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ABSTRACT

In many engineering domains, cognition is emerging to play vital role. Cognition will play crucial role in radar 
engineering as well for the development of next generation radars. In this paper, a cognitive architecture for radars 
is introduced, based on hybrid cognitive architectures. The paper proposes deep learning applications for integrated 
target classification based on high-resolution radar range profile measurements and target revisit time calculation as 
case studies. The proposed architecture is based on the artificial cognitive systems concepts and provides a basis 
for addressing cognition in radars, which is inadequately explored for radar systems. Initial experimental studies 
on the applicability of deep learning techniques under this approach provided promising results.

Keywords:  Cognitive radar; Cognitive architecture; Artificial cognitive system; Convolutional neural network; Long 
short-term memory - recurrent neural network

1. InTRoduCTIon
Artificial intelligence (AI) applications to engineering 

domains can potentially take defence equipment to the next 
level. The concept of cognitive radar was introduced by 
Haykin1. The early initiatives in radars were based on first 
generation AI techniques such as knowledge based systems 
and expert systems. Subsequently knowledge based fully 
adaptive radar (FAR) schemes started to evolve. Further 
there were misperceptions between cognitive radar and fully 
adaptive radar terminologies. The distinctions between these 
types of radars were clearly brought out by Haykin2, et al. 
Any programmable fully adaptive radar cannot be called as a 
cognitive radar. A cognitive system should have the ability to 
perceive the environment, learn from experiences, anticipate 
outcome of events and act to pursue goals. 

 
2. TRAdITIonAl RAdARS And CognITIve 

RAdARS
Radars are classified2 into traditional active radar (TAR), 

fore-active radar or fully adaptive radar (FAR) and cognitive 
radar (CR). The traditional active radars operate in feed 
forward manner. TAR could implement adaptive algorithms for 
radar operations. The FAR has feedback loop, which could get 
information feedback from the environment. The paper defines 
cognitive radar which will have capabilities of TAR, FAR 
and ability to learn from experience using Fuster’s paradigm 
of cognition2. The Fuster’s paradigm of cognition has four 
elements viz., perception-action cycle, memory, attention and 
intelligence. The whole radar system constitutes a dynamic 
closed feedback loop encompassing transmitter environment 

and receiver. To proceed further for realisation of cognitive 
radars, it is important to study advances in artificial cognitive 
systems (ACS), their models, and architectures.

 
3. ARTIfICIAl CognITIve SySTemS 

Cognition is defined5 as the process by which an 
autonomous system perceives its environment, learns from 
experiences, anticipates the outcome of events, acts to pursue 
goals and adapts to changing circumstances. The artificial 
cognitive systems attempt to capture attributes of natural 
cognitive systems. Artificial cognitive systems are typically 
abstracted in three categories viz., Cognitivist systems, 
emergent systems, and hybrid systems5. 

In cognitivists system, the world knowledge is represented 
as symbols and symbolic manipulations. Emergent systems 
evolve continuously based on self-organisation through outside 
interactions. Emergent systems5 are further categorised into 
connectionist, dynamic and enactive systems. The connectionist 
approaches are based on activation and interconnection of 
multiple processing elements. Typical connectionists systems 
are various types of artificial neural networks. The dynamical 
systems5 represent the system as set of differential equations 
and temporal changes of state variables. The enactive systems5 
make sense of outside world through interactions. Many 
implemented cognitive systems use cognitivist and emergent 
approaches. Both cognitivist and emergent system have both 
their advantages and disadvantages. Though the cognitivists 
systems are good at reasoning, they have difficulties in 
dynamically changing situations. Emergent systems have 
the ability to evolve for dynamic situations, and they have 
difficulties in logical reasoning. The hybrid approaches offer 
combination of cognitivist symbolic approaches with emergent Received : 31 October 2017, Revised : 23 January 2018 
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systems approaches. 
Cognitive systems operate on memories. Memories play 

important role for recalling past, predict future, and orient 
towards the current scenario. The three major types of memories 
are long term memory (LM), short term memory (SM), and 
working memory (WM)5-7. The long term memory maintains 
learned scenarios, semantic knowledge and experiences. 
The short term memory (SM) holds current scenario and 
environment information. The LM is of three types; semantic, 
procedural, and episodic. The semantic memory is a declarative 
type of memory that stores all the global knowledge about the 
environment that is known. The episodic memory is a temporal 
knowledge in which experiences are stored. The procedural 
memory is an implicit type of memory that learns how to 
do actions. Procedural memories are acquired progressively. 
The working memory is a small short term memory that 
holds information to aid current task execution. There could 
be memories for probabilistic reasoning and sub-symbolic 
processing.

