
Monitoring for Silent Actions∗

Luca Aceto1, Antonis Achilleos2, Adrian Francalanza3, and
Anna Ingólfsdóttir4

1 School of Computer Science, Reykjavik University, Reykjavik, Iceland and
Gran Sasso Science Institute, L’Aquila, Italy

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
3 Dept. of Computer Science, ICT, University of Malta, Msida, Malta
4 School of Computer Science, Reykjavik University, Reykjavik, Iceland

Abstract
Silent actions are an essential mechanism for system modelling and specification. They are
used to abstractly report the occurrence of computation steps without divulging their precise
details, thereby enabling the description of important aspects such as the branching structure of a
system. Yet, their use rarely features in specification logics used in runtime verification. We study
monitorability aspects of a branching-time logic that employs silent actions, identifying which
formulas are monitorable for a number of instrumentation setups. We also consider defective
instrumentation setups that imprecisely report silent events, and establish monitorability results
for tolerating these imperfections.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Runtime Verification, Monitorability, Hennessy-Milner Logic with Re-
cursion, Silent Actions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.7

1 Introduction

Runtime verification (RV) [19, 12] is a lightweight verification technique that strives to
determine whether a system under scrutiny satisfies or violates a property – typically
expressed as a formula from some logic – by incrementally analysing its current execution.
In general, the runtime analysis is carried out by a monitor, a computational entity that
observes the exhibited system execution and reaches a verdict once sufficient evidence is
observed; the exhibited execution is characterised by a trace, a finite sequence of events
describing the discrete system computational steps. Although the technique may obtain
additional (runtime) information that could be useful for verification purposes, it is generally
less expressive than exhaustive approaches such as model checking since the verification
analysis is limited to the information inferred from the execution trace under consideration.
Monitorability thus concerns itself with identifying the properties that are analysable by this
runtime analysis.

RV setups typically partition computational steps of systems into two groups. On the one
hand, observable events are those events that are visible (in full) to external entities such as
monitors; they are used in the specifications describing system properties and are reported
in the system trace. Observable events usually contain runtime data associated with that

∗ This research was supported by the project “TheoFoMon: Theoretical Foundations for Monitorability”
(grant number: 163406-051) of the Icelandic Research Fund.

© Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Monitoring for Silent Actions

event (e.g. a method-call event would carry information relating the receiver, the method
name and the arguments passed as parameters). On the other hand, unobservable events
broadly encompass the computational steps that are abstracted away either from system
modelling or from the respective property specifications; RV setups may occasionally remove
these events from a trace so as to allow for a smoother monitoring process [15, 10].

In this work we investigate events that broadly fall somewhere in between these two
groups. Concretely, silent events (or actions) are computational steps whose specific nature
is not disclosed at the level of abstraction of the system model. Nevertheless the model
still provides enough evidence of their manifestation during execution, which may play an
important role in capturing vital behavioural aspects of the system: they may describe
the branching structure of the modelled system behaviour [20, 16] or provide a measure of
computational cost and efficiency [4]. In practice, one comes across various instances of such
events. For example, the precise details of reported computational steps may be abstracted
away for confidentiality/security reasons. Alternatively, the monitoring setup may be unable
to report the details of certain computations due to limitations in the instrumentation
technology used. In cyber-physical systems, there are also cases where one could detect the
occurrence of certain (internal) computation by way of indirect means, such as via the sound
of a running motor or the increase in temperature of an enclosed object. For these reasons,
behavioural specifications often include descriptions involving silent actions. However, it is
unclear how these silent actions are best handled in an RV setup. It is even less clear to
what extent silent actions affect the monitorability of the respective specifications.

Our goals are to develop a foundational framework in which these questions may be
addressed, and to logically characterize the properties that are monitorable within this
framework. Following our work [13, 10, 1, 14, 2, 12, 11] and that of others [22, 7], we
conduct our investigations in a process-calculus setting, where internal actions have long
been studied from both behavioural and specification perspectives. Our study considers a
standard labelled-transition-system model that represents silent computational steps as τ -
transitions [20, 3], and a variant of the modal µ-calculus [17, 18] with strong modal operators
that also describe τ -transitions. Our main contributions can be found in the middle sections
of the paper:

Section 3 studies the monitorability of this logic w.r.t. a number of monitoring setups
that handle τ -actions differently, thus generalising the results obtained in [13, 14].
Sections 4 and 5 investigate the monitorability of the logic for imperfect monitoring setups
that obscure aspects of the silent system behaviour expressed by the model, and establish
results for tolerating such imperfections.

2 Preliminaries

We assume the following disjoint sets: Act, a (possibly empty) set containing external
actions, and Sil, a finite set containing silent actions. We let α range over Act, δ over Sil,
and µ over Act ∪ Sil. A Labelled Transition System (LTS) on (Act,Sil) is a triple

L = 〈P, (Act,Sil),→L〉,

where P is a nonempty set of system states referred to as processes p, q, . . ., and →L ⊆
P × (Act ∪ Sil) × P is a transition relation. We write p µ−→L q instead of (p, µ, q) ∈ →L

and p →L q if p δ−→L q for some δ ∈ Sil. We use p µ=⇒L q to mean that, in L, p can derive
q using a single µ action and any number of silent actions, that is, p(→L)∗. µ−→L .(→L)∗q.
We distinguish between (general) traces s = µ1µ2 . . . µr ∈ (Act ∪ Sil)∗ and external traces

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:3

t = α1α2 . . . αr ∈ Act∗, and use p s=⇒L q to mean p µ1−→L .
µ2−→L . . .

µr−→L q and p t=⇒L q to
mean p α1=⇒L .

α2=⇒L . . .
αr=⇒L q. By p µ−→L we mean that there is some q such that p µ−→L q.

