between the ith and jth grid point and φ = 0.4 is the range
parameter. At each time t we simulate a response yt conditioned on the simulated xt such that
yi,t ∼ Poisson(τexi,t) independently for each i, for given τ .

For inference, the priors specified in (3) were used with a0 = 0, s0 = 0.1, b0 = 0, q0 = 0.01, c0 =
3, and r0 = 1/3. The fine grid Φ consisted of J = 41 equidistant points between φ/2 and 2φ, i.e. Φ =
{0.200, 0.215, 0.230, . . . , 0.800} and the coarse grid to ΦK = {0.230, 0.335, 0.440, 0.545, 0.650, 0.755}.
The first element of ΦK corresponds to φ̃.

Algorithm 2 was run with Monte-Carlo sizes Lk = L for k = 1, . . . ,K and Algorithm 1 with
Gibbs iterations Lg and particle size N .

1 Effect of the proposal distribution

In this section we compare the three choices of the proposal distribution discussed in the paper:
(a) the Gaussian proposal; (b) the copula mean-only skewness correction; and (c) the copula mean-
and-skewness correction.

The time dimension was T = 100. We performed 30 simulations from the model with τ = 1.
This model choice ensures that there is a substantial amount of skewness in the observations and
will make the comparison between the three proposals more apparent. We measure the skewness
of the approximation by computing the parameter δ2 = a2/(1 + a2) such that values of δ2 close to
1 give large skewness and values close to 0 give low skewness. In our simulations, the skew-normal
parameter δ2 had an average value of 0.12 with the largest value being about 0.65.

The Monte-Carlo sizes were L = 100, N = 100, and Lg = 50.
For each time iteration we compute the effective sample size (ESS) for each method. Ideally

we want ESS to be close to N which will indicate that the proposal distribution generates good
samples while a very low ESS would indicate degeneracy in the particles, which is not uncommon
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Figure 1: Density plots of the average ESS divided by the total number of generaged particles for:
Gausian proposal (solid); Gaussian with mean-only correction (dashed); copula with mean-and-
skewness correction (dotted).

in high dimensions. Figure 1 shows a density plot for the distribution of the average ESS over
the L samples at each time iteration and for the 30 simulations (i.e, 30 × T values), expressed as
a proportion of the total number of samples N for each of the three proposal distributions. As
shown in the figure, the uncorrected Gaussian proposal has a significantly lower ESS that the two
corrected methods but the two skewness correction methods are very similar. Based on our results,
and in the following, we consider the mean-only corrected proposal only.

2 Comparison with the simplified Bayes factor estimator

The simplified Bayes factor estimator is given in (10). This estimator simulates conditioned on
φ = φ̃ only and uses these samples to compute the Bayes factor estimate for all φ ∈ Φ. In this
case the reverse logistic estimates are not needed. However, as we discuss in Remark 1, this can
potentially introduce bias if the true φ is far from φ̃.

In this section we compare the bias of the simplified Bayes factor estimator with the proposed
estimator (12) for the same Poisson model used in Section 1 but with increased L = 500 and τ = 10.
We consider (10) with three different values of φ̃ = 0.395, 0.500, 0.710, where the first value is very
close to the true φ, the second value is at the middle of the range of Φ, and the third value is far
from the true. The simplified Bayes factor estimator was tested on 30 simulated cases with burn-in
Lbi = 50, thinning Lth = 10 and final sample size 3000. The average estimate over the 30 cases for
each method was computed for each time point. This is plotted in Figure 2 for the parameters σ2

and φ. The estimation for the parameters α and β did not show any obvious discrepancy.
Our results verify that the simplified Bayes factor estimator is biased and this is more apparent

when φ̃ is far from the true φ. Although the estimation for φ and σ2 is biased, this does not
seem to influence the estimation of α and β. This phenomenon has been observed elsewhere in the
literature for the spatial-only case (see Zhang, 2002). Based on our results, the mixed Bayes factor
estimator is recommended instead of the simplified one.
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Figure 2: Average estimates for the parameters σ2 and φ from the different Bayes factor estimators.
The solid line is the mixed Bayes factor estimator (12). The dashed lines correspond to the simplified
Bayes factor estimator (10) for φ̃ = 0.395, 0.500, 0.710 from bottom to top. The average offline
estimates are shown by + and the true parameter value is shown by a horizontal line.

