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Radar high-resolution range profile (HRRP) provides geometric and structural

information of target, which is important for radar automatic target recognition

(RATR). However, due to the limited information dimension of HRRP, achieving

accurate target recognition is challenging in applications. In recent years, with

the rapid development of radar components and signal processing technology,

the acquisition and use of target multi-frequency and polarization scattering

information has become a significant way to improve target recognition

performance. Meanwhile, deep learning inspired by the human brain has shown

great promise in pattern recognition applications. In this paper, a Multi-channel

Fusion Feature Extraction Network (MFFE-Net) inspired by the human brain is

proposed for dual-band polarimetric HRRP, aiming at addressing the challenges

faced in HRRP target recognition. In the proposed network, inspired by the

human brain’s multi-dimensional information interaction, the similarity and

difference features of dual-frequency HRRP are first extracted to realize the

interactive fusion of frequency features. Then, inspired by the human brain’s

selective attention mechanism, the interactive weights are obtained for multi-

polarization features and multi-scale representation, enabling feature aggregation

and multi-scale fusion. Finally, inspired by the human brain’s hierarchical

learning mechanism, the layer-by-layer feature extraction and fusion with residual

connections are designed to enhance the separability of features. Experiments

on simulated and measured datasets verify the accurate recognition capability

of MFFE-Net, and ablative studies are conducted to confirm the effectiveness of

components of network for recognition.
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1. Introduction

Brain-inspired computing is inspired by the human brain,
which utilizes multiple types of information, such as visual, sound,
and tactus, simultaneously to deal with tasks. Through interactions
among various neural systems or neurons, the brain is capable of
integrating diverse information while focusing on key elements
(Muttenthaler et al., 2020). This information processing approach
of the brain has inspired the development of neural network-based
multidimensional data fusion techniques (LeCun et al., 2015),
such as target detection (Yuan et al., 2023), tracking (Han et al.,
2019a, 2022), and recognition (Zeng et al., 2022b). By studying the
information processing mechanisms of the human brain, networks
can enhance their understanding of objects and improve confidence
in decision-making.

Radar target High-resolution range profile (HRRP) represents
the distribution of scattering centers along radar line of sight
(LOS), providing the geometric and structural characteristics
of a target (Chen et al., 2022). Because of its convenient
acquisition, processing, and storage (Wang et al., 2021), it
plays an important role in RATR. However, due to the limited
information dimension of HRRP, it is difficult to accurately
distinguish targets in complex electromagnetic environments. In
recent years, with the rapid advancement of radar components
and signal processing technology, acquiring target multi-frequency
bands and polarization scattering information has become an
important development direction to improve the target recognition
performance of HRRP in complex environments (Shi et al., 2020).

In recent decades, several works aiming at fusing and utilizing
multidimensional radar data, which include multi-frequency and
multi-polarization echoes to improve recognition performance,
have been investigated. To exploit the complementary information,
data-level fusion is an important technical approach (Zhang,
2010). It involves correlation registration of raw data and fusion
based on signal processing algorithms, including fuzzy parameter
estimation theory (Solaiman et al., 1999), Markovian model
(Fouque et al., 2000), wavelet transform (Cakir et al., 1999),
jointly modeling (Han et al., 2017, 2019b), and other algorithms.
Ruohong et al. (2010) fused multiple SAR images using principal
component analysis and discrete wavelet transform, followed by
SVM classification. Furthermore, a fusion approach combining
C, L-band, and multi-polarization (HH, HV, and VV) Synthetic
Aperture Radar (SAR) images through discrete wavelet transform
was utilized, and recognition was performed based on polarization
feature vectors (Hong et al., 2002). Chang et al. (2004) utilized
the feature scale uniformity transform to combine the relevant
features from hyperspectral and SAR data sources, followed
by an optimal Boolean classifier, which significantly enhances
classification accuracy compared to a single source.

Feature-level fusion is also important for multidimensional
data fusion, which involves extracting representative features from
different data sources and integrating them into a comprehensive
feature representation (Meng et al., 2020). Features mainly include
manual and deep features, while fusion includes concatenation,
addition, dimension transformation, and more. In Jiang et al.
(2022), multiple high-resolution features were extracted from
HRRPs, which fused with a CNN to improve unmanned aerial
vehicle (UAV) recognition. Considering the temporal dependencies

and multi-domain features within HRRPs, Zeng et al. (2022a)
proposed the Multi-Input Convolutional Gated Recurrent Unit
(MIConvGRU) structure, which utilizes temporal, frequency, and
time-domain information for recognition. Furthermore, there
exist studies that leverage a combination of physical knowledge,
attention mechanism, and deep networks (Zhang L. et al., 2020;
Pan et al., 2021; Liu et al., 2022). Zhang and Zhang (2022), used
self-attention to weight and interactively concatenate different
polarization channels. Zhang et al. (2021) incorporated artificial
features by attention to guide the model’s focus on HRRP units with
richer scattering information.

Decision-level fusion involves analyzing and integrating
multiple decision results to improve system robustness (Sinha et al.,
2008), mainly including voting, Dempster-Shafer (D-S) evidence
theory (Shao et al., 2016; Qin et al., 2022), Bayesian estimation
(Huan et al., 2010; Du et al., 2012; Wei et al., 2015), and expert rule.
Shengqi et al. (2015), proposed a Joint Sparse Representation (JSR)
method for multi-polarization HRRP recognition. Each single-
polarization HRRP is represented by adaptively selected atoms
from its corresponding dictionary, while recognition is conducted
by using an overall minimum reconstruction residual criterion. In
the study by Liu and Li (2013), the decisions of SAR were made
using a Fast Sparse Representation Classifier and a Support Vector
Machine Classifier; the decision results were then fused according
to Bayesian rules. For HRRP recognition, Zhang et al. (2011) fused
the decision results of multiple classifiers using weighted voting.