We occasionally omit the subscript L when it is clear from the context.

I Example 1. The (standard) regular fragment of CCS [20] with grammar:

p, q ∈ Proc ::= nil | µ.p | p+ q | recx.p | x,

with x from some countably infinite set of variables, and the transition relation defined as:

Act
µ.p

µ−→ p
Recp[

recx.p/x] µ−→ q

recx.p
µ−→ q

SelL p
µ−→ p′

p+ q
µ−→ p′

SelR q
µ−→ q′

p+ q
µ−→ q′

constitutes the LTS 〈Proc, (Act, {τ}),→〉 where τ is the only silent action.

Properties of processes may be specified via the logic µHML [18], a reformulation of the
modal µ-calculus [17].

I Definition 2. µHML formulae on (Act,Sil) are defined by the grammar:

ϕ,ψ ∈ µHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ
| 〈µ〉ϕ | [µ]ϕ | min X.ϕ | max X.ϕ | X

where X comes from a countably infinite set of logical variables LVar. For a given LTS
L = 〈P, (Act,Sil),→〉, an environment ρ is a function ρ : LVar→ 2P . Given an environment
ρ, X ∈ LVar, and S ⊆ P , ρ[X 7→ S] denotes the environment where ρ[X 7→ S](X) = S and
ρ[X 7→ S](Y) = ρ(Y), for all Y 6= X. The semantics of a µHML formula ϕ over an LTS L
relative to an environment ρ, denoted as Jϕ, ρKL, is defined as follows:

Jtt, ρKL = P Jff, ρKL = ∅ JX, ρKL = ρ(X)
Jϕ1∧ϕ2, ρKL = Jϕ1, ρKL ∩ Jϕ2, ρKL Jϕ1∨ϕ2, ρKL = Jϕ1, ρKL ∪ Jϕ2, ρKL

J[µ]ϕ, ρKL =
{
p
∣∣ ∀q. p µ−→ q implies q ∈ Jϕ, ρKL

}
J〈µ〉ϕ, ρKL =

{
p
∣∣ ∃q. p µ−→ q and q ∈ Jϕ, ρKL

}
Jmin X.ϕ, ρKL =

⋂{
S
∣∣ S ⊇ Jϕ, ρ[X 7→ S]KL

}
Jmax X.ϕ, ρKL =

⋃{
S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]KL

}
Two formulae ϕ and ψ are equivalent, denoted as ϕ ≡ ψ, when Jϕ, ρKL = Jψ, ρKL for every
environment ρ and LTS L. We often consider closed formulae and simply write JϕKL for
Jϕ, ρKL, as their semantics is independent of ρ.

Let [Sil]ϕ stand for
∧
δ∈Sil[δ]ϕ and 〈Sil〉ϕ for

∨
δ∈Sil〈δ〉ϕ. Then, the weak versions of

the modalities employed in [13, 1, 14] may be expressed as follows:

[[µ]]ϕ ≡ max X.([µ]wb(ϕ) ∧ [Sil]X) 〈〈µ〉〉ϕ ≡ min X.(〈µ〉wd(ϕ) ∨ 〈Sil〉X),

where wb(ϕ) ≡ max Y.(ϕ ∧ [τ]Y) and wd(ϕ) ≡ min Y.(ϕ ∨ 〈τ〉Y). Readers should consult
[18, 3], or more recently [14, 1], for more details on µHML.

FSTTCS 2017

7:4 Monitoring for Silent Actions

Table 1 Behaviour and Instrumentation Rules for Monitored Systems

Monitor Semantics

mRecm[recx.m/x] µ−→ m′

recx.m
µ−→ m′

mSel m
µ−→ m′

m+ n
µ−→ m′

mAct
µ.m

µ−→ m
mVrd

v
µ−→ v

Instrumentation Semantics

iMon p
µ−→L q m

µ−→M n

m / p
µ−→I(M,L) n / q

iTer p
µ−→L q m 6µ−→M

m / p
µ−→I(M,L) end / q

iAbs p
δ−→L q

m / p
δ−→I(M,L) m / q

where µ ∈ Act ∪ Sil, v ∈ {end, no}, and δ ∈ Sil.

3 Monitorability

The logic µHML of Section 2 is very expressive. It is also agnostic of the technique to be
employed for verification. This level of generality provides an ideal basis for investigating the
interplay between silent actions and the RV technique, and permits us to extend our findings
to other specification logics (e.g. CTL and CTL∗ [8] can be encoded in µHML [17]). The
property of monitorability, however, fundamentally relies on the monitoring setup considered.

Monitoring Systems. A monitoring setup on (Act,Sil) is a triple S = 〈M, I, L〉, where L is
a system LTS on (Act,Sil), M is a monitor LTS on (Act,Sil), and I is the instrumentation
describing how to compose L and M into an LTS, denoted by I(M,L), on (Act,Sil). We
call the pair (M, I) a monitoring system on (Act,Sil). For M = (Mon, (Act,Sil),→M),
Mon is a set of monitor states (ranged over by m) and →M is the monitor semantics
described in terms of the behavioural state transitions a monitor takes when it analyses trace
events µ ∈ Act ∪ Sil. The states of the composite LTS I(M,L) are written as m / p, where
m is a monitor state and p is a system state; the monitored-system transition relation is
here denoted by →I(M,L). We focus on rejection monitors, i.e., monitors with a designated
rejection state no, and hence safety fragments of the logic µHML. However, our arguments
apply dually to acceptance monitors and co-safety properties; see [13, 14] for details.