3 Estimation performance

In this section we assess the estimation performance of the proposed algorithm with the mean-
only corrected proposal. We use the same setting as in Section 2 and the same 30 simulated
data. We compare our estimates against an offline MCMC algorithm with the same Monte-Carlo
sizes as Section 2. The offline MCMC algorithm uses Gibbs sampling for the parameters θ and a
Metropolis-Hastings step to update φ and xi,t, the ith component of xt conditioned on everything
else. The prior for φ was the exponential distribution with mean 0.4 and the Metropolis-Hastings
step was selected for acceptance between 0.2 to 0.4. Convergence diagnostics of the MCMC output
did not indicate any issues.

Because of the increasing computational time, we only ran the offline algorithm for selected
time points Ti = 20, 40, 60, 80, 100, where at each time only data up to Ti were observed to make
the results comparable with the online method.

In Figure 3 we plot the parameter estimates for each parameter in time for the online algorithm
for each simulation and the distribution of the offline estimates from all simulations at the selected
time points. It can be seen that the distributions from the two methods are very similar. In
particular, the variability of our estimates reduces as we see more data and the bias is reduced
which is a desirable property.

For each time iteration, the computing time for the sequential empirical Bayes algorithm was
recorded, i.e. one iteration of Algorithm 2, and the average over the 30 simulations was taken. The
average computing time is shown in Figure 4. It can be seen that the computing time does not
increase in time as one would expect from an online algorithm.

Subsequently, the number of simulations was increased to 100, but in this case only the online
algorithm was computed. This was to assess any potential bias in our method. The results from
these simulations are shown in Figure 5 which show no apparent bias. On average, across all simula-
tions, the four parameters are estimated accurately. Note the convergence of the estimates towards
the true value and the reduction of uncertainty as more data are observed which demonstrates the
suitability of our method. The sample variance of our estimates across simulations at each time
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Figure 3: Comparison of estimates between the proposed online algorithm and the offline MCMC
algorithm for the four parameters α, β, σ2, φ. The light gray lines show the estimate for every
simulation and the dark gray is the mean over all simulations. The boxplots show the distribution
of the estimates using an offline MCMC algorithm with data available up to that time. The true
parameter value is shown by a dashed line.
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Figure 4: Average computing time per time iteration for the sequential empirical Bayes algorithm
across simulations. The computations were performed on computer with Intel Core i5-2500 3.30GHz
CPU and 4Gb RAM.

point was calculated and its reciprocal was plotted against time. The plots corresponding to the
four parameters are shown in Figure 6. It can be seen that the variability decreases linearly which
indicates a reduction in the length of the posterior credible interval in the order of 1/

√
t as time t

increases.

4 Simulation with longer time span

In this section we use simulated data to compare the proposed algorithm against an offline MCMC
algorithm. In this example the data were simulated from the model of Section 2 but with final time
increased to T = 1000. Only one sample was generated in this example. The data were subsequently
fitted using the proposed online algorithm and an offline MCMC smoothing algorithm. The priors
for both methods were the same as in Section 1 and a Monte Carlo sizes were as in Section 2.

Figure 7 shows the function logB1:t(φ; φ̃) computed by the proposed online algorithm for se-
lected values of t, along with the grids ΦK and Φ. The maximizer of this function is the estimate for
φ at time t. Note that, as t increases, the maximum of this function converges to the true value and
the uncertainty is reduced. To derive a confidence interval we view B1:t(φ; φ̃) as an unnormalized
posterior pdf for φ and the corresponding cumulative sum is the unnormalized cumulative distribu-
tion function (cdf). We then approximate the corresponding quantiles by polynomial interpolation
of φ against the normalized cdf.

The estimates (MC average for θ, EB estimate for φ) and 99% credible intervals (MC quantiles
for θ, polynomial interpolation for φ) for each parameter using data y1:t across t are plotted in
Figure 8. As shown in the figure, since both algorithms sample from the same posterior distribution,
conditioned on y1:t, the estimates and credible intervals obtained between them are very similar
and capture the true parameter values even for a longer time span.
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Figure 5: Estimates of α, β, σ2 and φ in that order across time. The dotted line shows the true
parameter value, and the light gray lines represent the estimates corresponding to each simulation
across time. The mean across all simulations is shown by a dark gray line.
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