20 research outputs found

    Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

    Get PDF
    Η παρούσα διδακτορική διατριβή εστιάζει στο πρόβλημα της ανάκτησης 3Δ αντικειμένων από μεγάλες βάσεις δεδομένων σε σχεδόν πραγματικό χρόνο. Για την αντιμετώπιση του προβλήματος αυτού, η έρευνα επικεντρώνεται σε τρία βασικά υποπροβλήματα του χώρου: (α) κανονικοποίηση θέσης άκαμπτων 3Δ μοντέλων με εφαρμογές στην ανάκτηση 3Δ αντικειμένων, (β) περιγραφή εύκαμπτων 3Δ αντικειμένων και (γ) αναζήτηση από βάσεις δεδομένων 3Δ αντικειμένων βασιζόμενη σε 2Δ εικόνες-ερώτησης. Σχετικά με το πρώτο υποπρόβλημα, την κανονικοποίηση θέσης 3Δ μοντέλων, παρουσιάζονται τρεις νέες μέθοδοι οι οποίες βασίζονται στις εξής αρχές: (α) Τριδιάστατη Ανακλαστική Συμμετρία Αντικειμένου (ROSy) και (β, γ) Διδιάστατη Ανακλαστική Συμμετρία Αντικειμένου υπολογιζόμενη επί Πανοραμικών Προβολών (SymPan και SymPan+). Όσον αφορά το δεύτερο υποπρόβλημα, αναπτύχθηκε μια μέθοδος ανάκτησης εύκαμπτων 3Δ αντικειμένων, η οποία συνδυάζει τις ιδιότητες της σύμμορφης γεωμετρίας και της τοπολογικής πληροφορίας βασιζόμενης σε γράφους, με ενιαίο τρόπο (ConTopo++). Επιπλέον, προτείνεται μια στρατηγική συνταιριασμού συμβολοσειρών, για τη σύγκριση των γράφων που αναπαριστούν 3Δ αντικείμενα. Σχετικά με το τρίτο υποπρόβλημα, παρουσιάζεται μια μέθοδος ανάκτησης 3Δ αντικειμένων, βασιζόμενη σε 2Δ εικόνες-ερώτησης, οι οποίες αντιπροσωπεύουν προβολές πραγματικών 3Δ αντικειμένων. Τα πλήρη 3Δ αντικείμενα της βάσης δεδομένων περιγράφονται από ένα σύνολο πανοραμικών προβολών και ένα μοντέλο Bag-of-Visual-Words δημιουργείται χρησιμοποιώντας τα χαρακτηριστικά SIFT που προέρχονται από αυτά. Οι μεθοδολογίες που αναπτύχθηκαν και περιγράφονται στην παρούσα διατριβή αξιολογούνται όσον αφορά την ακρίβεια ανάκτησης και παρουσιάζονται κάνοντας χρήση ποσοτικών και ποιοτικών μέτρων μέσω μιας εκτεταμένης και συνεκτικής αξιολόγησης σε σχέση με μεθόδους τρέχουσας τεχνολογικής στάθμης επάνω σε τυποποιημένες βάσεις δεδομένων.This dissertation focuses on the problem of 3D object retrieval from large datasets in a near realtime manner. In order to address this task we focus on three major subproblems of the field: (i) pose normalization of rigid 3D models with applications to 3D object retrieval, (ii) non-rigid 3D object description and (iii) search over rigid 3D object datasets based on 2D image queries. Regarding the first of the three subproblems, 3D model pose normalization, three novel pose normalization methods are presented, based on: (i) 3D Reflective Object Symmetry (ROSy) and (ii, iii) 2D Reflective Object Symmetry computed on Panoramic Views (SymPan and SymPan+). Considering the second subproblem, a non-rigid 3D object retrieval methodology, based on the properties of conformal geometry and graph-based topological information (ConTopo++) has been developed. Furthermore, a string matching strategy for the comparison of graphs that describe 3D objects, is proposed. Regarding the third subproblem a 3D object retrieval method, based on 2D range image queries that represent partial views of real 3D objects, is presented. The complete 3D objects of the database are described by a set of panoramic views and a Bag-of-Visual-Words model is built using SIFT features extracted from them. The methodologies developed and described in this dissertation are evaluated in terms of retrieval accuracy and demonstrated using both quantitative and qualitative measures via an extensive consistent evaluation against state-of-the-art methods on standard datasets