I Definition 3. Fix a monitoring setup S = 〈M, I, L〉 on (Act,Sil) and let m be a monitor
of M and ϕ a formula of µHML on (Act,Sil). We say that m (M, I)-rejects (or simply
rejects, if M, I are evident) a process p in L, written as rejS(m, p), when there are a process
q in L and a trace s ∈ (Act ∪ Sil)∗ such that m / p

s=⇒I(M,L) no / q. We say that m
(M, I)-monitors for ϕ on L whenever

for each process p of L, rejS(m, p) if and only if p /∈ JϕKL.

Finally, m (M, I)-monitors for a formula ϕ when m (M, I)-monitors for ϕ on L for every
LTS L on (Act,Sil). The monitoring system (M, I) is often omitted when evident.

Monitoring for Silent Actions. The first monitoring system we consider does not distinguish
between silent actions and external actions.

I Definition 4. A full monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monδ ::= end | no | µ.m | m+ n | rec x.m | x,

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:5

where x comes from a countably infinite set of monitor variables. Constant no denotes the
rejection verdict state whereas end denotes the inconclusive verdict state. The rules in Table 1
describe the behaviour for full monitors (we elide the obvious symmetric rule for m+ n).

Note that rule mVrd in Table 1 describes how verdicts are irrevocable; monitors can therefore
only describe suffix-closed behaviour.

I Definition 5. For any system LTS L and monitor LTS M agreeing on (Act,Sil), a full
instrumentation LTS, denoted by →I(M,L), is defined by rules iMon and iTer in Table 1.

In rule iMon, when the system produces a trace event µ that the monitor is able to
analyse by transitioning from m to n, the constituent components of a monitored system
m / p move in lockstep. Conversely, when the system produces an event µ that the monitor
is unable to analyse, the monitored system still executes, according to iTer, but the monitor
transitions to the inconclusive state, where it remains for the rest of the computation.

We refer to the monitor LTS in Definition 4 asMδ, the full instrumentation of Definition 5
as Iδ and the pair (Mδ, Iδ) as the full monitoring system. For each system LTS L that agrees
with the full monitoring system on (Act,Sil), we can show a correspondence between the
respective monitoring setup 〈Mδ, Iδ, L〉 and the following syntactic subset of µHML.

I Definition 6. The strong safety µHML is defined by the grammar:

θ, χ ∈ ssHML ::= tt | ff | [µ]θ | θ ∧ χ | max X.θ | X

As opposed to sHML from [13, 14], ssHML is defined using strong transitions p µ−→ q

(not weak ones, p µ=⇒ q) and the modalities [µ]θ employ any action µ, not just external ones.

I Definition 7. Fix a monitoring system (M, I), a fragment Λ of µHML, and an LTS L on
(Act,Sil). We say that (M, I) monitors for Λ on L whenever:

For all ϕ ∈ Λ, there exists some m ∈M that monitors for it on L.
For all m ∈M , there exists some ϕ ∈ Λ that is monitored by it on L.

We say that (M, I) monitors for Λ when it monitors for Λ on every LTS L.

I Theorem 8. The full monitoring system (Mδ, Iδ) monitors for ssHML.

Monitoring for External Actions. The results obtained in [13, 14] can be expressed and
recovered within our more general framework.

I Definition 9. Safety µHML, presented in [13, 14], is defined by the grammar:

π, κ ∈ sHML ::= tt | ff | [[α]]π | π ∧ κ | max X.π | X.

Note that [[α]]π uses external actions. Its semantics is given as in Definition 2. We can also
give a direct inductive definition, i.e., J[[α]]ϕ, ρK = {p

∣∣ ∀q. p α=⇒ q implies q ∈ Jϕ, ρK}.

I Definition 10. An external monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monα ::= end | no | α.m | m+ n | rec x.m | x.

Table 1 defines its LTS transition semantics, yieldingMα = 〈Monα, (Act,Sil),→〉. External
instrumentation, denote by Iα, is defined by the three rules iMon, iTer, and iAbs in Table 1;
in the case of iMon and iTer action µ is substituted by the external action α. We refer to
the pair (Mα, Iα) as the external monitoring system, amounting to the setup in [13, 14].

FSTTCS 2017

7:6 Monitoring for Silent Actions

L1:

1 2 3
req ans

4 5 6 7 8
req τ

τ

τ ans
L2:

1

4

2

5

3 6

7 8

req

req

ans

σ

σ

ans

Figure 1 LTS L1 depicts the two variations of the server from Example 12.

I Theorem 11 (from [14]). The external monitoring system (Mα, Iα) monitors for the
sublogic sHML.

I Example 12. Consider a simple server interface that receives requests from a client,
represented by action req, and then sends a reply, represented by action ans. Between
req and ans, a server implementation may upload a copy of the request transcript; this
computation is represented as a sequence of silent τ -transitions that do not divulge information
relating to the upload. In LTS L1 of Figure 1, process 1 represents a server implementation
that never uploads anything, whereas process 4 represents an alternative implementation
that creates a transcript (the τ -transition from 5 to 6) and repeatedly attempts to upload
the copy until it succeeds (the τ -loop on 6 followed by the transition to 7). An external
monitor does not see processes 1 and 4 differently, as it does not observe the silent transitions.
On the other hand, a full monitor can observe all the silent transitions that occur during
an execution. We note that both process 1 and process 4 in L1 violate the specification
[[req]][[ans]]ff. Process 1 violates [req][ans]ff, while 4 does not. Conversely, process 1 does
not violate the ssHML-specification [req][[τ]][ans]ff, but 4 does: this can be observed by
the full monitor req.rec x.(τ.(ans.no + x)).

We conclude the section by commenting on other potential monitoring systems and their
expressive power. In particular, the monitoring system (M δ, Iα) yields monitoring setups
whereby monitor δ-transitions are suppressed by the instrumentation, effectively making full
monitors behave like external monitors from Definition 10. In the case of the monitoring
system (Mα, Iδ), the instrumentation forces the monitor to transition to the inconclusive
state more often since it does not abstract away from δ-transitions.