Although the approaches above enhance fusion performance,
there are still two issues that need to be addressed in
multidimensional data fusion and recognition:

(1) Feature extraction within a single dimension: Current
research mainly focuses on feature extraction within
individual polarization or frequency channels, lacking
exploration of the correlations between different channels.
This lack of investigation fails to ensure the robustness
of feature extraction within frequency or polarization
dimensions and the effectiveness of subsequent fusion.

(2) Feature fusion between multidimensional data: Due to the
different emphases of target discrimination information
contained in multidimensional data, feature fusion is
necessary for better utilizing complementary information.
However, there is little research on the fusion of multi-
frequency polarization HRRPs. Existing methods mainly
involve concatenating or summing multidimensional
features, without fully fusing the information reflecting
the variations of target characteristics across frequency
or polarization. If this crucial information is focused on
during the fusion stage, the recognition performance can
be greatly improved.

In order to address the aforementioned issues, this paper
proposes a brain-inspired multi-channel interaction feature
extraction network for dual-frequency polarization HRRP
fusion recognition, aiming to improve HRRP target recognition
performance in complex environments. The proposed network is
inspired by the information processing mechanism of the human
brain, so as to have more effective multi-dimensional information
fusion and feature representation capabilities. First, we design a
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Dual-Frequency Information Fusion (DFIF) module which utilizes
the Siamese network and attention mechanism to extract similar
and different scattering center features between frequencies.
Second, we design a Multi-Polarization Information Fusion
(MPIF) module that aggregates the multi-polarization features
through a dual-attention mechanism, and conduct multi-scale
polarization feature fusion with a symmetric encoder-decoder
structure. Third, we design a Residual Feature Enhancement
Learning (RFEL) module that enhances the separability of features
through residual-based learning and a progressive learning
structure. Moreover, a novel hybrid loss function, consisting of
scatter center loss, maximum coding rate reduction loss, and
cross-entropy loss, is introduced to reinforce feature extraction
and fusion. In general, the main contributions of this paper are as
follows:

(1) Inspired by the interaction of multi-dimensional
information mechanism in the human brain, we propose a
Dual-Frequency Information Fusion (DFIF) module that
utilizes the Siamese network and attention mechanism to
extract similar scattering center features and extract the
differential scattering center features through subtraction
and adaptively weighting between dual frequencies. With
this module, the dual-frequency features can be extracted
and fused effectively.

(2) Inspired by the attention mechanism in the human
brain, we propose a Multi-polarization Information
Fusion (MPIF) module that uses the double attention
mechanism to identify the key feature as generates global
descriptor, then assign them to each feature location to
realize the multi-polarization feature aggregation. And we
fuse the multi-scale fusion with a symmetric encoder-
decoder structure.

(3) Inspired by the human brain’s hierarchical learning
mechanism, we design a Residual feature enhancement
learning (RFEL) module to perform layer-by-layer feature
extraction and fusion with residual connections, which can
enhance the separability of features.

The rest of the paper is as follows: Section “2. Proposed
method” describes the proposed MFFE-Net in detail. Section
“3. Experimental results and analysis” analyzes and evaluates
the performance of MFFE-Net. Section “4. Conclusion”
concludes this paper.

2. Proposed method

This part first provides an overview of the proposed MFFE-Net.
Then, the sub modules of MFFE-Net are introduced, respectively.
Finally, we introduce the loss function we designed.

2.1. Overview of proposed MFFE-Net

The overall structure of MFFE-Net is shown in Figure 1,
which is a cascading structure. First, the Dual-Frequency
Information Fusion (DFIF) module extracts similar scattering

center features and the differential scattering center feature of
dual-frequency HRRP, respectively by Similarity Scattering center
feature Extraction (SSE) block and Differential Scattering center
feature Extraction (DSE) block. Second, the frequency fusion
features are sent into multi-polarization information fusion (MPIF)
module and consecutively pass-through the Double Attention
aggregation (D-AT) block and Multi-scale Feature Extraction
(MFE) block to achieve the aggregation representation of multi-
polarization information and the fusion of multi-scale features.
Third, the separability of fusion features is enhanced through the
Residual Enhancement Learning (REL) unit of Residual Feature
Enhancement Learning (RFEL) module. Finally, features are fed
into the classifier to obtain the final classification.

Moreover, the network is trained and updated by a hybrid
loss consisting of scattering center loss, maximum coding rate
decline loss, and cross-entropy loss, which, respectively act on DFIF,
RFEL, and Classifier.

2.2. Dual-frequency Information Fusion
module

The human brain is capable of interacting with visual,
taste, tactile, and other sensory information based on certain
criteria, enhancing the expression of features and thereby
improving its understanding of things (Ji et al., 2023), which
can guide deep learning-based radar multi-dimensional
information processing. Drawing inspiration from the human
brain’s multi-dimensional information interaction, we proposed
a Dual-frequency Information Fusion module, depicted in
Figure 1a, which aims to mine frequency-dimensional features
from two aspects of scattering center similarity and difference
through the means of feature extraction. For the first aspect,
we propose an SSE Block based on the idea of the Siamese
network, which employs convolution layers with shared
parameters to extract similarity scattering center features,
and then add them by attention weighting. For the second
aspect, we designed a DSE Block for differential scattering center
feature extraction. Specifically, we searched for the differential
scattering center through subtraction, and then enhanced the
differential scattering center features through spatial attention and
a convolution layer. Below, we will discuss the specifics of these
two submodules.

