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ABSTRACT

In recent years, the increased availability of inexpensive 3D object acquisition hardware and

simplified 3D modelling software has resulted in the creation of massive 3D model datasets that

are either publicly available or for proprietary use (i.e. industrial or commercial). This increase of

information has also created the need for methods that are both effective and efficient in terms of

3D model annotation and search.

This dissertation focuses on the problem of 3D object retrieval from large datasets in a near

realtime manner. In order to address this task we focus on three major subproblems of the field: (i)

pose normalization of rigid 3D models with applications to 3D object retrieval, (ii) non-rigid 3D model

description and (iii) search over rigid 3D model datasets based on 2D image queries.

The first of the three subproblems, 3D model pose normalization, has a wide range of applications.

Pose normalization of 3D models is a handy tool used for visualization of large 3D model databases,

but also an important preprocessing step in a number of 3D object operations (i.e. retrieval, biometrics

etc.). Here, three novel pose normalization methods are presented, based on: (i) 3D Reflective

Object Symmetry (ROSy) and (ii, iii) 2D Reflective Object Symmetry computed on Panoramic Views

(SymPan and SymPan+). All three are general purpose 3D model pose normalization methods used

to enhance the performance of a rigid 3D object retrieval pipeline.

Considering the second subproblem, a non-rigid 3D object retrieval methodology which combines

the properties of conformal geometry and graph-based topological information (ConTopo++) has

been developed. This method is both robust and efficient in terms of retrieval accuracy and

computation speed: while graph-based methods are robust to non-rigid object deformations, they

require intensive computations which can be reduced by the use of appropriate representations,

addressed through geometry-based methods. In this respect, a 3D object retrieval methodology

which combines the above advantages in a unified manner, is presented. Furthermore, a string

matching strategy for the comparison of graphs that describe 3D models, is proposed.

Regarding the third subproblem a 3D object retrieval method, based on 2D range image queries

that represent partial views of real 3D objects, is presented. The complete 3D models of the database

are described by a set of panoramic views and a Bag-of-Visual-Words model is built using SIFT

features extracted from them. To address the problem of partial matching, a histogram computation



scheme on the panoramic views (that represents local information by taking into account spatial

context), is suggested. Furthermore, a number of optimization techniques are applied throughout

the process, for enhancing the retrieval performance.

The methodologies developed and described in this dissertation are evaluated in terms of retrieval

accuracy and demonstrated using both quantitative and qualitative measures via an extensive con-

sistent evaluation against state-of-the-art methods on standard datasets.

Subject Area Computer Graphics, Computer Vision, Image Processing, Pattern Recognition,

Information Retrieval

Keywords 3D objects, Rotation Normalization, Shape Modelling, Partial Matching, Range

Images



ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, η αυξηµένη διαθεσιµότητα ϕθηνού υλικού ψηφιοποίησης τριδιάστατων αν-

τικειµένων και απλοποιηµένου λογισµικού τριδιάστατης προσοµοίωσης είχε ως αποτέλεσµα τη δηµιουργία

µαζικών ϐάσεων δεδοµένων τριδιάστατων µοντέλων, οι οποίες είτε είναι διαθέσιµες στο κοινό ή

αποκλειστικά για ιδιωτική χρήση (π.χ. ϐιοµηχανική ή εµπορική). Αυτή η αύξηση της πληροφορίας

δηµιούργησε την ανάγκη για µεθόδους που είναι ταυτόχρονα αποτελεσµατικές και αποδοτικές όσον

αφορά την αναζήτηση και την κατηγοριοποίηση των τριδιάστατων µοντέλων.

Η παρούσα διδακτορική διατριβή εστιάζει στο πρόβληµα της ανάκτησης τριδιάστατων αντικειµένων

από µεγάλες ϐάσεις δεδοµένων σε σχεδόν πραγµατικό χρόνο. Προκειµένου να αντιµετωπιστεί αυτό

το πρόβληµα, ϑα επικεντρωθούµε σε τρία ϐασικά υποπροβλήµατα του χώρου: (i) κανονικοποίηση

ϑέσης άκαµπτων τριδιάστατων µοντέλων µε εφαρµογές στην ανάκτηση τριδιάστατων αντικειµένων,

(ii) περιγραφή εύκαµπτων τριδιάστατων µοντέλων και (iii) αναζήτηση από ϐάσεις δεδοµένων τριδιάσ-

τατων µοντέλων ϐασιζόµενη σε διδιάστατες εικόνες-ερώτησης.

Το πρώτο από τα τρία υποπροβλήµατα, η κανονικοποίηση ϑέσης τριδιάστατων µοντέλων, έχει ένα

ευρύ ϕάσµα εφαρµογών. Η κανονικοποίηση ϑέσης είναι ένα χρήσιµο εργαλείο για την απεικόνιση

µεγάλων ϐάσεων δεδοµένων τριδιάστατων µοντέλων, αλλά και ένα σηµαντικό ϐήµα προεπεξερ-

γασίας σε µια σειρά από εφαρµογές τριδιάστατων αντικειµένων (π.χ. ανάκτηση, αναγνώριση ϐάσει

ϐιοµετρίας, κλπ.). Στην παρούσα διατριβή παρουσιάζονται τρεις νέες µέθοδοι κανονικοποίησης, οι

οποίες ϐασίζονται στις εξής αρχές: (i) Τριδιάστατη Ανακλαστική Συµµετρία Αντικειµένου (ROSy)και

(ii, iii) ∆ιδιάστατη Ανακλαστική Συµµετρία Αντικειµένου υπολογιζόµενη επί Πανοραµικών Προβολών

(SymPan και SymPan+).Και οι τρεις µέθοδοι είναι γενικού σκοπού µέθοδοι κανονικοποίησης τριδιάσ-

τατων µοντέλων και χρησιµοποιούνται για να αυξήσουν την απόδοση µιας διαδικασίας ανάκτησης

τριδιάστατων αντικειµένων.