4 Obscuring the Silent Transitions

The full monitoring system (M δ, Iδ) presented in Section 3 is straightforward and powerful.
One might however argue that, in practice, it is too powerful: it is plausible that the visibility
of certain silent transitions be somehow more obscure than that of external transitions.
The external monitoring system (Mα, Iα) sits at the other end of the spectrum because it
completely ignores all silent transitions. We consider monitoring systems that fall between
these extremes: they can clearly observe certain silent transitions, but may receive imperfect
information on others i.e., observing that some number of transitions occurred, but not how
many. In this case, we say that the transitions were obscure.

4.1 A Preorder on Obscure LTSs and Reliable Monitoring
We consider two silent actions: τ is a silent action that can be clearly observed and σ is the
obscure silent action, representing an undetermined positive number of τ -transitions. In the
following, we consider only monitoring setups on (Act, {τ, σ}) and, whenever we say that L
is an LTS, we mean that it is a system LTS on (Act, {τ, σ}), unless otherwise stated; if L
reports perfect information, it is assumed to be an LTS on (Act, {τ}).

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:7

We consider a preorder ≤o on LTSs, where L ≤o L′ intuitively means that L and L′

have the same processes, but the silent transitions in L′ are somehow more obscure than
in L. Although we do not identify a specific such preorder, in Subsection 4.2, we introduce
properties that we require of it. We say that L′ is an obscuring of L when L ≤o L′. We
also introduce the obscuring preorder ≤ on Act ∪ {τ, σ}: µ1 ≤ µ2 iff µ1 = µ2 or µ1 = τ and
µ2 = σ. The intuition is that, whenever µ1 ≤ µ2 and the system performs a µ1-transition,
the monitor may observe a (more obscure) µ2-transition.

I Example 13. Consider a simple LTS L which contains exactly one maximal path:

p
µ1−→L p1

µ2−→L · · ·
µi−→L pi

τ−→L q1
τ−→L · · ·

τ−→L qr
µi+1−−−→L pi+1

µi+2−−−→L · · ·
µk−−→L pk

of k+r transitions, where r > 0; note that states q2 . . . qr−1 have no outgoing external actions.
An obscuring of L may result from replacing pi

τ−→L q1 by a direct transition pi
σ−→L′ qr,

thus obscuring the path pi
τ−→L q1

τ−→L · · ·
τ−→L qr and leaving the remaining path unchanged.

Thus in L′ we have:

p
µ1−→L′ p1

µ2−→L′ · · · µi−→L′ pi
σ−→L′ qr

µi+1−−−→L′ pi+1
µi+2−−−→L′ · · · µk−−→L′ pk

This would mean that as the system progresses from p to pk, µ1 through µk are clearly
observed, but when the system performs pi

τ−→L q1
τ−→L · · ·

τ−→L qr, we only observe that at
least one silent transition occurred, without discerning the exact number.

I Definition 14. Let m be a monitor of a monitoring system (M, I); ϕ a formula of µHML
on (Act, {τ}); L an LTS on (Act, {τ}) – that is, L completely reports silent transitions;
and L′ an obscuring of L. We say that m (M, I)-monitors for ϕ on L from L′ iff

for every process p of L′, p /∈ JϕKL if and only if rej〈M,I,L′〉(m, p).

We say that m reliably (M, I)-monitors for ϕ on L if m (M, I)-monitors for ϕ on L from
each obscuring of L. Monitor m reliably (M, I)-monitors for ϕ if m reliably (M, I)-monitors
for ϕ on any LTS L. We often omit the monitoring system (M, I) whenever it is evident.

I Definition 15. Fix a monitoring system (M, I) and a fragment Λ of µHML on (Act, {τ, σ}).
(M, I) reliably monitors for Λ on LTS L iff

For every ϕ ∈ Λ, there is a monitor m of M such that m reliably monitors for ϕ on L.
For every monitor m of M , there is a ϕ ∈ Λ such that m reliably monitors for ϕ on L.

(M, I) reliably monitors for Λ when (M, I) reliably monitors for Λ on every LTS.

4.2 Requirements on Obscuring Preorders
We identify certain properties of the obscuring ordering ≤o that we consider natural. These
properties suffice to prove the results of Section 5. Consequently, the conclusions we draw
about reliably monitorable formulas of µHML are proven for every ≤o that has these
properties. Our intuition is that if L ≤o L′, then L′ is the same LTS as L, but seen with less
precision with respect to the silent transitions. So, every transition we observe in L′ is either
a transition from L, or an obscure view of a sequence of transitions from L.

Natural Properties of Obscurings. We fix two LTSs L ≤o L′. Since L′ should at most
provide imperfect information on the silent transitions of the system, external transitions
should be unaffected:
A. α−→L′= α−→L for every α ∈ Act.

FSTTCS 2017

7:8 Monitoring for Silent Actions

As L′ obscures the information on the silent transitions of L, τ -transitions will become fewer:
L′ should have at most the τ -transitions of L (Property 4.2). Furthermore, every σ-transition
in L′ represents a non-empty sequence of silent transitions from L (Property 4.2).
B. τ−→L′⊆ τ−→L and
C. σ−→L′⊆ (τ−→L ∪

σ−→L)+.
The following properties ensure that a certain level of information is retained in L′. In
particular, if a state has a silent transition in L, it should still have a silent transition in L′
(Property 4.2). Moreover, if a state p has a sequence of silent transitions in L that lead to a
state q that can perform an external action, then this observation should be preserved in L′.
Following Property 4.2, it suffices to require that q is reachable from p in L′ via a sequence
of silent actions (Property 4.2).
D. For all p if p τ−→L or p σ−→L, then p

τ−→L′ or p σ−→L′ .
E. For all p, p′, if p(τ−→L ∪

σ−→L)+p′
α−→ for some α ∈ Act, then p(τ−→L′ ∪ σ−→L′)+p′.