4. CognITIve ARCHITeCTuReS foR 
RAdARS
Research on cognitive radar is very limited whereas in 

other intelligent systems, the research is well advanced. It is 
possible to draw analogies from these architectures and make 
cognitive architectures for radars. 

From the perspective of artificial cognitive architecture, 
all types of architectures, i.e., cognitivist symbolic, emergent 
and hybrid type of architectures may be applied. This paper 
proposes hybrid approach due to the flexibilities it offers. This 
approach complies with cognitive radar approach proposed2. 
The hybrid approach proposed here is similar to cognitive 
architectures in6,7. 

The hybrid approach provides incremental path to 
cognition which is widely accepted approach in cognitive 
research. It is an accepted fact that cognition capabilities have 
to be built over a period of time, capability by capability. This 
also opens up opportunities for limited cognification of already 
developed radars. The architectures for cognition should define 
the memories as well. However the memories for cognition are 
not well studied in cognitive radars, though Haykin2 provides 
scope for memories. This paper also introduces memories for 
the cognitive radar architecture elaborated. 

It is to be noted that generally the radar as a sensor, forms 
an element of sensory component of any bigger cognitive 
systems. For example a radar may be a sensory component of 
a smart unmanned aerial vehicle (UAV). Though the radar may 
be a sensory component for some higher architecture, the radar 
itself could be built as a cognitive architecture. This recursive 
nature can help to build cognitive radar networks. The top 
level hybrid architecture (Fig. 1) for radar is similar to the one 
defined for intelligent soft arm control (ISAC)7.

5. A HyBRId CognITIve ARCHITeCTuRe 
foR RAdARS
Hybrid architecture and the associated memories for digital 

array radars are suggested here. The architecture is defined as 
interacting software agents for various functionalities of typical 

digital array radars. 
The cognitive architecture has two agents and an 

executive cognitive controller. The receive path agent has 
signal processor, multi-target tracker and target recognition 
components. The transmit path agent consists of resource 
allocator and waveform generator components. All of these 
components interact with each other and share feedback as 
well as with transmit path agent components. 

The executive cognitive controller is responsible for 
perceiving the environment, situation assessment, planning, and 
directing towards goals. The executive controller works with 
memories of receive agent and transmit agent as well as long 
term memory. The executive controller also has interactions 
with human operator for long term learning as well as 
instantaneous decisions. Learning across the missions improves 
radar capabilities over a period of time. For example initially 
a maritime surveillance radar may have radar classification 
models which were trained using simulated models, which 
could be refined using real measurements during day-to-day 
operation with the assistance of the operator.

In this architecture the memories are defined with radar 
application perspective. Short term Memories (SM) typically 
deal with current radar scan/time frame information pertaining 
to signal detections, target tracks’ states, geographical 
information system (GIS) information, and change detections, 
if any. The SM has memories for symbolic and sub-symbolic 
reasoning. 

The Working Memory (WM) deals with current optimised 
waveforms for transmission, perception from the signal 
detection, perception from GIS systems, and adjusts learning 
parameters and utilises long term memory for actions and 
knowledge, if any.

The radar long term memory (LM) typically deals with 
information pertaining to multi-scan, multi-mission events, 
radar parameters, and General handling procedures for typical 
radar events. 

The LM has semantic, procedural and episodic memories. 
It also has memories for sub-symbolic information for 
probabilistic reasoning. The semantic memory holds radar 
parameters and other declarative nature of information. The 
procedural memory stores action part pertaining to general 
radar event handling actions. The typical event handling 
actions are handling of missed targets, cued acquisition 
of targets, calibration, etc. The episodic memory handles 
long-term temporally ordered information such as multi-
scan/multi-radar time frame information, which could be 

figure 1. Top level cognitive radar architecture.
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used by the Cognitive executive controller for situation 
assessment. The LM is continuously built by WM and  
SM activities. 

Each of the components in the receive and transmit 
agents need to employ variety of cognitive techniques based 
on symbolic, emergent and enactive models of cognition. 
The choice of cognition techniques are tabulated for different 
components.

Table 1. Available cognitive approaches

Component Cognitive approaches

Signal processor Symbolic (knowledge based), probabilistic 

Multi-target tracker 
(filtering and data 
association)

Symbolic, probabilistic, connectionist, 
dynamic and enactive

Target recognition Symbolic, probabilistic and connectionist
Resource allocator Symbolic, probabilistic and connectionist10

 Though many of the solutions for components of receive 
path agents and transmit path agents are available and studied 
extensively, the cognitive architectures integrates them with 
human cognition approaches through feedbacks and memories, 
which will be a way for future cognitive radars.

Under the hybrid architecture, this paper presents, deep 
learning approaches for high-resolution radar range profile 
(HRRP) based target recognition and sampling time interval 
selection in target tracking for phased array radars, in the case 
studies section. 