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Pose Normalization of Indoor Mapping Datasets Partially Compliant with the Manhattan World Assumption

    Get PDF
    In this paper, we present a novel pose normalization method for indoor mapping point clouds and triangle meshes that is robust against large fractions of the indoor mapping geometries deviating from an ideal Manhattan World structure. In the case of building structures that contain multiple Manhattan World systems, the dominant Manhattan World structure supported by the largest fraction of geometries is determined and used for alignment. In a first step, a vertical alignment orienting a chosen axis to be orthogonal to horizontal floor and ceiling surfaces is conducted. Subsequently, a rotation around the resulting vertical axis is determined that aligns the dataset horizontally with the coordinate axes. The proposed method is evaluated quantitatively against several publicly available indoor mapping datasets. Our implementation of the proposed procedure along with code for reproducing the evaluation will be made available to the public upon acceptance for publication

    ROSy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval

    No full text
    A novel pose normalization method based on 3D object reflective symmetry is presented. It is a general purpose global pose normalization method; in this paper it is used to enhance the performance of a 3D object retrieval pipeline. Initially, the axis-aligned minimum bounding box of a rigid 3D object is modified by requiring that the 3D object is also in minimum angular difference with respect to the normals to the faces of its bounding box. To estimate the modified axis-aligned bounding box, a set of predefined planes of symmetry are used and a combined spatial and angular distance, between the 3D object and its symmetric object, is calculated. By minimizing the combined distance, the 3D object fits inside its modified axis-aligned bounding box and alignment with the coordinate system is achieved. The proposed method is incorporated in a hybrid scheme, that serves as the alignment method in a 3D object retrieval system. The effectiveness of the 3D object retrieval system, using the hybrid pose normalization scheme, is evaluated in terms of retrieval accuracy and demonstrated using both quantitative and qualitative measures via an extensive consistent evaluation on standard benchmarks. The results clearly show performance boost against current approaches. © 2010 Springer Science+Business Media, LLC

    Indoor Mapping and Reconstruction with Mobile Augmented Reality Sensor Systems

    Get PDF
    Augmented Reality (AR) ermöglicht es, virtuelle, dreidimensionale Inhalte direkt innerhalb der realen Umgebung darzustellen. Anstatt jedoch beliebige virtuelle Objekte an einem willkürlichen Ort anzuzeigen, kann AR Technologie auch genutzt werden, um Geodaten in situ an jenem Ort darzustellen, auf den sich die Daten beziehen. Damit eröffnet AR die Möglichkeit, die reale Welt durch virtuelle, ortbezogene Informationen anzureichern. Im Rahmen der vorliegenen Arbeit wird diese Spielart von AR als "Fused Reality" definiert und eingehend diskutiert. Der praktische Mehrwert, den dieses Konzept der Fused Reality bietet, lässt sich gut am Beispiel seiner Anwendung im Zusammenhang mit digitalen Gebäudemodellen demonstrieren, wo sich gebäudespezifische Informationen - beispielsweise der Verlauf von Leitungen und Kabeln innerhalb der Wände - lagegerecht am realen Objekt darstellen lassen. Um das skizzierte Konzept einer Indoor Fused Reality Anwendung realisieren zu können, müssen einige grundlegende Bedingungen erfüllt sein. So kann ein bestimmtes Gebäude nur dann mit ortsbezogenen Informationen augmentiert werden, wenn von diesem Gebäude ein digitales Modell verfügbar ist. Zwar werden größere Bauprojekt heutzutage oft unter Zuhilfename von Building Information Modelling (BIM) geplant und durchgeführt, sodass ein digitales Modell direkt zusammen mit dem realen Gebäude ensteht, jedoch sind im Falle älterer Bestandsgebäude digitale Modelle meist nicht verfügbar. Ein digitales Modell eines bestehenden Gebäudes manuell zu erstellen, ist zwar möglich, jedoch mit großem Aufwand verbunden. Ist ein passendes Gebäudemodell vorhanden, muss ein AR Gerät außerdem in der Lage sein, die eigene Position und Orientierung im Gebäude relativ zu diesem Modell bestimmen zu können, um Augmentierungen lagegerecht anzeigen zu können. Im Rahmen dieser Arbeit werden diverse Aspekte der angesprochenen Problematik untersucht und diskutiert. Dabei werden zunächst verschiedene Möglichkeiten diskutiert, Indoor-Gebäudegeometrie mittels Sensorsystemen zu erfassen. Anschließend wird eine Untersuchung präsentiert, inwiefern moderne AR Geräte, die in der Regel ebenfalls über eine Vielzahl an Sensoren verfügen, ebenfalls geeignet sind, als Indoor-Mapping-Systeme eingesetzt zu werden. Die resultierenden Indoor Mapping Datensätze können daraufhin genutzt werden, um automatisiert Gebäudemodelle zu rekonstruieren. Zu diesem Zweck wird ein automatisiertes, voxel-basiertes Indoor-Rekonstruktionsverfahren vorgestellt. Dieses wird außerdem auf der Grundlage vierer zu diesem Zweck erfasster Datensätze mit zugehörigen Referenzdaten quantitativ evaluiert. Desweiteren werden verschiedene Möglichkeiten diskutiert, mobile AR Geräte innerhalb eines Gebäudes und des zugehörigen Gebäudemodells zu lokalisieren. In diesem Kontext wird außerdem auch die Evaluierung einer Marker-basierten Indoor-Lokalisierungsmethode präsentiert. Abschließend wird zudem ein neuer Ansatz, Indoor-Mapping Datensätze an den Achsen des Koordinatensystems auszurichten, vorgestellt