2.2.1. Similarity scattering center feature
extraction block

The SSE Block is shown in Figure 2A. First, the dual-
frequency HRRPs are fed into the SSE. Each frequency HRRP is
processed by convolutional layers to extract the scattering center
features. Inspired by the Siamese network, the convolutional layer
parameters are shared across two routes to obtain similar scattering
center features. Second, the dual-frequency similarity scattering
center features are weighted adaptively using the channel attention
module. With an aim to preserve the integrity of scattering center
features in different frequency HRRPs, compared to the traditional
SE-Net, ECA-Net avoids dimensionality reduction and effectively
captures inter-channel interaction information, so we introduce
ECA-Net (Wang et al., 2020) to achieve adaptive weighting. Set F =
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FIGURE 1

Overview of the proposed MFFE-Net. (a) Dual-frequency Information Fusion module. (b) Multi-polarization Information Fusion module. (c) Residual
Feature Enhancement Learning module.

FIGURE 2

Dual-frequency Information Fusion module. (A) The structure of Similarity Scattering center feature Extraction block (SSE) (B) Differential Scattering
Center Feature Extraction Block.

[f1, f2, ...fC], fi ∈ RL×1, i = 1, 2, ...C to denote the input feature
maps to ECA-Net, their global spatial information is squeezed
through the global average pooling, which is used as the channel
descriptor of the feature map. Then, 1∗k convolution is used to
realize cross-channel information interaction. Given the channel
dimension C, the convolution kernel size k can be adaptively
determined as:

k = ψ (C) =
∣∣log2 (C)

/
γ+ b

/
γ
∣∣
odd (1)

where |t|odd represents the odd number closest to t. We refer to the
experimental setup in Wang et al. (2020):γ = 2, b = 1.

After that, the scattering center features with adaptive
weighting of dual-frequency bands are added and fused to obtain
the preliminary fusion result Fb0.

Finally, we further extract the feature Fb0 of the previous step;
specifically, we pass it through two parallel convolution layers,
wherein the output of convolution layer Cf is similarity scattering
center feature Fb, while the convolution layer Cs extracts the robust
scattering center feature Sf , which is constrained by the scattering
center loss function from the perspective of backpropagation,
reducing the influence of other regions on the scattering centers.
Finally, the robust scattering center feature Sf is superimposed onto

Fb. This process yields the enhanced similarity scattering center
features, which is outlined as follows:

Sf = Cs (Fb0) (2)

Fb = Cf (Fb0)+ Sf (3)

2.2.2. Differential scattering center feature
extraction block

The DSE Block is shown in Figure 2B. Firstly, the dual-
frequency HRRPs are subtracted to obtain the differential scattering
center information FI . Second, a spatial attention module is
designed to dynamically search for scattering center differential
information that contribute to recognition, which applies average
pooling and maximum pooling operations along the channel axis
and connects them to generate an effective feature description.
Then, the feature description is sent into a convolutional layer
to generate a final spatial attention weight sequence through an
activation function, which is then multiplied with FI to obtain
the attention-weighted feature FS. Third, the differential scattering
center features Fd are obtained by further feature extraction using
the convolution layer.
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FIGURE 3

Multi-polarization Information Fusion module (A) Structure of Double-Attention Aggregation block (B) Multi-scale feature extraction block.

Additionally, the similar scattering center features from
SSE and the different scattering center features from DSE
are recombined. By reassembling the corresponding channel
neighbors, the dual-frequency fusion features are obtained.

2.3. Multi-polarization Information
Fusion module

In visual tasks, the human brain can selectively focus on
specific information while ignoring other irrelevant information,
and dynamically adjusts the focus of attention (Shi et al., 2022).
This helps reduce the cognitive load, allowing the brain to process
complex environments and stimuli. Inspired by the human brain’s
selective attention mechanism, for the polarization dimension, our
approach involves first aggregating the polarization information
and subsequently conducting multi-scale feature extraction and
fusion. This paper proposes a multi-polarization information
fusion (MPIF) module, which consists of a dual attention
aggregation (D-AT) block and multi-scale feature extraction (MFE)
block. First, the previous module’s output feature is initially
processed by D-AT, which identifies the key feature and generates
global descriptors; it then assigns them to each feature location
to realize the multi-polarization feature aggregation. Second, the

aggregate features are fed into the MFE block to realize multi-
scale feature extraction and fusion through the symmetric encode-
decode structure. The D-AT and MFE are described separately
below.

2.3.1. Double-attention aggregation block
Our goal is to aggregate all the features through an attention

mechanism, thereby obtaining the weights of key features, and
subsequently reassigning these weights to them. Therefore, we
choose the dual attention aggregation (D-AT) block (Chen et al.,
2018), which is shown in Figure 3A. First, it extracts features A and
B by convoluting the input feature maps. Then the outer product of
the vectors in the two feature graphs A and B is taken, that is, the
matrix multiplication of A and B:

A = Conv1 (X) (4)

B = softmax (Conv2 (X)) (5)

G (A,B) = ABT
=
[
g1, ..., gn

]
∈ Rm×n, gi = Ab

T
i =

∑
∀

bijaj

(6)
where, B is ensured by SoftMax after convolution to

∑
j bij = 1,

making it a valid attention weight vector. G can be understood as
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the output of a set of key feature primitives, each gi is obtained by
aggregating local features weighted by bi.