6. CASe STudIeS 
6.1 Radar Target Classification Based on High-

Resolution Radar Range Profiles 
High-resolution radar range profile (HRRP) represents a 

one dimensional range projection of a target’s return onto the 
radar line of sight. The range profiles of a target are aspect 
dependent in the sense they vary with look angle. Classification 

of radar targets based on their HRRP has been studied12-20. A 
recent study using long short-term memory - recurrent neural 
network (LSTM-RNN) may be found in Sagayaraj19, et al. 
Application of convolutional neural network (CNN) in radar 
target classification problems based on SAR images and micro 
doppler signatures have also been studied23-25. This paper 
extends the applicability of CNN and LSTM to HRRP. In 
many radar applications availability of SAR and micro doppler 
signatures is not guaranteed, whereas HRRP measurements 
could be made available in all radars. Therefore HRRP based 
classification is an important aspect for cognition in radars.

6.1.1 HRRP Data Simulation
To generate the radar range profile data an asymptotic 

electromagnetic solver was used. Three different target models 
(perfect electric conductor) were used in this simulation. It 
included scaled versions of two missile models and one aircraft 
model. Incident plane wave (1 GHz - 2 GHz) from the front 
was considered in the simulation.

For each target, simulations were carried out for 128 
equidistant time samples and 91 aspect angles. each profile 
covers the entire range of 128 cells and is for one aspect angle. 
These data files were then converted to ‘csv’ format, labelled 
with OneHot encoding and then combined together to a single 
csv file using pre-processing. each row in the profile shows the 
HRRP for one aspect angle (of one target). The dataset thus 
contained 273 range profiles (91 profiles per target). Additive 
Gaussian noise with signal to noise ratio (SNR) varying from   
0 dB to 20 dB were added to the data set to generate 21 different 
datasets to study the effect of random noise.

Three classification algorithms were tried out in the initial 
study: Back-propagation network (BPN), CNN, and LSTM-
RNN. 

6.1.2 Computational Complexity
All the algorithms used here are of polynomial time 

complexity. The computational requirements of these algorithms 
are not significant in the real-time usage phase. The training 

figure 2. Hybrid cognitive radar architecture.
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phase was done in offline mode in this study. However, online 
learning also will not impose any computational constraints. 
The time complexity of the standard back-propagation neural 
network algorithm is of O(w3); where w is the count of weights in 
the network. The LSTM network’s computational requirement 
per weight and time step is essentially that of back-propagation 
network (BPN)26, but has far more weights than BPN. In CNN, 
the convolution layer has a computational workload of O(r× 
q×m×n×k×l); but for the down-sampling layer the complexity 
is O(q×m×n), where q is the number of input feature maps, r is 
the number of output feature maps, the feature map size is m×n 
and the convolution kernel27 size is k×l.

6.1.3 Implementation
 All the neural networks use 128 nodes in their input layer 

and 3 nodes in their output layer. The BPN implementation 
has 90 nodes in the hidden layer. The learning rate was taken 
as 0.25 and the network uses Softmax with gradient descent 
optimiser. The training was performed for 500 epochs. 

our LSTM - RNN implementation has one hidden layer 
with 32 nodes and uses Adam Optimiser. The learning rate is 
0.001. The training was performed for 200 epochs.

our CNN model has 3 feature map (convolutional) layers 
and one fully connected layer. The number of nodes n the 
feature map layers are 16, 32, and 64, respectively and the 
fully connected layer has 256 nodes. The feature map layers 
use filters of width 4×1, max pooling with width 2 and stride 
2. The keep probability for dropout in the convolutional layers 
is 0.8 and that for the fully connected layer is 0.5. The network 
has a learning rate of 0.001 and it uses RMS optimiser with 
decay 0.9. The training was performed for 200 epochs.

In each dataset, of the 273 range profiles, 200 (randomly 
picked, but the same across the datasets) profiles were used for 
training the networks and the rest were used in testing. 

6.1.4 Results and Discussion
The results are summarised in Table 2. The last row of 

the table shows the classification accuracy of the three Neural 
Network (NN) algorithms when there was no noise present in 
the profiles. The remaining rows summarise the accuracy when 
SNR ranges from 0 dB to 20 dB.

From the table it is evident that LSTM provided 100 per 
cent accuracy in predicting the target in all cases. CNN provided 
above 97 per cent accuracy in all cases and the accuracy is 
100 per cent when SNR is above 3 dB. Conventional back 
propagation technique also gave reasonably good results and 
above 9 dB SNR, it predicted the targets with 100 per cent 
accuracy. CNN has the inherent advantage of automatic feature 
extraction unlike traditional NNs and LSTM. LSTM has the 
advantage of temporal learning.

