63 research outputs found

    A Hybrid Approach to Cognition in Radars

    Get PDF
    In many engineering domains, cognition is emerging to play vital role. Cognition will play crucial role in radar engineering as well for the development of next generation radars. In this paper, a cognitive architecture for radars is introduced, based on hybrid cognitive architectures. The paper proposes deep learning applications for integrated target classification based on high-resolution radar range profile measurements and target revisit time calculation as case studies. The proposed architecture is based on the artificial cognitive systems concepts and provides a basis for addressing cognition in radars, which is inadequately explored for radar systems. Initial experimental studies on the applicability of deep learning techniques under this approach provided promising results

    Toward Deep Learning-Based Human Target Analysis

    Get PDF
    In this chapter, we describe methods toward deep learning-based human target analysis. Firstly, human target analysis in 2D and 3D domains of radar signal is introduced. Furthermore, range-Doppler surface for human target analysis using ultra-wideband radar is described. The construction of range-Doppler surface involves range-Doppler imaging, adaptive threshold detection, and isosurface extraction. In comparison with micro-Doppler profiles and high-resolution range profiles, range-Doppler surface contains range, Doppler, and time information simultaneously. An ellipsoid-based human motion model is designed for validation. Range-Doppler surfaces simulated for different human activities are demonstrated and discussed. With the rapid emergence of deep learning, the development of radar target recognition has been accelerated. We describe several deep learning algorithms for human target analysis. Finally, a few future research considerations are listed to spark inspiration

    An introduction to radar Automatic Target Recognition (ATR) technology in ground-based radar systems

    Full text link
    This paper presents a brief examination of Automatic Target Recognition (ATR) technology within ground-based radar systems. It offers a lucid comprehension of the ATR concept, delves into its historical milestones, and categorizes ATR methods according to different scattering regions. By incorporating ATR solutions into radar systems, this study demonstrates the expansion of radar detection ranges and the enhancement of tracking capabilities, leading to superior situational awareness. Drawing insights from the Russo-Ukrainian War, the paper highlights three pressing radar applications that urgently necessitate ATR technology: detecting stealth aircraft, countering small drones, and implementing anti-jamming measures. Anticipating the next wave of radar ATR research, the study predicts a surge in cognitive radar and machine learning (ML)-driven algorithms. These emerging methodologies aspire to confront challenges associated with system adaptation, real-time recognition, and environmental adaptability. Ultimately, ATR stands poised to revolutionize conventional radar systems, ushering in an era of 4D sensing capabilities

    A Novel Multi-Input Bidirectional LSTM and HMM Based Approach for Target Recognition from Multi-Domain Radar Range Profiles

    Get PDF
    Radars, as active detection sensors, are known to play an important role in various intelligent devices. Target recognition based on high-resolution range profile (HRRP) is an important approach for radars to monitor interesting targets. Traditional recognition algorithms usually rely on a single feature, which makes it difficult to maintain the recognition performance. In this paper, 2-D sequence features from HRRP are extracted in various data domains such as time-frequency domain, time domain, and frequency domain. A novel target identification method is then proposed, by combining bidirectional Long Short-Term Memory (BLSTM) and a Hidden Markov Model (HMM), to learn these multi-domain sequence features. Specifically, we first extract multi-domain HRRP sequences. Next, a new multi-input BLSTM is proposed to learn these multi-domain HRRP sequences, which are then fed to a standard HMM classifier to learn multi-aspect features. Finally, the trained HMM is used to implement the recognition task. Extensive experiments are carried out on the publicly accessible, benchmark MSTAR database. Our proposed algorithm is shown to achieve an identification accuracy of over 91% with a lower false alarm rate and higher identification confidence, compared to several state-of-the-art techniques

    Dual-band polarimetric HRRP recognition via a brain-inspired multi-channel fusion feature extraction network

    Get PDF
    Radar high-resolution range profile (HRRP) provides geometric and structural information of target, which is important for radar automatic target recognition (RATR). However, due to the limited information dimension of HRRP, achieving accurate target recognition is challenging in applications. In recent years, with the rapid development of radar components and signal processing technology, the acquisition and use of target multi-frequency and polarization scattering information has become a significant way to improve target recognition performance. Meanwhile, deep learning inspired by the human brain has shown great promise in pattern recognition applications. In this paper, a Multi-channel Fusion Feature Extraction Network (MFFE-Net) inspired by the human brain is proposed for dual-band polarimetric HRRP, aiming at addressing the challenges faced in HRRP target recognition. In the proposed network, inspired by the human brain’s multi-dimensional information interaction, the similarity and difference features of dual-frequency HRRP are first extracted to realize the interactive fusion of frequency features. Then, inspired by the human brain’s selective attention mechanism, the interactive weights are obtained for multi-polarization features and multi-scale representation, enabling feature aggregation and multi-scale fusion. Finally, inspired by the human brain’s hierarchical learning mechanism, the layer-by-layer feature extraction and fusion with residual connections are designed to enhance the separability of features. Experiments on simulated and measured datasets verify the accurate recognition capability of MFFE-Net, and ablative studies are conducted to confirm the effectiveness of components of network for recognition