΄Οσον αφορά το δεύτερο υποπρόβληµα, αναπτύχθηκε µια µεθοδολογία ανάκτησης εύκαµπτων

τριδιάστατων αντικειµένων, η οποία συνδυάζει τις ιδιότητες της σύµµορφης γεωµετρίας και της

τοπολογικής πληροφορίας ϐασιζόµενης σε αναπαράσταση γράφων (ConTopo++).Η µέθοδος αυτή

είναι ταυτόχρονα εύρωστη και αποτελεσµατική όσον αφορά την ακρίβεια και την ταχύτητα ανάκτησης:



ενώ οι µέθοδοι που ϐασίζονται στην αναπαράσταση γράφων είναι εύρωστες για παραµορφώσεις

εύκαµπτων αντικειµένων, απαιτούν εντατικούς υπολογισµούς, οι οποίοι ωστόσο µπορούν να µειωθούν

µε τη χρήση κατάλληλων αναπαραστάσεων, µέσω µεθόδων που ϐασίζονται στην γεωµετρία. Σύµ-

ϕωνα µε αυτή την ϑεώρηση, παρουσιάζεται µια µεθοδολογία ανάκτησης τριδιάστατων αντικειµένων, η

οποία συνδυάζει τα παραπάνω πλεονεκτήµατα µε ενιαίο τρόπο. Επιπλέον, προτείνεται µια στρατηγική

συνταιριασµού συµβολοσειρών, για τη σύγκριση των γράφων που αναπαριστούν τριδιάστατα µοντέλα.

Σχετικά µε το τρίτο υποπρόβληµα, παρουσιάζεται µια µέθοδος ανάκτησης τριδιάστατων αντικειµένων,

ϐασιζόµενη σε διδιάστατες εικόνες-ερώτησης, οι οποίες αντιπροσωπεύουν προβολές πραγµατικών

τριδιάστατων αντικειµένων. Τα πλήρη 3∆ µοντέλα της ϐάσης δεδοµένων περιγράφονται από ένα

σύνολο πανοραµικών προβολών και ένα µοντέλο Bag-of-Visual-Words δηµιουργείται χρησιµοποιών-

τας τα χαρακτηριστικά SIFT που προέρχονται από αυτά. Για να αντιµετωπιστεί το πρόβληµα της µερικής

ταύτισης, προτείνεται ένα σχήµα υπολογισµού ιστογραµµάτων από τις πανοραµικές προβολές (που

εκπροσωπεί τοπική πληροφορία λαµβάνοντας υπόψη το χωρικό πλαίσιο). Επιπλέον , ένα σύνολο

από τεχνικές ϐελτιστοποίησης εφαρµόζεται καθ΄ όλη τη διαδικασία, για την ενίσχυση της απόδοσης

ανάκτησης.

Οι µεθοδολογίες που αναπτύχθηκαν και περιγράφονται στην παρούσα διατριβή αξιολογούνται όσον

αφορά την ακρίβεια ανάκτησης και παρουσιάζονται κάνοντας χρήση τόσο ποσοτικών όσο και ποιοτικών

µέτρων µέσω µιας εκτεταµένης και συνεκτικής αξιολόγησης σε σχέση µε µεθόδους τρέχουσας

τεχνολογικής στάθµης επάνω σε τυποποιηµένες ϐάσεις δεδοµένων.

Θεµατική Περιοχή Γραφικά Υπολογιστών, Υπολογιστική ΄Οραση, Επεξεργασία Εικόνας, Αναγνώριση

Προτύπων, Ανάκτηση Πληροφορίας

Λέξεις Κλειδιά Τριδιάστατα Αντικείµενα, Κανονικοποίηση Περιστροφής, Μοντελοποίηση Σχήµα-

τος, Μερική Ταύτιση, Εικόνες Βάθους
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Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

Σύνοψη ∆ιατριβής

Εισαγωγή

Ο όρος Πληροφορία, συνήθως αναφέρεται σε ένα χρήσιµο µέρος δεδοµένων που ϐρίσκε-

ται ανάµεσα σε µια συλλογή σχετικών οντοτήτων. Οι πρόσφατες εξελίξεις στις τεχνολογίες

αποθήκευσης και η ευρεία χρήση του ∆ιαδικτύου, έχουν οδηγήσει σε µεγάλη αύξηση του

όγκου των δεδοµένων που αποθηκεύονται και διανέµονται από µεγάλες ϐάσεις δεδοµένων.

Οποιαδήποτε προσπάθεια για χειροκίνητο χαρακτηρισµό και εξαγωγή πληροφοριών είναι

σχεδόν αδύνατη, καθιστώντας ως εκ τούτου υποχρεωτική την ανάγκη αυτοµατοποίησης µιας

τέτοιας εργασίας.

Η διαδικασία της εξαγωγής χρήσιµων πληροφοριών από µεγάλες ποσότητες δεδοµένων,

µε αυτοµατοποιηµένο τρόπο και µε ϐάση ένα παράδειγµα ή µία περιγραφική ερώτηση,

ονοµάζεται ανάκτηση πληροφοριών. ∆ιαδεδοµένοι τύποι πληροφοριών που µπορούν να επ-

ωφεληθούν από µια τέτοια διαδικασία ανάκτησης είναι : κείµενο, εικόνα ήχος, τριδιάστατα

και τετραδιάστατα πλέγµατα (η τελευταία κατηγορία αναφέρεται σε τριδιάστατα πλέγµατα µε

χρονική αλληλουχία).

Τα τελευταία χρόνια, µέσω της δηµιουργίας ϕθηνών τριδιάστατων ψηφιοποιητών και

της απλούστευσης του λογισµικού τριδιάστατης µοντελοποίησης, έχει δηµιουργηθεί ένας

µεγάλος όγκος τριδιάστατων δεδοµένων, ο οποίος ϐρίσκεται αποθηκευµένος σε αντίστοιχες

επιστηµονικές και ϐιοµηχανικές/εµπορικές αποθήκες δεδοµένων. Επιπλέον, τα τριδιάστατα

δεδοµένα µπορούν να υποβάλλονται σε επεξεργασία µε διάφορους τρόπους, ανάλογα µε την

εφαρµογή, και περιστασιακά να συνδυάζονται µε δεδοµένα άλλων τύπων (π.χ. κείµενα σχο-

λιασµού ή/και µικρογραφίες των τριδιάστατων µοντέλων). Αυτοί οι τύποι δεδοµένων µπορούν

επιπλέον να χρησιµοποιηθούν ως ερωτήσεις για την ανάκτηση των τριδιάστατων αντικειµένων.