Second, features obtained from the first step are distributed
across each location of input space, distributing an adaptive
primitive for the need of each location’s feature vi to capture more
complex relationships. The implementation can be seen as selecting
a subset of feature vectors from Ggather(X) using a soft focus:

zi =
∑
∀

vijgj = Ggather (X) vi = Gvi, where
∑
∀ij

vij = 1

(7)
Finally, an additional convolution layer is added at the end to
extend the number of channels for the output Z, enabling it to be
encoded back into the input X by adding elements. The general
formula is as follows:

Z′ = Conv4
(
Fdistr

(
Ggather (X) ,V

))
= Conv4

(
Ggather (X) softmax (Conv3 (X))

)
= Conv4

([
Conv1 (X) softmax (Conv2 (X))

]
softmax (Conv3 (X))

)
(8)

The D-AT block realizes the aggregation of multi-polarization
features, which serves as the next step of polarization feature fusion.

2.3.2. Multi-scale feature extraction block
The multi-scale feature fusion block is shown in Figure 3B.

Specifically, a convolutional autoencoder structure is designed to
fuse them. Convolution has local awareness of feature maps, while
average pooling and maximum pooling compress feature maps
based on mean and maximum, respectively. First, to enrich the
representation of polarization dimension information, the features
from D-AT are extracted through the convolution layer, average
pooling layer, and maximum pooling layer, respectively. Second,
considering extracting polarization features from different scales
and that low-level features tend to capture details and high-
level features encapsulate overall characteristics, a convolutional
encoder structure to obtain features of multiple scales through
convolution operations of different sizes is used. Finally, MFE
block fuses the multi-scale features obtained in the previous step.
Specifically, the convolutional decoder structure is designed to
retrieve and reconstruct the output features of the last layer
of the encoder. Simultaneously, skip connections are utilized
to splice and fuse the features from each layer of the decoder
with the corresponding scale features from the encoder. After
that, the final fusion result is obtained through the convolution
layer.

2.4. Residual feature enhancement
learning module

The brain’s hierarchical learning mechanism refers to the
process of gradually establishing complex hierarchical structures,
from low-level perception to high-level abstraction, to progressively
learn and comprehend information. This mechanism enables
the brain to process information at different levels, leading
to comprehensive and profound cognition (Ji et al., 2022).
Inspired by the human brain’s hierarchical learning mechanism,
to further enhance feature separability and obtain the most
effective linear discriminant representation for target recognition,

the Residual Feature Enhancement Learning (RFEL) module is
designed, depicted in Figure 4. For a Residual Enhancement
learning (REL) unit in RFEL, features are extracted through
three parallel convolutional routes, in which the convolutional
layer is increased step-by-step, and the features from the upper
level are joined with the features of the current level, and
then passed on to the subsequent convolutional layer within
the current level. This structure is considered feasible in radar
target recognition and has been experimentally validated for its
effectiveness (Pei et al., 2017). Moreover, the feature separability
is enhanced by adding the initial feature to the final convolution
result by skip-connection. This integration further improves the
discriminant representation of the features. In addition to REL,
skip-connections are also adopted, which splices the features
learned by multiple REL, strengthens the transmission of features,
and reduces the number of model parameters to a certain
extent.

2.5. Loss function

To sum up, the mixed loss function used in the model of the
paper is:

Lall = αLs + βL1R + γ Lc (9)

The Ls represents scattering center loss, LM R represents maximum
coding rate reduction loss, and Lc represents crossentropy loss.
α,β,and γ are the weights coefficient of scattering loss, MCR2 loss,
and cross entropy loss, respectively.

To improve the effectiveness of dual-frequency similarity
scattering center feature fusion, a scattering center loss function is
proposed, which is defined as follows:

Ls = Lsn + Lsl (10)

Lsn =
∣∣∣∣Sfn −

(
X1

sn ∪ X2
sn... ∪ Xx

sn
)∣∣∣∣

2 (11)

Lsl =
∣∣∣∣Sfl −

(
X1

sl ∪ X2
sl... ∪ Xx

sl
)∣∣∣∣

2 (12)

Where Ls is the loss of scattering center, Lsn is the loss of the
number of scattering centers, and Lsl is the loss of the location
of scattering centers. Sfn is the information about the number of
fused HRRP scattering centers, and Xi

sn is the information about
the number of HRRP scattering centers in the i-th frequency. Sfn
is the location information of HRRP scattering center, and Xi

sl
is the location information of HRRP scattering center in the i-th
frequency. For Sfn and Sfl, they are obtained from the sequence
of HRRP strong scattering centers Sf extracted by the convolution
layer Cs of SSE.