The Strength of Obscuring. Properties 4.2, 4.2, and 4.2 capture the kind of obscuring
ordering considered in this paper. We assume that there is a certain level of obscuring,
beyond which adequate monitoring is deemed infeasible. In Property 4.2 below, obscuring
can reach a point, represented as an LTS Lo, where all the silent-action information is hidden.
That is, if p σ−→Lo

σ−→Lo p
′, then process p can also perform the more obscure transition

p
σ−→Lo p

′ and furthermore, at no point does Lo reveal any clear τ -transition. We call such
an obscuring Lo, as described by Property 4.2, a total obscuring.
F. Each L has an obscuring Lo, such that τ−→Lo= ∅ and

σ−→Lo is transitive.

For an LTS L, let Lτ be the LTS on (Act, {τ}) with the same set of processes, so that
for α ∈ Act, α−→Lτ= α−→L and τ−→Lτ= τ−→L ∪

σ−→L. Property 4.2 assures us that we can always
obscure any selection of τ -transitions by turning them into σ-transitions, thus “forgetting”
how many transitions were taking place at certain points. Property 4.2 can also be interpreted
to mean that σ-transitions may indeed just represent single τ -transitions.
G. Lτ ≤o L for each LTS L.

For the last requirement, we need the following definitions. For a process p in L and
a trace s ∈ (Act ∪ {τ, σ})∗, we say that p represents s in L when s is the only maximal
trace that p can produce – that is, when ∀s′.

(
∃q. p s′

=⇒L q iff s′ is a prefix of s
)
. For a trace

s ∈ (Act ∪ {σ})∗, we define the total obscuring of s, denoted as o(s), as follows: o(ε) = ε;
o(σk) = σ and o(σkαs) = σα o(s) for k > 0; and o(αs) = α o(s). Property 4.2 ensures that
any sequence of silent transitions can be obscured into a σ-transition at least for some LTSs:
H. for every trace s ∈ (Act∪ {σ})∗, there are LTSs L ≤o L′ and a process p in L, such that

p represents s in L and o(s) in L′.
Property 4.2 may seem arbitrary, but it is not hard to justify that it is an immediate
consequence of our intuition, as depicted in Example 13. Consider a maximal-path LTS L as in
Example 13, but with τ -transitions replaced by σ-transitions, such that s1 = µ1 · · ·µi ∈ Act∗

and s2 = µi+1 · · ·µk ∈ Act∗. Then, p represents s = s1σ
ks2 in L and o(s) = s1σs2 in L′.

4.3 An Ordering of Obscurings
We provide a natural instance of an ordering that has all the properties of Subsection 4.2.

I Definition 16. Relation ≤c is the transitive closure of ≤1, where for LTSs L1 and L2 on
(Act, {τ, σ}), L1 ≤1 L2 when for every α ∈ Act, α−→L1= α−→L2 and one of the following holds:
1. τ−→L1 = τ−→L2 and σ−→L1 ⊆

σ−→L2 ⊆
σ−→L1 ∪

τ−→L1 ;

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:9

2. σ−→L1 = σ−→L2 and τ−→L2 ⊆
τ−→L1 ⊆

σ−→L2 ∪
τ−→L2 ;

3. τ−→L1 = τ−→L2 and σ−→L1 ⊆
σ−→L2 ⊆ (σ−→L1)+; or

4. τ−→L1 = τ−→L2 ,
σ−→L2 ⊆

σ−→L1 , and for all p σ−→L1 p
′, if p 6 σ−→L2 p

′, then all the following hold:
p′ 6 α−→L1 for all α ∈ Act,
p′

σ−→L1 p
′′ or p′ τ−→L1 p

′′ for some p′′ 6= p′, and
p
σ−→L2 p

′′ for every p′′ such that p′ σ−→L1 p
′′ or p′ τ−→L1 p

′′.

The cases presented in Definition 16 give a set of moves we can apply to construct a more
obscure LTS from a given one. Informally:
1. According to move 1, for any transition p τ−→ q, we can add transition p σ−→ q.
2. Following move 1, we can remove transition p τ−→ q.
3. For transitions p σ−→ p′

σ−→ p′′, we can insert a new transition p σ−→ p′′.
4. For transition p σ−→ p′, if move 3 has already been applied to p σ−→ p′

σ−→ p′′ for all possible
and at least one p′ δ−→ p′′, where p′ 6= p′′ and δ ∈ {τ, σ}, and p′ 6 α−→ for all α ∈ Act then
we can remove p σ−→ p′.

I Example 17. We revisit Example 12 of a simple server. The LTS L2 of Figure 1 presents
a maximal obscuring of L1, according to ≤c. Moves 1 and 2 can replace all τ -transitions
by σ-transitions; move 3 can be used to introduce a transition from process 5 directly
to process 7; and move 4 can eliminate incoming transitions to process 6, including the
self-loop. Thus, the LTS retains the information that the server uploads the transcript
to a remote location, but not any information of intermediate steps. We observe that
formula ψ = [req][[τ]][ans]ff is reliably monitorable on L1 from L2 by the full monitor
req.rec x.(τ.(ans.no + x) + σ.(ans.no + x)).

I Proposition 18. Relation ≤c has all the properties listed in Subsection 4.2.

5 Reliable Monitorability

In this section, we identify a maximal reliably monitorable fragment of µHML – up to logical
equivalence – and a monitoring system that monitors for it. The results of this section are
relative to any fixed preorder ≤o that satisfies the properties presented in Subsection 4.2.