Ορισµένα παραδείγµατα εφαρµογών που εκµεταλλεύονται τις ιδιότητες των τριδιάστατων
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µοντέλων και µπορούν να ωφεληθούν σηµαντικά από µια διαδικασία ανάκτησης είναι τα

εξής : στην ιατρική, µεγάλα διαγνωστικά τριδιάστατα δεδοµένα συγκρίνονται και ερευνών-

ται, προκειµένου να ϐοηθηθεί η διαδικασία λήψης ιατρικών αποφάσεων. Στην ϐιοµετρία,

το τριδιάστατο µοντέλο του προσώπου ενός ατόµου αναζητείται σε αντίστοιχες ϐάσεις δε-

δοµένων µε σκοπό την ταυτοποίηση. Η ϐιοµηχανία ανάπτυξης ψηφιακών παιχνιδιών χρησι-

µοποιεί την ανάκτηση και την επαναχρησιµοποίηση των τριδιάστατων µοντέλων προκειµένου

να ελαχιστοποιηθούν οι χρόνοι παραγωγής και να µειωθεί το µέγεθος του τελικού προϊόντος.

΄Αλλοι τοµείς εφαρµογής περιλαµβάνουν την µηχανολογία και την αρχαιολογία. Συνεπώς,

µπορεί εύκολα να εξαχθεί το συµπέρασµα, ότι η ανάκτηση τριδιάστατων αντικειµένων είναι

µια ϐασική διαδικασία, αν και σε γενικές γραµµές είναι πολύπλοκη και εξαρτάται ιδιαίτερα

από την εφαρµογή.

Πλαίσιο Εργασίας και ∆ιατύπωση του Προβλήµατος

Οι εφαρµογές ανάκτησης τριδιάστατων αντικειµένων µπορούν να ταξινοµηθούν σε δύο µεγάλες

κατηγορίες : διακατηγοριακή (interclass) και ενδοκατηγοριακή (intraclass) . Η interclass

ανάκτηση εστιάζει στο γενικό τοµέα των τριδιάστατων αντικειµένων και στοχεύει στην εύρεση

της καλύτερης ταύτισης ανάµεσα σε µια σειρά από τριδιάστατα µοντέλα που ανήκουν σε ένα

ευρύ ϕάσµα διαφορετικών κλάσεων. Σε αυτή την περίπτωση, συνήθως δεν υπάρχει προηγού-

µενη γνώση σχετικά µε τα χαρακτηριστικά ή τη ϕύση των τριδιάστατων αντικειµένων. Η intra

class ανάκτηση στοχεύει σε µια συγκεκριµένη κατηγορία των τριδιάστατων αντικειµένων (π.χ.

τριδιάστατα πρόσωπα, εύκαµπτα τριδιάστατα µοντέλα, µοντέλα αναπαράστασης ανθρώπινων

δράσεων, µοντέλα µηχανολογίας κλπ.), όπου αναζητείται µια ταύτιση µεταξύ τριδιάστατων

µοντέλων που ανήκουν στην ίδια κλάση, αλλά έχουν τα ιδιαίτερα χαρακτηριστικά τους οριζό-

µενα διαφορετικά. Οι µέθοδοι ανάκτησης intraclass εκµεταλλεύονται συνήθως γνώσεις του

τοµέα και τα χαρακτηριστικά µορφής των τριδιάστατων µοντέλων, προκειµένου να επιτύχουν

υψηλότερες επιδόσεις.

Και για τις δύο περιπτώσεις, το γενικό πλαίσιο ενός συστήµατος ανάκτησης τριδιάστατων

αντικειµένων µπορεί να περιγραφεί ως εξής : προεπεξεργασία, κανονικοποίηση ϑέσης, υπ-

ολογισµός περιγραφέα σχήµατος, συνταιριασµός χαρακτηριστικών.

Κατά την προεπεξεργασίατα τριδιάστατα µοντέλα καθαρίζονται από τυχόν ανωµαλίες που

µπορεί να παρουσιάζουν λόγω της διαδικασίας ψηφιοποίησης, παραδείγµατος χάριν διπλές
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ή αντεστραµµένες επιφάνειες, κενά στην δοµή τους κλπ. Το ϐήµα αυτό εξαρτάται σε µεγάλο

ϐαθµό από την µέθοδο/εξοπλισµό που χρησιµοποιείται για τη δηµιουργία των τριδιάστατων

µοντέλων και µπορεί να διαφέρει σηµαντικά από τη µία εφαρµογή στην άλλη.

Ηκανονικοποίηση ϑέσης διασφαλίζει ότι οι γεωµετρικές ιδιότητες των τριδιάστατων µον-

τέλων ορίζονται µε οµοιόµορφο τρόπο. Η ποικιλοµορφία των πηγών απόκτησης των τριδιάσ-

τατων αντικειµένων συνεπάγεται ότι τα τριδιάστατα µοντέλα που µπορεί ακόµη και να εί-

ναι µέρος του ίδιου συνόλου δεδοµένων, δύνανται να έχουν τις γεωµετρικές ιδιότητές τους

αυθαίρετα ορισµένες. Ως εκ τούτου, πριν από την οποιαδήποτε επεξεργασία, πρέπει να εξ-

ασφαλίζεται ότι τα τριδιάστατα αντικείµενα έχουν κανονικοποιηθεί ως προς την µεταφορά,

την περιστροφή και την κλιµάκωση (στο Σχήµα 1 παρουσιάζεται ένα παράδειγµα κανον-

ικοποίησης περιστροφής). Η κανονικοποίηση ϑέσης των τριδιάστατων αντικειµένων είναι ένα

κοινό ϐήµα προεπεξεργασίας σε διάφορες εφαρµογές γραφικών υπολογιστή [21, 110, 121,

141]. Η οπτικοποίηση, η ανασυγκρότηση σπασµένων ϑραυσµάτων, η ϐιοµετρία και ανάκτηση

τριδιάστατων αντικειµένων είναι µόνο µερικά παραδείγµατα εφαρµογών που επωφελούνται

από την διαδικασία κανονικοποίησης ϑέσης.