6.2 Track update Rate Prediction
Depending on the behaviour of the radar target, the update 

interval for the target under track can be varied. A high update 
rate may be used when the target begins a manoeuvre and a 
relatively low update rate is sufficient for benign targets. Thus 
by dynamically changing the update rate based on target 

Table 2. Classification accuracy of NNs

SnR (dB)
Classification accuracy (%)
BPn Cnn lSTm

0 88.88 97.22 100.0
1 90.27 98.61 100.0
2 93.05 98.61 100.0
3 93.05 98.61 100.0
4 94.44 100.0 100.0
5 94.44 100.0 100.0
6 97.22 100.0 100.0
7 97.22 100.0 100.0
8 98.61 100.0 100.0
9 98.61 100.0 100.0
10 100.0 100.0 100.0
11 100.0 100.0 100.0
12 100.0 100.0 100.0
13 100.0 100.0 100.0
14 100.0 100.0 100.0
15 100.0 100.0 100.0
16 100.0 100.0 100.0
17 100.0 100.0 100.0
18 100.0 100.0 100.0
19 100.0 100.0 100.0
20 100.0 100.0 100.0

No Noise 100.0 100.0 100.0

dynamics, we can use radar resources in an economic manner. 
Feed-forward networks have no notion of order in time, 

and the only input they consider is the current data value they 
have been exposed to. They have no memory in the sense ‘they 
won’t remember their recent past’. Recurrent networks, on the 
other hand, use information in the input sequence to perform 
tasks that feed-forward networks can’t. They also take what 
they perceived one step back in time. So recurrent networks 
have two sources of input, the present and the recent past, 
which combine to determine how they respond to new data. 
It is often said that recurrent networks have memory, but they 
lack long-term memory. LSTMs can remember information for 
long time periods and help preserve the error that can be back-
propagated through time and layers.

6.2.1 Implementation
In order to study the effectiveness of deep learning 

in predicting track update rate for a phased array radar, a 
simulation study was carried out. In this study, an LSTM-RNN 
was used in predicting the update rates. First, we trained the 
network with simulated update rate data and then tested it with 
a synthetic scenario.

In the synthetic scenario here, the target initially travels 
with constant velocity for 60 s; takes a 2 g turn followed by 3 g, 
3 g, and 2 g turns to the left; travels with constant velocity for 
30 s; 6 g, 7 g, 7 g, and 6 g turns to the right; 6 g, 7 g, 7 g, and 
6 g turns to the left; an accelerated travel for 30 s; accelerated 
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4 g, 6 g, 6 g, and 4 g turns to the right and finally travels with 
acceleration for 15 s. 

The scenario is shown in red continuous path in Fig. 3. 
Gaussian noise was then added to this scenario to generate the 
measurements (shown in black). 

The LSTM- RNN prediction model has one input node, 
one output node and has 5 hidden RNN layers. In the training 
stage, the learning rate is 0.01 and the number of epochs is 
20,000. The network was trained with 233 data values and 
asked to predict the next 113 values (which includes the last 
maneuvering of accelerated 4 g, 6 g, 6 g, and 4 g turns in  
Fig. 3). The update rates were then used in an IMM-Kalman 
Filter based tracker to perform tracking. 

6.2.2 Results and Discussion
The filtered track is shown in blue lines in Fig. 3. The 

distance measurements in X and Y axes are in km. The co-
variance in range, Azimuth and elevation are shown in Fig. 4.

From Figs. 3 and 4, it evident that the with the predicted 
update rates the tracker could keep the co-variances minimal 
and track the target with very good accuracy. Another 
advantage was the reduction in the computation time compared 
to conventional approach described in22.

The approach was then successfully applied to the six 
benchmarking problems for radar allocation and tracking 
described in21,23. Training the model with more complicated 
maneuvering scenarios will further improve the performance. 

This new approach is computationally efficient and it 
completely eliminates the iterative revisit time computation 
used in21-23 as it predicts the revisit times in single step for each 
target. once the neural network is trained it can be used for all 
targets.

7. ConCluSIonS
This paper introduced a Hybrid Cognitive Architecture 

for radars with concept of memories associated with it. The 

figure 3. True, measured and predicted tracks.

figure 4. Range, Azimuth and elevation covariances.
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proposed architecture is based on the ACS concepts and 
provides a basis for addressing cognition in radars, which 
is inadequately explored for radar systems. This paper also 
presented deep learning examples for radar applications 
under this architecture. Initial experimental studies on the 
applicability of deep learning techniques under this approach 
provided promising results. 

As the cognitive radar research is still in primitive stage, 
radar domain has lot of potential to benefit from advanced 
researches in ACS. Further studies will be carried out to arrive 
at memory configuration and applications of cognitivist/
emergent/enactive algorithms under the proposed architecture.
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