I Example 19. Let ϕ1 = [τ][α]ff (i.e., after any τ -action, a process cannot perform an
α-action), ϕ2 = [τ]ff (i.e., a process cannot perform a τ -action), and ϕ3 = max X.([τ][α]ff∧
[τ]X) (i.e., a process cannot perform an α-action after any non-empty sequence of τ -actions).
Notice that ϕ3 ≡ [[τ]][α]ff . Let L1, L2 be the LTSs described below, where L1 ≤o L2:

L1 : p0
τ−→ p1

τ−→ p2
α−→ p3 L2 : p0

σ−→ p2
α−→ p3 and p1

σ−→ p2.

L2 is a ≤o-maximal obscuring of L1: any LTS L′ with L2 ≤o L′ will have to be exactly L2
according to Properties 4.2 through 4.2. LTSs L1 and L2 are really instances of LTSs L and
L′ from Example 13, resp. Consider L3 described below:

L3 : p0
τ−→ p2

α−→ p3 and p1
τ−→ p2

where L2 is also an obscuring of L3, L3 ≤o L2. We observe that ϕ1 is not reliably monitorable
according to Definition 14: p0 ∈ Jϕ1KL1

and p0 /∈ Jϕ1KL3
, so a monitor that reliably monitors

for ϕ1 would need to reject and not reject p0 in L2. On the other hand, both ϕ2 and ϕ3 are
reliably monitorable w.r.t. ≤o. Let

m2 = σ.no + τ.no and m3 = rec x.(σ.α.no + σ.x+ τ.α.no + τ.x)

FSTTCS 2017

7:10 Monitoring for Silent Actions

Table 2 Instrumentation rules for myopic monitors.

iMonp
µ−→L p

′ m
µ′

−→M m′ µ ≤ µ′

m / p
µ′
−→I(L,M) m′ / p′

iTerp
µ−→L p

′ ∀µ′ ≥ µ. m 6 µ
′

−→M

m / p
µ−→I(L,M) end / p′

iTran
m / p

σ−→I(L,M) m
′ / p′ p′

µ−→L p
′′ µ ≤ σ

m / p
σ−→I(L,M) m′ / p′′

be monitors from the full monitoring system (M δ, Iδ). According to Properties 4.2, 4.2, and
4.2, for all LTSs L ≤o L′, where L is an LTS on (Act, {τ}), and every process p in L we
have that p τ−→L if and only if p τ−→L′ or p σ−→L′ ; therefore, m2 monitors for ϕ2 on L from
L′. A process p of L violates ϕ3 iff p(τ−→L)+q

α−→L for some q; by Properties 4.2, 4.2, 4.2,
p(τ−→L)+q

α−→L iff p(τ−→L′ ∪ σ−→L′)+q
α−→L′ , and therefore, m3 monitors for ϕ3 on L from L′.

We first introduce myopic monitors, that are equivalent to full monitors on total obscurings.

I Definition 20. A myopic monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monσ ::= end | no | α.m | σ.m | m+ n | rec x.m | x.

A myopic monitor’s LTS semantics is defined by the transition rules in Table 1; the resulting
monitor LTS is Mσ = 〈Monσ, (Act, {σ}),→〉. The instrumentation Iσ of myopic monitors
is then defined by the rules in Table 2.

Rules iMon and iTer are similar to those for Iδ. The difference is that when the monitor
is expecting a more obscure action (i.e., σ), the instrumentation can pass along a possibly less
obscure process action. So, the instrumentation may interpret τ -transitions as σ-transitions.
Rule iTran is new, but the intuition behind it is similar: the instrumentation may interpret
a (possibly mixed) sequence of τ - and σ-transitions as a single σ-transition, if that is what
the monitor was expecting. On total obscurings, myopic monitors behave like full monitors.

I Lemma 21. If L is a total obscuring on (Act, {τ, σ}), then for every m ∈ Monσ and
process p of L, rej〈Mσ,Iσ,L〉(m, p) iff rej〈Mδ,Iδ,L〉(m, p).

As we see in the following, we can further restrict the syntax of myopic monitors while
preserving monitorability with respect to reliably monitorable formulas. The σ-alternating
myopic monitors are the myopic monitors restricted to the following syntax:

m,n ∈Monalt ::= end | no | σ.no | α.m | σ.α.m | m+n | rec x.m | x.

The resulting monitor LTS is called Malt and it is a fragment of Mδ.

I Corollary 22. If ϕ is a reliably monitorable formula on (Act, {τ}), then there is a σ-
alternating myopic monitor that monitors for ϕ on every LTS L on (Act, {τ}) from every
total obscuring of L.

I Example 23. We revisit the LTSs L1 ≤o L2 from Example 19. Let m4 = σ.σ.α.no be a
myopic monitor but not a σ-alternating one. We see that m4 rejects process p0 in L1, but
not in L2 since m4 flags processes that perform at least two silent actions before performing
α; this is not the case for p0 in L2. The constraint of σ-alternation ensures that the monitors
are not allowed to count silent actions and thus rely on information that may be hidden in

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:11

a further obscuring of the LTS: the information that a monitor of the form σ.no or σ.α.m
can analyse is “at least one” silent transition (and then α in the second case), which is
information guaranteed to be preserved by Properties 4.2 and 4.2.

The following results describe how monitor rejections are preserved by the obscuring preorder.

I Lemma 24. For each m ∈ Monσ and each process p of L where L ≤o L′,
rej〈Mσ,Iσ,L′〉(m, p) implies rej〈Mσ,Iσ,L〉(m, p).

I Lemma 25. For every σ-alternating myopic monitor m and p a process of L where L ≤o L′,
rej〈Mσ,Iσ,L〉(m, p) implies rej〈Mσ,Iσ,L′〉(m, p).

I Corollary 26. If a σ-alternating myopic monitor monitors for a formula ϕ on LTS L on
(Act, {τ}) from an obscuring of L, then the monitor reliably monitors for ϕ on L.