Το ϐασικό ϐήµα ενός συστήµατος ανάκτησης τριδιάστατων αντικειµένων είναι ο υπολο-

γισµός του περιγραφέα σχήµατος δηλαδή ενός συνόλου χαρακτηριστικών που περιγράφουν

το σχήµα του αντικειµένου µε συνοπτικό και ακριβή τρόπο. Στο στάδιο αυτό, τα δοµικά

ή/και άλλα ειδικά χαρακτηριστικά ενός τριδιάστατου αντικειµένου µοντελοποιούνται και

δηµιουργείται ένας περιγραφέας σχήµατος που κωδικοποιεί πιστά το σχήµα του τριδιάσ-

τατου µοντέλου.Η επιλογή των χαρακτηριστικών είναι στενά συνδεδεµένη µε την αντίστοιχη

εφαρµογή και µπορεί να ποικίλει σε µεγάλο ϐαθµό σε κάθε σύστηµα ανάκτησης τριδιάστατων

αντικειµένων (π.χ. η intraclass ανάκτηση εκµεταλλεύεται τα χαρακτηριστικά που είναι πιο

διακριτικά µέσα σε ένα συγκεκριµένο τοµέα, ενώ η interclass ανάκτηση χρησιµοποιεί πιο

γενικά χαρακτηριστικά).

Τέλος, κάθε περιγραφέας σχήµατος χρησιµοποιείται ως µια υπογραφή κατά την διαδικασία

συνταιριασµού. Σε αυτό το ϐήµα, οι υπογραφές των τριδιάστατων µοντέλων, που ϐρίσκονται

αποθηκευµένες στη ϐάση δεδοµένων, συγκρίνονται µε τις αντίστοιχες υπογραφές του τριδιάσ-

τατου µοντέλου ερώτησης, χρησιµοποιώντας µια µετρική σύγκρισης. Η επιλογή της µετρικής

επίσης από τα επιλεχθέντα χαρακτηριστικά και την αντίστοιχη εφαρµογή. Η απόκριση του

συστήµατος ανάκτησης τριδιάστατων αντικειµένων αποτελείται από το σύνολο των τριδιάσ-
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τατων αντικειµένων που αντιστοιχούν στα πλησιέστερα ταίρια της συγκεκριµένης ερώτησης.

Συνεισφορά

Η παρούσα διατριβή έχει κάνει τις ακόλουθες συνεισφορές στην έρευνα στον τοµέα της ανάκ-

τησης τριδιάστατων αντικειµένων : (iiii) τρεις νέες µέθοδοι κανονικοποίησης ϑέσης τριδιάσ-

τατων µοντέλων, (iv) µια µεθοδολογία ανάκτησης για εύκαµπτα τριδιάστατα αντικείµενα και

(v) έναν αλγόριθµο ανάκτησης τριδιάστατων αντικειµένων, µε ϐάση ερωτήσεις αποτελούµενες

από εικόνες ϐάθους. Πιο αναλυτικά :

i ROSy: Μέθοδος κανονικοποίησης ϑέσης γενικού σκοπού, η οποία ϐασίζεται στην ανακλαστική

συµµετρία των τριδιάστατων αντικειµένων. Αρχικά, το ελάχιστο πλαίσιο οριοθέτησης ενός

άκαµπτου τριδιάστατου αντικειµένου - ευθυγραµµισµένου µε τους πρωτεύοντες άξονες

του χώρου - τροποποιείται µε την απαίτηση το τριδιάστατο µοντέλο να ϐρίσκεται επίσης σε

ελάχιστη γωνιακή διαφορά σε σχέση µε τα κανονικά διανύσµατα των εδρών του πλαισίου

οριοθέτησής του. Για να εκτιµηθεί το τροποποιηµένο - ευθυγραµµισµένο πλαίσιο ορι-

οθέτησης, χρησιµοποιείται ένα σύνολο προκαθορισµένων επιπέδων συµµετρίας και υπ-

ολογίζεται µια συνδυαστική χωρική και γωνιακή απόσταση µεταξύ του τριδιάστατου µον-

τέλου και του συµµετρικού µοντέλου του. Με την ελαχιστοποίηση της συνδυαστικής απόσ-

τασης, το τριδιάστατο µοντέλο τοποθετείται µέσα στο τροποποιηµένο - ευθυγραµµισµένο

πλαίσιο οριοθέτησης και κατά συνέπεια επιτυγχάνεται η ευθυγράµµιση µε το σύστηµα

συντεταγµένων [105].

ii SymPan: Μέθοδος κανονικοποίησης ϑέσης, µε ϐάση τις πανοραµικές προβολές και την

ανακλαστική συµµετρία. Αρχικά, η επιφάνεια ενός τριδιάστατου µοντέλου προβάλλεται

επάνω στην πλευρική επιφάνεια ενός περιγεγραµµένου κυλίνδρου, ευθυγραµµισµένου µε

τον πρωτεύοντα κύριο άξονα του χώρου. Με ϐάση αυτή την κυλινδρική προβολή, εξάγε-

ται ένας χάρτης απόκλισης κανονικών διανυσµάτων και χρησιµοποιώντας µια στρατηγική

αναζήτησης ϐασιζόµενης στα οκταδικά δένδρα, υπολογίζεται εκείνη η περιστροφή που

ευθυγραµµίζει τον πρωτεύοντα κύριο άξονα του τριδιάστατου µοντέλου και τον άξονα του

κυλίνδρου. Κατόπιν, οι δευτερεύοντες άξονες του τριδιάστατου µοντέλου ευθυγραµµίζονται

µε τον δευτερεύοντα κύριο άξονα του χώρου µε παρόµοιο τρόπο [104].
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iii SymPan+: Μέθοδος ϐασιζόµενη στην µεθοδολογία κανονικοποίησης ϑέσης SymPan. Η

ποιοτική και πειραµατική έρευνα επάνω στα τριδιάστατα σύνολα δεδοµένων, µας οδήγησε

στο συµπέρασµα πως τα περισσότερα αντικείµενα διαθέτουν τουλάχιστον ένα επίπεδο συµ-

µετρίας. Η προτεινόµενη µεθοδολογία καθοδηγείται από αυτή την παρατήρηση. Αρ-

χικά, µέσω µιας ϐηµατικής διαδικασίας, εκτιµάται το επίπεδο συµµετρίας ενός τριδιάσ-

τατου µοντέλου. Κατά συνέπεια, υπολογίζεται και ο πρώτος άξονας του µοντέλου. Αυτό

επιτυγχάνεται µέσω της περιστροφής του τριδιάστατου µοντέλου και του υπολογισµού του

επιπέδου ανακλαστικής συµµετρίας επάνω σε πανοραµικές προβολές. Οι εναποµείναν-

τες άξονες συµµετρίας του τριδιάστατου µοντέλου εκτιµώνται µέσω του υπολογισµού της

διακύµανσης των πανοραµικών προβολών του τριδιάστατου µοντέλου [108].