Furthermore, in the RFEL module, we employed a maximum
coding rate reduction (MCR2) loss function to constrain the feature
enhancement effect from the perspective of backpropagation. This
loss function achieves the compression of intra-class distances in
the feature space and expands the overall space, thereby enhancing
feature separability. The RFEL module and the MCR2 loss function
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FIGURE 4

Structure of Residual Feature Enhancement Learning module.

complement each other (Ma et al., 2007; Wu et al., 2021; Chan et al.,
2022). The MCR2 loss function is depicted as follows:

L1R = 1R(Z,5, ε) = R(Z, ε)− Rc(Z, ε|5)

=
1
2

log det(I + αZZ∗)︸ ︷︷ ︸
R(Z,ε)

−

k∑
j=1

γj

2
log det(I + αjZ5jZ∗)

︸ ︷︷ ︸
Rc(Z,ε|5)

(13)

Where 1R(Z,5,ε) represents the change of encoding rate, and
I is the identity matrix. Z = [z1,. . .,zm], ziεR,i = 1, . . .,m is the
given feature set, Z contains k categories,Z = Z1 ⋃Z2 ⋃ ...

⋃
Zk,

α = n
/

m2,αj = n
/

tr
(∏j

)
2, and γj = tr

(∏j
)/

m, for j = 1,. . .,k,∏
= {

∏j
∈ Rm×m

}
k
j=1 is a set of diagonal matrices, the diagonal

term
∏j(i,i) of

∏j represents the probability that sample zi belongs
to subset j.

Finally, the cross-entropy loss function is used for classification.

3. Experimental results and analysis

This section validates the effectiveness of our proposed model
using dual-frequency and multi-polarization HRRPs data. Section
“3.1. Data description” introduces the simulation dataset and the
measured dataset. Section “3.2. Experiment settings” presents the
comparison methods employed in the experiments, along with
the configuration of MFFE-Net and the experimental conditions.
Sections “3.3. Recognition results” presents the experimental results
obtained from the simulation dataset and the measured dataset,

respectively. In section “3.4. Ablation study and analysis,” ablation
experiments were conducted to show the feature visualization of
our model and analyze the results regarding the MCR2 loss effect.
This analysis serves to further validate the effectiveness of our
proposed method.

3.1. Data description

3.1.1. Electromagnetic simulation dataset of five
Civilian Vehicles (ESD)

We constructed a dual-frequency multi-polarization
simulation dataset, which considered a complex identification
scenario. The HRRP data of Ku(16 GHz)/W(92 GHz)-center
frequency with 0.75 GHz bandwidth, and full polarization (HH,
VH, HV, and VV), included five classes of civilian vehicle targets,
namely, car, SUV, pick-up, minibus, and bus. The simulation uses
the target CAD model with 60 azimuth angles of [1◦, 360◦] spaced
by 6◦, with elevation angle of 28◦, 30◦. The HRRP of each azimuth
is enhanced with noise based on the Monte Carlo method, and
30 HRRP samples are obtained. As a result, the dataset contains
five targets for a total of 18,000 (18,000 = 5 × 60 × 30 × 2,
target number × azimuth angle number × data augmentation
number × elevation angle number) dual-frequency and multi-
polarization HRRP samples. The simulation target models and the
HRRPs are shown in Figure 5 (only the fully polarization HRRPs
of 0◦ azimuth is shown). Based on the collected data, we conduct
our experiments under two conditions. In the first condition, we
randomly select 70% of the samples with elevation angle of 30◦

for training and 30% for testing, which results in 6,300 samples of
training set and 2,700 samples of test set. In the second condition,
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FIGURE 5

Simulation target models and full polarimetric HRRP samples of five different vehicles.

FIGURE 6

Real target models and full polarimetric HRRP samples of three different vehicles.
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TABLE 1 Detailed configurations of MFFE-Net.

Module Layer Configuration Output size

Dual-frequency information fusion module SSE L1_#1,#2 Conv 4@1× 3 4× 1× 200

L2_#1,#2 Conv 4@1× 3 4× 1× 200

L3_#1,#2 ECA-Net 4@1× 7 4× 1× 200

L4_#1,#2 Conv 4@1× 7 4× 1× 200

DSE L1 SAM 4× 1× 200

L2 Conv 4@1× 3 4× 1× 200

L3 Conv 4@1× 3 4× 1× 200

Multi-polarization information fusion module D-AT L1,2,3,4 Conv 8@1× 1 8× 1× 200

MPF L1_#1 Conv 8@1× 3 8× 1× 200

L1_#2 AvgPool 8× 1× 200

L1_#3 MaxPool 8× 1× 200

L4,5,6,7 Conv 8@1× 5 10× 1× 25

L8,9,10 Up Conv 8@1× 4 40× 1× 200

L11 Conv 8@1× 8 30× 1× 25

Residual feature enhancement learning module REL1,2,3 L1_#1,#2 Conv 30@1× 5 15× 1× 25

L1_#3 Conv 30@1× 5 30× 1× 25

L2_#1,#2 Conv 30@1× 5 15× 1× 25

L3 Conv 30@1× 5 30× 1× 25

Classification FC L1 FC layer 1,000 500

L2 FC layer 100 M

L3 Softmax M

in order to test the robustness of the proposed model, we selected
data with an elevation angle of 30◦ as training set and data with an
elevation angle of 28◦ as test set, which results in 9,000 samples of
training set and 9,000 samples of test set.