    ON SYMMETRY: A FRAMEWORK FOR AUTOMATED SYMMETRY DETECTION

    Get PDF
    Symmetry has weaved itself into almost all fabrics of science, as well as in arts, and has left an indelible imprint on our everyday lives. And, in the same manner, it has pervaded a wide range of areas of computer science, especially computer vision area, and a copious amount of literature has been produced to seek an algorithmic way to identify symmetry in digital data. Notwithstanding decades of endeavor and attempt to have an efficient system that can locate and recover symmetry embedded in real-world images, it is still challenging to fully automate such tasks while maintaining a high level of efficiency. The subject of this thesis is symmetry of imaged objects. Symmetry is one of the non-accidental features of shapes and has long been (maybe mistakenly) speculated as a pre-attentive feature, which improves recognition of quickly presented objects and reconstruction of shapes from incomplete set of measurements. While symmetry is known to provide rich and useful geometric cues to computer vision, it has been barely used as a principal feature for applications because figuring out how to represent and recognize symmetries embedded in objects is a singularly difficult task, both for computer vision and for perceptual psychology. The three main problems addressed in the dissertation are: (i) finding approximate symmetry by identifying the most prominent axis of symmetry out of an entire region, (ii) locating bilaterally symmetrical areas from a scene, and (iii) automating the process of symmetry recovery by solving the problems mentioned above. Perfect symmetries are rare in the extreme in natural images and symmetry perception in humans allows for qualification so that symmetry can be graduated based on the degree of structural deformation or replacement error. There have been many approaches to detect approximate symmetry by searching an optimal solution in a form of an exhaustive exploration of the parameter space or surmising the center of mass. The algorithm set out in this thesis circumvents the computationally intensive operations by using geometric constraints of symmetric images, and assumes no prerequisite knowledge of the barycenter. The results from an extensive set of evaluation experiments on metrics for symmetry distance and a comparison of the performance between the method presented in this thesis and the state of the art approach are demonstrated as well. Many biological vision systems employ a special computational strategy to locate regions of interest based on local image cues while viewing a compound visual scene. The method taken in this thesis is a bottom-up approach that causes the observer favors stimuli based on their saliency, and creates a feature map contingent on symmetry. With the help of summed area tables, the time complexity of the proposed algorithm is linear in the size of the image. The distinguished regions are then delivered to the algorithm described above to uncover approximate symmetry

    2019 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Thirteenth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1013/thumbnail.jp
    corecore