iv ConTopo: Συνδυάζοντας τις ιδιότητες της σύµµορφης γεωµετρίας και των γράφων µε

ϐάση την τοπολογική πληροφορία, προτείνεται µια µεθοδολογία ανάκτησης για εύκαµπτα

τριδιάστατα αντικείµενα, η οποία είναι ταυτόχρονα εύρωστη και αποτελεσµατική σχετικά

µε την ακρίβεια ανάκτησης και την ταχύτητα υπολογισµού. Ενώ οι µέθοδοι που ϐασίζονται

στους γράφους είναι ανεκτικοί σε παραµορφώσεις εύκαµπτων αντικειµένων, απαιτούν εν-

τατικούς υπολογισµούς, οι οποίοι ωστόσο δύναται να µειωθούν µε τη χρήση κατάλληλων

αναπαραστάσεων µέσω των µεθόδων που ϐασίζονται στην γεωµετρία. Σύµφωνα µε αυτή

την ϑεώρηση, παρουσιάζεται µια µεθοδολογία ανάκτησης τριδιάστατων αντικειµένων, η

οποία συνδυάζει τα παραπάνω πλεονεκτήµατα µε ενιαίο τρόπο. Επιπλέον, προτείνεται

µια στρατηγική συνταιριασµού σειρών για τη σύγκριση των γράφων που περιγράφουν τα

τριδιάστατα αντικείµενα [106].

v Αλγόριθµος ανάκτησης τριδιάστατων αντικειµένων, µε ϐάση τις εικόνες-ερωτήσεις που αν-

τιπροσωπεύουν τµηµατικές προβολές πραγµατικών τριδιάστατων αντικειµένων. Τα πλήρη

τριδιάστατα µοντέλα της ϐάσης δεδοµένων περιγράφονται από ένα σύνολο πανοραµικών

προβολών και ένα BagofVisualWords µοντέλο δηµιουργείται από χαρακτηριστικά SIFT,

τα οποία υπολογίζονται σε αυτές. Για να αντιµετωπιστεί το πρόβληµα του µερικού συν-

ταιριασµού, προτείνεται ένα σχήµα υπολογισµού ιστογραµµάτων, υπολογιζόµενων στις

πανοραµικές προβολές. Τα ιστογράµµατα αντιπροσωπεύουν τοπική πληροφορία λαµ-

ϐάνοντας υπόψιν το χωρικό πλαίσιο [107].
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Πειραµατικά Αποτελέσµατα

Μετρικές Αξιολόγησης

Η πειραµατική αξιολόγηση των προτεινόµενων µεθόδων ϐασίζεται στις καµπύλες Ακρίβειας-

Ανάκλησης (PrecisionRecall) καθώς και σε πέντε ποσοτικά µέτρα : τον Κοντινότερο Γείτονα

(Nearest Neighbor), την Πρώτη Τάξη (First Tier), την ∆εύτερη Τάξη (Second Trier), το Μέτρο Ε

(Emeasure) και το Προεξοφλούµενο Συσσωρευµένο Κέρδος (Discounted Cumulative Gain)

[110] για τις κλάσεις του εκάστοτε συνόλου δεδοµένων. Για κάθε µοντέλο ερώτηση που ανήκει

στην κλάση C, η Ανάκληση δηλώνει το ποσοστό των µοντέλων της κλάσης C που ανακτώνται

και η Ακρίβεια δηλώνει το ποσοστό των µοντέλων που ανήκουν στην κλάση C ως προς τον

συνολικό αριθµό των ανακτηµένων µοντέλων. Το καλύτερο αποτέλεσµα είναι 100% και για τις

δύο ποσότητες. Το µέτρο του Πλησιέστερου Γείτονα δείχνει το ποσοστό των ερωτηµάτων, όπου

η πιο κοντινή ταύτιση ανήκει στην κλάση της ερώτησης. Οι στατιστικές Πρώτης και ∆εύτερης

Τάξης, µετρούν την τιµή ανάκλησης για τις (D − 1) και 2(D − 1) πλησιέστερες ανακτήσεις,

αντίστοιχα, όπου D είναι η πληθάριθµος της κλάσης της ερώτησης. Το Μέτρο Ε συνδυάζει

την ακρίβεια και την ανάκληση σε ένα ενιαίο αριθµό και το Προεξοφλούµενο Συσσωρευµένο

Κέρδος ϐαρύνει τα σωστά αποτελέσµατα που ϐρίσκονται πιο κοντά στην κορυφή της λίστας

ανάκλησης περισσότερο από τα σωστά αποτελέσµατα που ϐρίσκονται σε µετέπειτα ϑέσεις της

λίστας, µε ϐάση την παραδοχή ότι ο χρήστης είναι λιγότερο πιθανό να εξετάσει τα στοιχεία

κοντά στο τέλος της λίστας [59, 110].

Βάσεις ∆οκιµών

Για κάθε µέθοδο που παρουσιάζεται, οι αξιολογήσεις έγιναν σε ευρέως χρησιµοποιούµενα

σύνολα δεδοµένων, επιτρέποντας έτσι την σύγκριση των αποτελεσµάτων τόσο µε µεθοδολογίες

της τρέχουσας τεχνολογικής στάθµης όσο και µε µελλοντικές µεθόδους.

Τα σύνολα δεδοµένων, επάνω στα οποία διεξήχθησαν τα πειράµατα αξιολόγησης της µεθό-

δου ROSy, είναι τα εξής : τα σύνολα εκπαίδευσης και ελέγχου της ϐάσης Princeton Shape

Benchmark (PSB) [110], τα κατηγοριοποιηµένα αντικείµενα της ϐάσης δεδοµένων National

Taiwan University database (NTU) [28], το σύνολο δεδοµένων MPEG7 [129], το σύνολο δε-

δοµένων Engineering Shape Benchmark dataset (ESB) [60] και η ϐάση δεδοµένων National

Institute of Standards and Technology dataset (NIST), η οποία περιλαµβάνει τριδιάστατα
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αντικείµενα, προερχόµενα από τον διαγωνισµό SHREC 2009 [43], και των οποίων το σχήµα

έχει κανονικοποιηθεί και έχουν κατηγοριοποιηθεί οπτικά. Τέλος, πειράµατα διεξήχθησαν

στα αρθρωτά και µη αρθρωτά αντικείµενα του συνόλου δεδοµένων McGill [144]. Από το