3.1.2. Real measurement dataset of three Civilian
Vehicles (RMD)

The measured data set includes three common types of vehicles:
truck, SUV, and van. The radar operates at Ku(16 GHz) and
W(92 GHz) center frequency, and bandwidth is 1.25 GHz. In
the outfield scene, the measured data is collected discontinuously
for stationary targets. For each type of vehicle target, dual-
frequency and full-polarization HRRPs are collected with 8
azimuth angles of [1◦,360◦] spaced by 45◦. HRRPs of the
three targets are shown in Figure 6 (only HRRPs of Head
attitude are shown). After processing, we obtained a total
of 7,200 frames of dual-frequency full-polarization HRRPs, of
which trucks, SUVs, and crates each have 2,400 frames. We
randomly sampled 70% of HRRP samples from all the data
for training, and the remaining 30% samples were used for
testing.

3.2. Experiment settings

3.2.1. Comparison method
We compare the performance of MFFE-Net with traditional

target recognition methods by adjusting these methods to suit

the dual-frequency full polarization data. Specifically, we consider
machine learning methods including Support Vector Machine
(SVM) (Lardeux et al., 2006) and K-Nearest Neighbor (KNN)
(Wenbo et al., 2019), neural networks such as One-dimensional
Convolutional Neural Network (1D-CNN) (Song et al., 2019),
LSTM Recurrent Neural Network (LSTMRNN) (Jithesh et al.,
2017), and stacked autoencoders (SAE) (Zhao et al., 2018), one-
dimensional stack convolutional autoencoders (1D-SCAE) (Zhang
G. et al., 2020), VGGNet (Jun et al., 2018), ResNet-34 (Park et al.,
2020), and DenseNet (Du et al., 2021).

Specifically, for SVM, KNN, AE, and LSTM, we splice the
HRRP sequence of eight dual-frequency fully polarized channels in
the distance dimension to form an input 1D-tensor of 1× (1∗8∗N)
(N is the number of HRRP distance units). For CNN, CAE,
VGGNet, ResNet-34, and DenseNet, we splice multi-frequency
and multi-polarization HRRP in channel dimension to obtain
8 × N input tensor. The remaining experimental conditions are
consistent with MFFE-Net.

3.2.2. Network configuration
The specific configuration of the proposed model (Take the

model using dual band full polarization as an example) is shown
in Table 1, where Conv represents Convolutional layer, their
hyper-parameters denote as (number of input feature) @ (kernel
size of Conv). Lx_#y represents the y-th branch of x-th layer.
M represents the number of targets. The size of output is
expressed as Channel × H × W (for simulation HRRP, H = 1,
W = 200).

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1252179
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1252179 August 16, 2023 Time: 14:37 # 10

Yang et al. 10.3389/fnins.2023.1252179

TABLE 2 Detailed accuracy results of different types of ESD via several HRRP recognition methods in the first condition.

Method Car SUV Pick-up Minibus Bus Overall
accuracy

F1-Score AUC

Ours 98.70% 99.26% 97.59% 98.33% 98.33% 98.37% 0.9884 0.9905

SVM 82.59% 97.04% 22.96% 61.30% 95.18% 78.73% 0.7836 0.7654

KNN 92.22% 92.96% 68.70% 79.26% 72.59% 81.15% 0.8132 0.8025

1D-CNN 95.19% 88.15% 76.30% 83.1% 92.96% 87.00% 0.8877 0.8816

LSTMRNN 94.26% 93.52% 81.67% 73.70% 84.81% 85.15% 0.8565 0.8631

SAE 88.70% 87.22% 82.22% 81.30% 98.33% 87.56% 0.8815 0.8785

1D-SCAE 93.52% 87.22% 77.04% 86.30% 93.15% 87.44% 0.8782 0.8780

VGGNet 98.52% 90.00% 85.00% 81.48% 98.89% 90.52% 0.9058 0.9086

ResNet-34 91.85% 95.52% 90.93% 92.22% 97.22% 93.19% 0.9318 0.9245

DenseNet 95.00% 96.11% 88.15% 91.67% 93.70% 93.07% 0.9346 0.9365

The values in bold are the accuracy, F1-Score, and AUC of our method (MFFE-Net).

TABLE 3 Detailed accuracy results of different types of ESD via several HRRP recognition methods in the second condition.

Method Car SUV Pick-up Minibus Bus Overall
Accuracy

F1-Score AUC

Ours 89.35% 88.72% 90.59% 89.33% 92.71% 90.23% 0.9062 0.9029

SVM 68.11% 78.25% 25.63% 63.43% 81.92% 63.86% 0.6393 0.6388

KNN 72.18% 70.61% 52.09% 70.54% 62.36% 65.66% 0.6585 0.6549

1D-CNN 84.32% 81.15% 76.62% 78.41% 84.24% 81.08% 0.8126 0.8138

LSTMRNN 80.30% 81.48% 70.77% 73.25% 80.15% 77.22% 0.7713 0.7689

SAE 80.25% 82.26% 75.12% 78.06% 87.34% 81.11% 0.8105 0.8188

1D-SCAE 85.63% 81.12% 78.21% 80.63% 85.03% 82.73% 0.8242 0.8271

VGGNet 90.06% 85.52% 81.10% 76.65% 91.12% 84.86% 0.8525 0.8488

ResNet-34 86.92% 88.60% 81.13% 85.12% 89.42% 86.44% 0.8687 0.8665

DenseNet 86.83% 87.93% 82.86% 86.43% 88.68% 86.75% 0.8677 0.8678

The values in bold are the accuracy, F1-Score, and AUC of our method (MFFE-Net).