Thus, monitorability implies reliable monitorability for such monitors. We can now identify
a maximal reliably monitorable fragment of µHML on (Act, {τ}), which we call RsHML:

θ, χ ∈ RsHML ::= tt | ff | [τ]ff | [α]θ | [[τ]][α]θ | θ∧χ | max X.θ | X.

I Definition 27 (Reliable Monitor Synthesis). We define a reliable monitor synthesis
function L·Mr from RsHML to σ-alternating myopic monitors.

LttMr = end LffMr = no LXMr = x L[τ]ffMr = σ.no

Lψ1 ∧ ψ2Mr =

Lψ1Mr if Lψ2Mr = end

Lψ2Mr if Lψ1Mr = end

Lψ1Mr + Lψ2Mr otherwise
L[α]ψMr =

{
end if LψMr = end

α.LψMr otherwise

Lmax X.ψMr =
{

end if LψMr = end

rec x.LψMr otherwise
L[[τ]][α]ψMr =

{
end if LψMr = end

σ.α.LψMr otherwise

I Lemma 28. For every formula ϕ ∈ RsHML, LϕMr reliably monitors for ϕ.

I Definition 29 (Reliable Formula Synthesis). We define a reliable formula synthesis
function ‖·‖r from σ-alternating myopic monitors to RsHML.

‖end‖r = tt ‖no‖r = ff ‖x‖r = X

‖σ.no‖r = [τ]ff ‖σ.α.m‖r = [[τ]][α]‖m‖r ‖α.m‖r = [α]‖m‖r
‖m+ n‖r = ‖m‖r ∧ ‖n‖r ‖rec x.m‖r = max X.‖m‖r

I Lemma 30. For every σ-alternating myopic monitor m on (Act, {τ, σ}), m reliably
monitors for ‖m‖r.

Theorem 31 presents the main result of this section. The first part follows from Lemmata
28 and 30 whereas the second part is a consequence of Lemma 30 and Corollaries 22 and 26.

I Theorem 31. The monitoring system (Malt, Iσ) on (Act, {τ, σ}) reliably monitors for
RsHML on (Act, {τ}). Moreover, RsHML is the largest reliably monitorable fragment of
µHML up to logical equivalence.

We note that RsHML is also a fragment of ssHML, the maximally monitorable fragment
of µHML identified in Section 3. Theorem 31 holds for every preorder ≤o that has the
properties listed in Subsection 4.2. Therefore, it also holds for ≤c from Definition 16.

FSTTCS 2017

7:12 Monitoring for Silent Actions

I Example 32. We return to the server from Examples 12 and 17. Notice that formula ψ is
a RsHML-formula, and therefore it is reliably monitorable.

We conclude by noting that myopic monitors can also be described as a fragment of full
monitors by replacing σ.no by τ.no+σ.no and σ.α.m with rec x.(τ.x+σ.x+τ.α.m+σ.α.m) in
any myopic monitor. However, myopic monitors provide a cleaner, more efficient description
of the same monitors.

6 Conclusions

We developed a general framework for reliable monitorability for monitoring setups that
obscure information about the internal behaviour of systems. The framework is described
through a family of LTS preorders that satisfy natural properties (4.2 through 4.2 of Subsection
4.2). Via further assumptions (properties 4.2, 4.2, 4.2) that guarantee a certain level of
information obscuring, we identified RsHML, a maximal reliably monitorable fragment
of µHML. Then, we provided a monitoring system, (Malt, Iσ) that reliably monitors for
RsHML.

Related work. In [9], Dwyer et al. use the approach of combining several properties to be
monitored to produce a composite property and then project this composite property onto
a smaller set of observable actions. This sampling technique effectively “silences” some of
the observable actions and focuses on the rest to reduce overhead without risking unsound
monitoring. Their approach highlights the importance of silent actions for RV and the need
for a framework to handle imperfect information about silent events.

In [5] Basin et al. consider the problem of monitoring over defective traces (called
incomplete/disagreeing logs). They propose an augmented LTL specification language that
permits reasoning about incompleteness and handling of inconsistencies. In some sense, this
is related to our reliable monitors that are able to provide correct verdicts in the presence of
event obscuring; however, the authors in [5] do not tackle issues related to monitorability.

In [21], Shi et al. consider the problem of monitoring a wireless network via a wireless
sniffer. A wireless sniffer may introduce uncertainty over a monitoring setup, as the trace it
detects may not necessarily be the actual trace of the system, due to the intrinsic unreliability
of the wireless network. The authors in [21] thus develop a monitoring framework to tolerate
such errors. In separate work [6], Basin et al. tackle the problem of distributed monitoring
over a network which may produce delays and/or failures; they use a monitoring system
based on a real-time three-valued logic that can track when an event took place. Their
monitors may then need to draw appropriate conclusions under incomplete or scrambled
information. Although we do not consider aspects such as event reordering, our work could
serve as a basis for a better understanding of the level of obscuring these systems can tolerate.

Variations. Our system can be adjusted to describe diverse situations, by either weakening
or strengthening the power of obscuring preorders. For instance, one can relax properties
4.2 to 4.2 to describe situations where there is a guarantee that the system reveals its
internal behaviour at least partly and to a certain degree. For example, we can take ≤o
to be the identity relation on LTSs, as it satisfies properties 4.2 to 4.2 and therefore is an
obscuring preorder; then, the reliably monitorable properties would be all of ssHML and
the corresponding monitoring system would be that of full monitors. A preorder between ≤c
and = would perhaps be more interesting.