σύνολο δεδοµένων NTU, χρησιµοποιήθηκαν µόνο τα ταξινοµηµένα αντικείµενα, καθώς τα µη

ταξινοµηµένα αντικείµενα δεν ϑα παρείχαν ακριβή αποτελέσµατα ανάκτησης. Ο Πίνακας 2

(Table 2) δείχνει τον αριθµό των κατηγοριών και τον συνολικό αριθµό των αντικειµένων σε

κάθε σύνολο δεδοµένων που χρησιµοποιήθηκε για τα πειράµατα. Το σύνολο των δεδοµένων,

που χρησιµοποιήθηκε για την αξιολόγηση της µεθόδου SymPan είναι το υποσύνολο δοκιµής

της ϐάσης Princeton Shape Benchmark (PSB) [110]. Αυτό το σύνολο δεδοµένων αποτελεί-

ται από 907 τριδιάστατα µοντέλα που κατατάσσονται σε 92 κλάσεις. Αντίστοιχα, για την

µέθοδο κανονικοποίησης ϑέσης SymPan+ εκτός από το υποσύνολο δοκιµής της ϐάσης PSB,

χρησιµοποιήθηκαν επίσης τα σύνολα δεδοµένων MPEG7 [129], ESB [60] και NIST.

Τα σύνολα δεδοµένων που χρησιµοποιούνται για την πειραµατική αξιολόγηση της µεθοδολογίας

ανάκτησης εύκαµπτων τριδιάστατων αντικειµένων ConTopo είναι τα εξής : (i) TOSCA [19, 18],

(ii) SHREC’07 Watertight Models [50], (iii) SHREC’10 Nonrigid 3D Models [71] και (iv)

SHREC’11 Nonrigid 3D Watertight Meshes [70].

Τέλος, τα σύνολα δεδοµένων που χρησιµοποιήθηκαν για την πειραµατική αξιολόγηση της

προτεινόµενης µεθόδου ανάκτησης τριδιάστατων αντικειµένων, µε ϐάση εικόνες-ερωτήσεις

είναι τα εξής : (i) SHREC’09 Querying with Partial Models [39], (ii) SHREC’10 Range Scan

Retrieval [40] και (iii) SHREC’11 Shape Retrieval Contest of Range Scans [113]. Το υπ-

οσύνολο στόχος των χρησιµοποιούµενων συνόλων δεδοµένων ϐασίζεται στο γενικό σύνολο

δεδοµένων ελέγχου που κατασκευάστηκε στο NIST [43].

Μέθοδοι Κανονικοποίησης Θέσης ROSy, SymPan και SymPan+

Για την εκτίµηση της απόδοσης της µεθόδου κανονικοποίησης ϑέσης ROSy, επιλέχθηκε µια

µεθοδολογία ανάκτησης τριδιάστατων αντικειµένων, τρέχουσας τεχνολογικής στάθµης, από

τους Papadakis et al. [88], σαν όχηµα αποτίµησης.

Το σύστηµα ανάκτησης τριδιάστατων αντικειµένων του Παπαδάκη, στην αρχική του µορφή,

χρησιµοποιεί ένα συνδυασµό δύο µεθόδων κανονικοποίησης ϑέσης για να επιτύχει την

ϐέλτιστη κανονικοποίηση ενός τριδιάστατου αντικειµένου. Η προτεινόµενη µέθοδος παρουσιάζει

όµοιες επιδόσεις µε τις δύο υφιστάµενες, ωστόσο ο συνδυασµός των τριών µεθόδων κανον-

Konstantinos A. Sfikas 35



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

ικοποίησης ϑέσης (ονοµαζόµενος ROSy+), παρέχει µια σηµαντική ώθηση στην διακριτική

ικανότητα του συστήµατος ανάκτησης, ξεπερνώντας την αρχική προσέγγιση.

Στο Σχήµα 35 διαφαίνεται πως το σύστηµα ανάκτησης τριδιάστατων αντικειµένων, κάνον-

τας χρήση της συνδυασµένης µεθόδου κανονικοποίησης ϑέσης ROSy+ , ξεπερνάει δύο πρόσ-

ϕατες µεθόδους κανονικοποίησης : DLA [27] και GSMD+SHD+R [72], τον περιγραφέα PANORAMA

καθώς και τρεις κλασικές µεθοδολογίες ανάκτησης τριδιάστατων αντικειµένων : Lightfield [28],

SHGEDT [65] και DESIRE [132]. Η προτεινόµενη µέθοδος εξετάσθηκε επίσης στο σύνολο

των διαθέσιµων ϐάσεων δοκιµών. Τα αντίστοιχα αριθµητικά αποτελέσµατα παρουσιάζονται

στον Πίνακα 4 (Table 4). Τα αποτελέσµατα δείχνουν πως η προτεινόµενη µέθοδος είναι

σταθερή σε όλες τις ϐάσεις δεδοµένων.

Σε όλα τα 8 σύνολα δεδοµένων, η προτεινόµενη µέθοδος είναι σε ϑέση να επιτύχει µια

µέση αύξηση επιδόσεων της τάξης του 3% σχέση µε την αρχική υβριδική προσέγγιση του Πα-

παδάκη (µέσος όρος των ποσοτικών µέτρων αξιολόγησης). Αυτό το κέρδος είναι σηµαντικό,

διότι επιτυγχάνεται αποκλειστικά και µόνο µε την ενίσχυση της διαδικασίας κανονικοποίησης

ϑέσης και όχι του πυρήνα του αλγορίθµου ανάκτησης. Επιπλέον, καθίσταται σαφές ότι η

προτεινόµενη µεθοδολογία αποδίδει καλύτερα σε σχέση µε τις υπόλοιπες µεθόδους ανάκ-

τησης τριδιάστατων αντικειµένων κατά µέσο όρο 2% - 5% (µέσος όρος των ποσοτικών µέτρων

αξιολόγησης).

Παρόµοια µε τον τρόπο που πραγµατοποιήθηκε η ποσοτική αξιολόγηση της µεθοδολογίας

κανονικοποίησης ϑέσης ROSy, για τους αλγορίθµους κανονικοποίησης ϑέσης SymPan και

SymPan+ επιλέχθηκε το σύστηµα ανάκτησης τριδιάστατων αντικειµένων, τρέχουσας τεχνολογικής

στάθµης, PANORAMA [89] ως όχηµα αξιολόγησης. Η προτεινόµενες µέθοδοι αντικαθιστούν

την µέθοδο κανονικοποίησης ϑέσης NPCA, στο υπάρχον υβριδικό σύστηµα.