3.2.3. Experimental conditions
To quantitatively evaluate the performance of each model,

we utilize several metrics including overall accuracy (OA) and
per-class accuracy (PA), F1-Score, and AUC. Furthermore, all
experiments are conducted using PyTorch codes on a 64-bit Linux
operating system equipped with 24 GB RAM and 2 NVIDIA
GeForce RTX 3,090 graphics cards. In the training phase, the batch
size is set to 32, the learning rate is 0.01 with the decay of 0.95 times
per epoch, and the network is optimized with adaptive moment
estimation (Adam) algorithm.

3.3. Recognition results

3.3.1. Experimental results on ESD
This paper conducted a comparison between MFFE-Net and

traditional target recognition methods to assess their performance.
Table 2 presents the OA, average recognition accuracy, and F1-
Score of different methods for each category. It can be observed
that machine learning models yield suboptimal recognition results,
while deep learning models exhibit superior performance. Notably,
large deep models like ResNet-34 and DenseNet achieve OA
of 93.19 and 93.07%, respectively, showing the effectiveness of
deep learning models on dual-frequency and multi-polarization

HRRPs. Our proposed MFFE-Net obtains the highest OA, F1-
Score, and AUC, outperforming all other methods with a 5.18%
improvement in OA, a 0.0566 improvement in F1-Score, and
a 0.066 improvement in AUC over the suboptimal ResNet-34,
surpassing the worst-performing SVM by 19.64% in OA, 0.2048 in
F1-Score, and 0.2251 in AUC. These demonstrated the effectiveness
of our approach in fully learning target features and achieving
precise target recognition.

Furthermore, to verify the robustness of the model, we also
compared the pitch angle sensitivity tests of MFFE-NET with other
methods. In Table 3, it can be observed that using data with a
pitch angle of 28◦ for training and data with a pitch angle of 30◦

for testing, all methods show a decrease in recognition accuracy.
However, our method still achieves an OA of 90.23%, a F1-Score
of 0.9062, and an AUC of 0.9029, outperforming the suboptimal
DenseNet with a 3.48% improvement in OA, a 0.0385 improvement
in F1-Score, and a 0.0351 improvement in AUC, surpassing the
worst-performing SVM by 26.37% in OA, 0.2669 in F1-Score, and
0.2641 in AUC. These demonstrated the robustness of our approach
in precise target recognition.

3.3.2. Experimental results on RMD
The recognition performance of MFFE-Net with that of

traditional target recognition methods were compared. The
recognition rate of different methods with each target are shown
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TABLE 4 Detailed accuracy results of different types on RMD via several HRRP recognition methods.

Method Truck SUV Van Overall accuracy F1-Score AUC

Ours 99.03% 99.31% 98.75% 99.03% 0.9816 0.9873

SVM 91.20% 95.89% 59.33% 88.60% 0.8625 0.8546

KNN 100% 81.33% 46.94% 87.13% 0.8611 0.8613

1D-CNN 99.41% 98.83% 44.86% 92.24% 0.9021 0.9018

LSTMRNN 98.01% 87.61% 92.92% 93.66% 0.9216 0.9259

SAE 90.95% 96.67% 94.72% 93.27% 0.9252 0.9288

1D-CAE 93.92% 99.94% 84.58% 94.66% 0.9415 0.9411

VGGNet 100% 99.78% 76.53% 96.59% 0.9525 0.9573

ResNet-34 98.89% 94.11% 98.89% 97.02% 0.9587 0.9543

DenseNet 99.93% 98.44% 78.47% 96.59% 0.9439 0.9433

The values in bold are the accuracy, F1-Score, and AUC of our method (MFFE-Net).

in Table 4. It can be seen that most deep learning models
outperform traditional machine learning methods. Compared with
KNN, which has the worst OA, 1D-CNN improves OA by more
than 5%, and DenseNet improves OA by 9.46%. This proves the
feature extraction and learning capabilities of deep learning-based
recognition models. Among the deep models, our proposed MFFE-
Net achieved the highest OA, F1-Score, and AUC, surpassing the
second-best ResNet34 by 2.01% in OA, 0.0229 in F1-Score, and
0.033 in AUC, outperforming VGGNet and DenseNet more than
3% in OA, and achieving 10% higher than the worst-performing
KNN. PA of each target also achieved the ideal recognition
performance. Our results show that the proposed method can
effectively learn the feature of the target and achieve fine target
recognition.

Moreover, to better validate the recognition performance of
the model on each category, we analyzed the confusion matrix
on RMD. In Table 5, we observe that our model achieves a high
OA of 99.03% on RMD, among which Truck achieves a PA of
98.75%, SUV achieves a PA of 99.31%, and Van achieves a PA of
99.30%. These demonstrated the effectiveness of our method in
achieving accurate recognition. It can be seen that five samples of
Truck are misclassified as SUV, which may be because the scattering
center characteristics of Truck are close to SUV at some azimuths,
increasing the possibility of misjudgment of the model. However,
Truck and Van, although similar in shape, can be accurately
identified, which further validated the fine recognition capabilities
of our model.

3.4. Ablation study and analysis

To further analyze the fusion and recognition effectiveness of
MFFE-Net, this paper conducted a series of ablation experiments
focusing on two aspects: network modules and loss functions.
The first type of ablation experiment examined the effectiveness
of submodules (excluding the loss function) within MFFE-Net,
including SSE Block, DSE Block, D-AT Block, MFE Block, and
REL unit. The second type investigated the validity of loss function,
including scattering center loss function and maximum coding rate
decline loss function. Except for certain examined components, the
rest of the settings remain consistent.