L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir 7:13

References

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. Determinizing monitors for HML with recursion. arXiv preprint
arXiv:1611.10212, 2016.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. On the complexity of determinizing monitors. In Arnaud Carayol and
Cyril Nicaud, editors, Implementation and Application of Automata - 22nd Interna-
tional Conference, CIAA 2017, Marne-la-Vallée, France, June 27-30, 2017, Proceed-
ings, volume 10329 of Lecture Notes in Computer Science, pages 1–13. Springer, 2017.
doi:10.1007/978-3-319-60134-2_1.

3 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, New York, NY,
USA, 2007. doi:10.1017/cbo9780511814105.

4 S. Arun-Kumar and Matthew Hennessy. An efficiency preorder for processes. Acta Inf.,
29(8):737–760, 1992. doi:10.1007/BF01191894.

5 David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. Monitoring com-
pliance policies over incomplete and disagreeing logs. In Shaz Qadeer and Serdar Tasiran,
editors, Runtime Verification, Third International Conference, RV 2012, Istanbul, Turkey,
September 25-28, 2012, Revised Selected Papers, volume 7687 of Lecture Notes in Computer
Science, pages 151–167. Springer, 2012. doi:10.1007/978-3-642-35632-2_17.

6 David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-aware runtime verific-
ation of distributed systems. In Prahladh Harsha and G. Ramalingam, editors, 35th
IARCS Annual Conference on Foundation of Software Technology and Theoretical Com-
puter Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45 of
LIPIcs, pages 590–603. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.FSTTCS.2015.590.

7 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58,
2017. doi:10.1016/j.tcs.2017.02.009.

8 Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

9 Matthew B. Dwyer, Madeline Diep, and Sebastian G. Elbaum. Reducing the cost of path
property monitoring through sampling. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages
228–237. IEEE Computer Society, 2008. doi:10.1109/ASE.2008.33.

10 Adrian Francalanza. A theory of monitors - (extended abstract). In Bart Jacobs and Chris-
tof Löding, editors, Foundations of Software Science and Computation Structures - 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 145–161.
Springer, 2016. doi:10.1007/978-3-662-49630-5_9.

11 Adrian Francalanza. Consistently-detecting monitors. In Roland Meyer and Uwe Nestmann,
editors, 28th International Conference on Concurrency Theory, CONCUR 2017, Septem-
ber 5-8, 2017, Berlin, Germany, volume 85 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.CONCUR.2017.8.

12 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cas-
sar, Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitor-
ing. In Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification - 17th In-
ternational Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceed-

FSTTCS 2017

http://dx.doi.org/10.1007/978-3-319-60134-2_1
http://dx.doi.org/10.1017/cbo9780511814105
http://dx.doi.org/10.1007/BF01191894
http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.590
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.590
http://dx.doi.org/10.1016/j.tcs.2017.02.009
http://dx.doi.org/10.1109/ASE.2008.33
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8

7:14 Monitoring for Silent Actions

ings, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer, 2017.
doi:10.1007/978-3-319-67531-2_2.

13 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On verifying hennessy-milner
logic with recursion at runtime. In Ezio Bartocci and Rupak Majumdar, editors, Runtime
Verification - 6th International Conference, RV 2015 Vienna, Austria, September 22-
25, 2015. Proceedings, volume 9333 of Lecture Notes in Computer Science, pages 71–86.
Springer, 2015. doi:10.1007/978-3-319-23820-3_5.

14 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the hennessy-
milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017. doi:
10.1007/s10703-017-0273-z.

15 Adrian Francalanza and Aldrin Seychell. Synthesising correct concurrent runtime
monitors. Formal Methods in System Design, 46(3):226–261, 2015. doi:10.1007/
s10703-014-0217-9.

16 Matthew Hennessy. Algebraic Theory of Processes. Foundations of Computing. MIT Press,
1988.

17 Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354,
1983. doi:10.1016/0304-3975(82)90125-6.

18 Kim Guldstrand Larsen. Proof systems for satisfiability in hennessy-milner logic with
recursion. Theor. Comput. Sci., 72(2&3):265–288, 1990. doi:10.1016/0304-3975(90)
90038-J.

19 Martin Leucker and Christian Schallhart. A brief account of runtime verification. J. Log.
Algebr. Program., 78(5):293–303, 2009. doi:10.1016/j.jlap.2008.08.004.

20 Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1989.

21 Jinghao Shi, Shuvendu K. Lahiri, Ranveer Chandra, and Geoffrey Challen. Wireless pro-
tocol validation under uncertainty. In Yliès Falcone and César Sánchez, editors, Runtime
Verification - 16th International Conference, RV 2016, Madrid, Spain, September 23-30,
2016, Proceedings, volume 10012 of Lecture Notes in Computer Science, pages 351–367.
Springer, 2016. doi:10.1007/978-3-319-46982-9_22.

22 Yoriyuki Yamagata, Cyrille Artho, Masami Hagiya, Jun Inoue, Lei Ma, Yoshinori Tanabe,
and Mitsuharu Yamamoto. Runtime monitoring for concurrent systems. In Yliès Falcone
and César Sánchez, editors, Runtime Verification - 16th International Conference, RV 2016,
Madrid, Spain, September 23-30, 2016, Proceedings, volume 10012 of Lecture Notes in
Computer Science, pages 386–403. Springer, 2016. doi:10.1007/978-3-319-46982-9_24.

http://dx.doi.org/10.1007/978-3-319-67531-2_2
http://dx.doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1007/s10703-017-0273-z
http://dx.doi.org/10.1007/s10703-017-0273-z
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-319-46982-9_22
http://dx.doi.org/10.1007/978-3-319-46982-9_24

	Introduction
	Preliminaries
	Monitorability
	Obscuring the Silent Transitions
	A Preorder on Obscure LTSs and Reliable Monitoring
	Requirements on Obscuring Preorders
	An Ordering of Obscurings

	Reliable Monitorability
	Conclusions