Το άµεσο αποτέλεσµα των προτεινόµενων µεθόδων ευθυγράµµισης µπορεί να αξιολογη-

ϑεί συγκρίνοντας τις µε την αρχική απόδοση της µεθόδου PANORAMA. ΄Οσον αφορά την

απόδοση της ανάκτησης αντικειµένων, τα ολοκληρωµένα συστήµατα συγκρίθηκαν µε τις

αντίστοιχες µεθοδολογίες DLA [27], GSMD+SHD+R [72], Rosy+ [105], Lightfield [28], SH

GEDT [65] και DESIRE [132].

Στο Σχήµα 40, χρησιµοποιώντας τα πειραµατικά αποτελέσµατα που δίνονται στο [105,

104], απεικονίζονται τα διαγράµµατα ακρίβειας-ανάκλησης για το υποσύνολο δοκιµής του

συνόλου δεδοµένων PSB για το σύστηµα ανάκτησης τριδιάστατων αντικειµένων PANORAMA,
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όπως αυτό έχει ενισχυθεί τις προτεινόµενες µεθόδους, αντίστοιχα. Ο Πίνακας 5 (Table 5)

δείχνει ποσοτικά µέτρα για τις ίδιες µεθόδους. Ο Πίνακας 6 (Table 6) παρουσιάζει τα

ποσοτικά αποτελέσµατα για τις επιπλέον ϐάσεις δοκιµής στις οποίες ελέγχθηκε η µέθοδος

SymPan+. Τα αποτελέσµατα δείχνουν ότι το προτεινόµενο σύστηµα υπερτερεί µεθόδων

τρέχουσας τεχνολογικής στάθµης και αυξάνει σηµαντικά την απόδοση του συστήµατος ανάκ-

τησης τριδιάστατων αντικειµένων σε σύγκριση µε την αρχική υλοποίηση του.

Στο Σχήµα 41 παρουσιάζονται συγκριτικές ευθυγραµµίσεις µεταξύ των µεθόδων κανον-

ικοποίησης ϑέσης SymPan+ και CPCA, NPCA για διάφορα τριδιάστατα µοντέλα από το

σύνολο δεδοµένων PSB. Οι ευθυγραµµίσεις αυτές δείχνουν ότι η προτεινόµενη µέθοδος είναι

σε ϑέση να παράγει ακριβή αποτελέσµατα ευθυγράµµισης που, ανεξάρτητα από την κλάση

προέλευσης ή τη µορφολογία των αντικειµένων εισόδου, είναι συνεπή και σταθερά.

Σηµείωση: Για τα αντίστοιχα αριθµητικά αποτελέσµατα, ανατρέξτε στους πίνακες των Παραρτη-

µάτων A και B.

Μέθοδος Ανάκτησης Εύκαµπτων Τριδιάστατων Αντικειµένων ConTopo

Στην συνέχεια, πραγµατοποιήθηκε σύγκριση µεταξύ της µεθόδου ανάκτησης εύκαµπτων

τριδιάστατων αντικειµένων ConTopo και άλλων αντίστοιχων µεθόδων τρέχουσας τεχνολογικής

στάθµης σε πρότυπα σύνολα δεδοµένων.

Στο Σχήµα 42, σύµφωνα µε τα πειραµατικά αποτελέσµατα που εµφανίζονται στα [11] και

[102], απεικονίζονται τα διαγράµµατα ακρίβειας-ανάκλησης για το σύνολο των δεδοµένων

της ϐάσης TOSCA για την προτεινόµενη µεθοδολογία ανάκτησης εύκαµπτων τριδιάστατων

αντικειµένων, την µεθοδολογία ∆ιακριτών Σύµµορφων Συντελεστών (Discrete Conformal Fac

tors  Cfact) και δύο ϐασικούς περιγραφείς σχήµατος για τριδιάστατα αντικείµενα : τον περι-

γραφέα Πεδίου Φωτός (LightField  LF) και τον περιγραφέα που ϐασίζεται στις σφαιρικές

αρµονικές (Spherical Harmonics  SH). Τα διαγράµµατα ακρίβειας-ανάκλησης των παρα-

πάνω µεθόδων δείχνουν σαφώς την υψηλή ακρίβεια της προτεινόµενης µεθόδου.

Στο Σχήµα 43 απεικονίζονται τα διαγράµµατα ακρίβειας-ανάκλησης για το πλήρες σύνολο

δεδοµένων SHREC’07 Watertight Models. Η προτεινόµενη µέθοδος αποδίδει καλύτερα από

το σύνολο των απεικονιζόµενων περιγραφέων.

Στα Σχήµατα 44 και 45 απεικονίζονται τα αποτελέσµατα ακρίβειας-ανάκλησης της προ-
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τεινόµενης µεθόδου σε σχέση µε τα δηµοσιευµένα αποτελέσµατα των συνόλων δεδοµένων

SHREC’10 Nonrigid 3D Models και SHREC’11 Nonrigid 3D Watertight Meshes. Τα αντίσ-

τοιχα ποσοτικά µεγέθη εµφανίζονται στους Πίνακες 8 και 9 (Tables 8, 9).

Από τα παραπάνω, είναι σαφές ότι η προτεινόµενη µέθοδος υπερτερεί των αντίστοιχων

µεθόδων των διαγωνισµών, παρόλο που αυτές παρουσίαζαν ήδη πολύ υψηλές επιδόσεις.

΄Οµοια συµπεράσµατα µπορούν επίσης να εξαχθούν από τα ποσοτικά µέτρα του Πί-

νακα 8 (Table 8), όπου η προτεινόµενη µέθοδος έχει τις υψηλότερες ϐαθµολογίες στα τρία

από τα πέντε µέτρα (και είναι επίσης η δεύτερη καλύτερη για τα υπόλοιπα δύο µέτρα, µε

µικρή διαφορά). Στο σύνολο δεδοµένων SHREC’11 Nonrigid 3D Watertight Meshes, η προ-

τεινόµενη µέθοδος αποδίδει καλύτερα ή παρουσιάζει ανάµεικτα αποτελέσµατα σε σχέση µε

περίπου το 65% των αποτελεσµάτων των µεθόδων που παρουσιάστηκαν στον διαγωνισµό.