    Sparsity-based autoencoders for denoising cluttered radar signatures

    Get PDF
    Narrowband and broadband indoor radar images significantly deteriorate in the presence of target-dependent and target-independent static and dynamic clutter arising from walls. A stacked and sparse denoising autoencoder (StackedSDAE) is proposed for mitigating the wall clutter in indoor radar images. The algorithm relies on the availability of clean images and the corresponding noisy images during training and requires no additional information regarding the wall characteristics. The algorithm is evaluated on simulated Doppler-time spectrograms and high-range resolution profiles generated for diverse radar frequencies and wall characteristics in around-the-corner radar (ACR) scenarios. Additional experiments are performed on range-enhanced frontal images generated from measurements gathered from a wideband radio frequency imaging sensor. The results from the experiments show that the StackedSDAE successfully reconstructs images that closely resemble those that would be obtained in free space conditions. Furthermore, the incorporation of sparsity and depth in the hidden layer representations within the autoencoder makes the algorithm more robust to low signal-to-noise ratio (SNR) and label mismatch between clean and corrupt data during training than the conventional single-layer DAE. For example, the denoised ACR signatures show a structural similarity above 0.75 to clean free space images at SNR of −10 dB and label mismatch error of 50%

    Application of the fruit fly optimization algorithm to an optimized neural network model in radar target recognition

    Get PDF
    With the development of computer technology, there are more and more algorithms and models for data processing and analysis, which brings a new direction to radar target recognition. This study mainly analyzed the recognition of high resolution range profile (HRRP) in radar target recognition and applied the generalized regression neural network (GRNN) model for HRRP recognition. In order to improve the performance of HRRP, the fruit fly optimization algorithm (FOA) algorithm was improved to optimize the parameters of the GRNN model. Simulation experiments were carried out on three types of aircraft. The improved FOA-GRNN (IFOA-GRNN) model was compared with the radial basis function (RBF) and GRNN models. The results showed that the IFOA-GRNN model had a better convergence accuracy, the highest average recognition rate (96.4 %), the shortest average calculation time (275 s), and a good recognition rate under noise in-terference. The experimental results show that the IFOA-GRNN model has a good performance in radar target recognition and can be further promoted and applied in practice

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie

    Statistical assessment on Non-cooperative Target Recognition using the Neyman-Pearson statistical test

    Get PDF
    Electromagnetic simulations of a X-target were performed in order to obtain its Radar Cross Section (RCS) for several positions and frequencies. The software used is the CST MWS©. A 1 : 5 scale model of the proposed aircraft was created in CATIA© V5 R19 and imported directly into the CST MWS© environment. Simulations on the X-band were made with a variable mesh size due to a considerable wavelength variation. It is intended to evaluate the Neyman-Pearson (NP) simple hypothesis test performance by analyzing its Receiver Operating Characteristics (ROCs) for two different radar detection scenarios - a Radar Absorbent Material (RAM) coated model, and a Perfect Electric Conductor (PEC) model for recognition purposes. In parallel the radar range equation is used to estimate the maximum range detection for the simulated RAM coated cases to compare their shielding effectiveness (SE) and its consequent impact on recognition. The AN/APG-68(V)9’s airborne radar specifications were used to compute these ranges and to simulate an airborne hostile interception for a Non-Cooperative Target Recognition (NCTR) environment. Statistical results showed weak recognition performances using the Neyman-Pearson (NP) statistical test. Nevertheless, good RCS reductions for most of the simulated positions were obtained reflecting in a 50:9% maximum range detection gain for the PAniCo RAM coating, abiding with experimental results taken from the reviewed literature. The best SE was verified for the PAniCo and CFC-Fe RAMs.Simulações electromagnéticas do alvo foram realizadas de modo a obter a assinatura radar (RCS) para várias posições e frequências. O software utilizado é o CST MWS©. O modelo proposto à escala 1:5 foi modelado em CATIA© V5 R19 e importado diretamente para o ambiente de trabalho CST MWS©. Foram efectuadas simulações na banda X com uma malha de tamanho variável devido à considerável variação do comprimento de onda. Pretende-se avaliar estatisticamente o teste de decisão simples de Neyman-Pearson (NP), analisando as Características de Operação do Receptor (ROCs) para dois cenários de detecção distintos - um modelo revestido com material absorvente (RAM), e outro sendo um condutor perfeito (PEC) para fins de detecção. Em paralelo, a equação de alcance para radares foi usada para estimar o alcance máximo de detecção para ambos os casos de modo a comparar a eficiência de blindagem electromagnética (SE) entre os diferentes revestimentos. As especificações do radar AN/APG-68(V)9 do F-16 foram usadas para calcular os alcances para cada material, simulando uma intercepção hostil num ambiente de reconhecimento de alvos não-cooperativos (NCTR). Os resultados mostram performances de detecção fracas usando o teste de decisão simples de Neyman-Pearson como detector e uma boa redução de RCS para todas as posições na gama de frequências selecionada. Um ganho de alcance de detecção máximo 50:9 % foi obtido para o RAM PAniCo, estando de acordo com os resultados experimentais da bibliografia estudada. Já a melhor SE foi verificada para o RAM CFC-Fe e PAniCo
    corecore