22 research outputs found

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    SOTER on ROS: A Run-Time Assurance Framework on the Robot Operating System

    Full text link
    We present an implementation of SOTER, a run-time assurance framework for building safe distributed mobile robotic (DMR) systems, on top of the Robot Operating System (ROS). The safety of DMR systems cannot always be guaranteed at design time, especially when complex, off-the-shelf components are used that cannot be verified easily. SOTER addresses this by providing a language-based approach for run-time assurance for DMR systems. SOTER implements the reactive robotic software using the language P, a domain-specific language designed for implementing asynchronous event-driven systems, along with an integrated run-time assurance system that allows programmers to use unfortified components but still provide safety guarantees. We describe an implementation of SOTER for ROS and demonstrate its efficacy using a multi-robot surveillance case study, with multiple run-time assurance modules. Through rigorous simulation, we show that SOTER enabled systems ensure safety, even when using unknown and untrusted components.Comment: 20th International Conference on Runtime Verificatio

    RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft

    Get PDF
    The autonomous control of unmanned aircraft is a highly safety-critical domain with great economic potential in a wide range of application areas, including logistics, agriculture, civil engineering, and disaster recovery. We report on the development of a dynamic monitoring framework for the DLR ARTIS (Autonomous Rotorcraft Testbed for Intelligent Systems) family of unmanned aircraft based on the formal specification language RTLola. RTLola is a stream-based specification language for real-time properties. An RTLola specification of hazardous situations and system failures is statically analyzed in terms of consistency and resource usage and then automatically translated into an FPGA-based monitor. Our approach leads to highly efficient, parallelized monitors with formal guarantees on the noninterference of the monitor with the normal operation of the autonomous system

    Monitoring for Silent Actions

    Get PDF
    Silent actions are an essential mechanism for system modelling and specification. They are used to abstractly report the occurrence of computation steps without divulging their precise details, thereby enabling the description of important aspects such as the branching structure of a system. Yet, their use rarely features in specification logics used in runtime verification. We study monitorability aspects of a branching-time logic that employs silent actions, identifying which formulas are monitorable for a number of instrumentation setups. We also consider defective instrumentation setups that imprecisely report silent events, and establish monitorability results for tolerating these imperfections

    COST Action IC1402 Runtime Verification beyond Monitoring

    Get PDF
    International audienceIn this paper we report on COST Action IC1402 which studies Run-time Verification approaches beyond Monitoring. COST Actions are funded by the European Union and are an efficient networking instrument for researchers, engineers and scholars to cooperate and coordinate research activities. This COST action IC1402 lasted over the past four years, involved researchers from 27 different European countries and Australia and allowed to have many different working group meetings, workshops and individual visits

    Checking Refinement of Asynchronous Programs Against Context-Free Specifications

    Get PDF
    In the language-theoretic approach to refinement verification, we check that the language of traces of an implementation all belong to the language of a specification. We consider the refinement verification problem for asynchronous programs against specifications given by a Dyck language. We show that this problem is EXPSPACE-complete - the same complexity as that of language emptiness and for refinement verification against a regular specification. Our algorithm uses several technical ingredients. First, we show that checking if the coverability language of a succinctly described vector addition system with states (VASS) is contained in a Dyck language is EXPSPACE-complete. Second, in the more technical part of the proof, we define an ordering on words and show a downward closure construction that allows replacing the (context-free) language of each task in an asynchronous program by a regular language. Unlike downward closure operations usually considered in infinite-state verification, our ordering is not a well-quasi-ordering, and we have to construct the regular language ab initio. Once the tasks can be replaced, we show a reduction to an appropriate VASS and use our first ingredient. In addition to the inherent theoretical interest, refinement verification with Dyck specifications captures common practical resource usage patterns based on reference counting, for which few algorithmic techniques were known
    corecore