TABLE 5 Confusion matrix of the FPFR-Net on RMD.

Type Truck SUV Van PA

Truck 713 5 2 98.75%

SUV 2 715 3 99.31%

Van 7 2 711 99.30%

OA 99.03%

TABLE 6 Ablation study of submodule.

Version SSE DSE D-AT MPF REL OA

(a)
√

× × × × 83.56%

(b) ×
√

× × × 81.10%

(c)
√ √

× × × 84.93%

(d)
√ √ √

× × 88.37%

(e)
√ √

×
√

× 86.89%

(f)
√ √ √ √

× 90.81%

(g)
√ √ √ √ √

93.41%

3.4.1. Ablation study of network submodule
The results of the ablation experiments on the MFFE-Net

submodule on ESD are presented in Table 6. From lines 1, 2, and
3, it can be observed that using only SSE block achieves an OA of
83.56%, while using only the DSE block achieves an OA of 81.10%.
The contribution of the DSE module appears to be relatively small.
In the DFIF module, when both SSE and DSE submodules are
used simultaneously, an OA of 84.93% is achieved, demonstrating
the effectiveness of both SSE and DSE. Furthermore, after adding
D-AT and MPF based on line 3, OA improves by 5.38%. Due to
D-AT’s attention to information aggregation, the recognition effect
has been significantly improved. Finally, with the addition of the
REL unit, further improvements in the recognition rates can be
observed. This confirms that the REL unit effectively enhances the
features. Through comparison, it can be seen that each submodule
proposed by us has a positive effect on the recognition task. Our
model can fully mine the characteristic information of frequency
and polarization dimension, and effectively integrate it to achieve
good recognition effect.

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1252179
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1252179 August 16, 2023 Time: 14:37 # 12

Yang et al. 10.3389/fnins.2023.1252179

FIGURE 7

Two-dimensional t-SNE projection of feature vectors extracted from network versions (A–G), corresponds to MFFE-Net version in the ablation study
of network submodule.

TABLE 7 Ablation study of loss function.

Scatter loss MCR2 loss Overall accuracy

× × 93.41%
√

× 96.15%

×
√

95.78%
√ √

98.37%

In order to more intuitively compare the effects of each module,
this paper used t-SNE to visualize the feature representation
distribution of the test sample, as shown in Figure 7. By comparing
(A), (B), and (C), our SSE and DSE both achieve feature
separation in the feature space. DSE, in particular, demonstrates a
superior effect, proving the significance of dual-frequency HRRP
differences in recognition. Moreover, the combined effect of the
two blocks surpasses that of a single block, indicating their

compatibility when working together. Through a comparison of
(C), (D), (E), and (F), the D-AT realized the aggregation of
multi-polarization information, and MPF achieved superior fusion
results. Furthermore, comparing (G) with other versions confirms
the positive impact of all our designed submodules and their ability
to achieve collaborative work.

3.4.2. Ablation study of loss function
Based on the submodule ablation experiment, this paper

conducted ablation experiments to assess the effectiveness of the
loss function, as shown in Table 7. It can be seen from the
first and second rows that the network using the scattering loss
function increases OA by 2.74%, which proves that the scattering
loss function positively contributes to dual-frequency information
fusion. Furthermore, it can be seen from the first and third rows
that OA increases by 2.37% after adding MCR2 loss function, which
proved the separable transformation capability of MCR2 loss. By
incorporating both the scattering loss and MCR2 loss, MFFE-Net

FIGURE 8

The coding rate curve of feature space.
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achieved an OA of 98.37%, thereby validating the effectiveness of
the two loss functions proposed in our study.

The effectiveness of MCR2 loss on improving the model’s
feature space transformation ability were also explored. The
encoding rate serves as a measure of the feature space size: the
stronger the feature separability, the higher encoding rate of the
whole space R and smaller spatial encoding rates within class
Rc. Figure 8 illustrates the change curve of the value associated
with the feature space encoding rate under the aforementioned
experimental conditions. It can be seen that the inter-class encoding
rate R of the feature space gradually increases, while the intra-
class spatial encoding rate Rc gradually decreases, and the encoding
rate difference 1R increases, which indicates explicit expansion of
the entire feature space, and each class is being compressed and
becoming more compact. Thus, it is easier to achieve accurate target
recognition.

4. Conclusion

This paper proposes using the brain-inspired neural network
(MFFE-Net) to counter the challenging dual-band polarimetric
HRRP recognition problem which so far still widely relies
on feature extraction within a single dimension and fusion
between multidimensional data. Specifically, inspired by the
human brain’s multi-dimensional information interaction, selective
attention, and hierarchical learning mechanism, the corresponding
network modules are designed for multi-frequency scattering
information fusion, multi-polarization scattering information
fusion, and feature separability enhancement learning, respectively.
Experiment results on simulated and measured datasets validate
the superiority of the proposed MFFE-Net, which can effectively
improve the target recognition accuracy of dual-band polarimetric
HRRP. Additionally, ablative studies confirmed the reasonability
and effectiveness of submodules and loss functions, which
effectively realize the multi-dimensional information fusion and
feature separability enhancement.

This work is a preliminary study on the development of
dual-frequency and multi polarization fusion recognition. To fully
realize their potential, we will further optimize the framework
and parameters of the model. Moreover, we consider explicitly
embedding the dual-frequency HRRP scattering characteristics
into the neural network structure to further improve the
interpretability of the model.
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