Αυτό απεικονίζεται επίσης στο Σχήµα 45 και στον Πίνακα 9 (Table 9).

Σηµείωση: Για τα αντίστοιχα αριθµητικά αποτελέσµατα, ανατρέξτε στους πίνακες του Παραρτή-

µατος C.

Μέθοδος Ανάκτησης Τριδιάστατων Αντικειµένων βάσει Εικόνων-Ερώτησης

Η προτεινόµενη µέθοδος ανάκτησης άκαµπτων τριδιάστατων αντικειµένων ϐάσει εικόνων-

ερώτησης συγκρίθηκε σε δύο σύνολα δεδοµένων, το SHREC’09 Querying with Partial Mod

els και το SHREC’10 Range Scan Retrieval, σε σχέση µε τα υπάρχοντα αποτελέσµατα των

µεθόδων που συµµετείχαν αντίστοιχα.

Πιο συγκεκριµένα, στο σύνολο δεδοµένων SHREC’09 Querying with Partial Models,

πραγµατοποιήθηκε σύγκριση µε τις παραλλαγές του περιγραφέα CMVD (Compact Multi

View Descriptor) των ∆άρας και Αξενόπουλος [34] και τις µεθόδους BFSIFT και BFGridSIFT

των Furuya και Ohbuchi. Η αυξηµένη απόδοση της προτεινόµενης µεθόδου παρουσιάζεται

τόσο στο διάγραµµα ακρίβειας-ανάκλησης του Σχήµατος 46 όσο και στα ποσοτικά µέτρα του

Πίνακα 10 (Table 10).

Στο σύνολο δεδοµένων SHREC’10 Range Scan Retrieval πραγµατοποιήθηκε σύγκριση

µε τις παραλλαγές της µεθόδου BFDSIFTE των Ohbuchi και Furuya [83] και µε τις παρ-

αλλαγές της µεθόδου SURFLET, όπως αυτή προτάθηκε από τους Hillebrand et al. [133].

Ο Πίνακας 11 (Table 11) δείχνει πως η προτεινόµενη µέθοδος παρουσιάζει την υψηλότερη
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ϐαθµολογία στις τρεις από τις πέντε µετρικές. Τα διαγράµµατα ακρίβειας-ανάκλησης του

Σχήµατος 47, δείχνουν πως η προτεινόµενη µέθοδος ξεπερνάει το σύνολο των διαγωνιζό-

µενων.

Σηµείωση: Για τα αντίστοιχα αριθµητικά αποτελέσµατα, ανατρέξτε στους πίνακες του Παραρτή-

µατος D.

Συµπεράσµατα

Στην παρούσα διδακτορική διατριβή παρουσιάστηκαν οι µεθοδολογίες που αναπτύχθηκαν

για την αντιµετώπιση των προβληµάτων της κανονικοποίησης ϑέσης τριδιάστατων µοντέλων,

της ανάκτησης τριδιάστατων αντικειµένων µε εφαρµογές σε άκαµπτα και εύκαµπτα µοντέλα,

καθώς και της ανάκτησης τριδιάστατων αντικειµένων µε ϐάση εικόνες-ερωτήσεις. Στον τοµέα

της κανονικοποίησης ϑέσης τριδιάστατων µοντέλων, προτάθηκαν τρεις νέες µέθοδοι µε ϐάση

τις ιδιότητες της ανακλαστικής συµµετρίας των τριδιάστατων αντικειµένων. Ο αλγόριθµος

κανονικοποίησης ϑέσης ROSy συµπληρώνει µε επιτυχία τις αντίστοιχες µεθόδους CPCA και

NPCA ως ένα ϐήµα προεπεξεργασίας για ένα σύστηµα ανάκτησης τριδιάστατων αντικειµένων.

Η προσθήκη της προτεινόµενης µεθόδου αυξάνει την διακριτική ικανότητα του συστήµατος

κατά περίπου 3% πάνω από την προηγούµενη καλύτερη προσέγγιση. Η µεθοδολογία κανον-

ικοποίησης ϑέσης SymPan ϐασίζεται σε έναν Χάρτη Απόκλισης Κανονικών ∆ιανυσµάτων της

επιφάνειας του τριδιάστατου µοντέλου καθώς και στις ιδιότητες ανακλαστικής συµµετρίας

του αντικειµένου. Βασιζόµενοι στις ίδιες αρχές όπως στην µέθοδο κανονικοποίησης ϑέσης

τριδιάστατων µοντέλων SymPan, καθώς και οδηγούµενοι από την πεποίθηση πως τα περισ-

σότερα τριδιάστατα αντικείµενα έχουν τουλάχιστον ένα επίπεδο συµµετρίας, στην µέθοδο

SymPan+ επιχειρούµε να προσδιορίσουµε αυτό το επίπεδο και στην συνέχεια να το ευθυ-

γραµµίσουµε µε ένα από τα κύρια επίπεδα του χώρου. Στην συνέχεια, οι κύριοι άξονες του

τριδιάστατου µοντέλου εκτιµώνται µέσω του υπολογισµού της διακύµανσης των τιµών των

εικονοστοιχείων των πανοραµικών προβολών. Οι προτεινόµενες µέθοδοι κανονικοποίησης

ϑέσης χρησιµοποιούν πληροφορίες που προέρχονται από την προβολή των τριδιάστατων

µοντέλων επάνω στον περιγεγραµµένο κύλινδρό τους. Η ποιότητα των µεθόδων ευθυγράµ-

µισης αποδεικνύεται τόσο οπτικά όσο και µέσα από τις επιδόσεις ενός συστήµατος ανάκτησης

τριδιάστατων αντικειµένων τρέχουσας τεχνολογικής στάθµης. Η µέθοδος SymPan ϐελτιώνει
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τη διακριτική ικανότητα του συστήµατος ανάκτησης τριδιάστατων αντικειµένων PANORAMA

κατά µέσο όρο 6% πάνω από την αρχική προσέγγιση. Η µέθοδος SymPan+ επιπλέον

ϐελτιώνει την διακριτική ικανότητα του συστήµατος ανάκλησης PANORAMA (κάνοντας χρήση

της µεθοδολογίας κανονικοποίησης ϑέσης SymPan ) κατά µέσο όρο 1%, προσφέροντας έτσι

µια συνολική αύξηση της τάξης του 7% σε σχέση µε την αρχική προσέγγιση. Και οι δύο

µέθοδοι παρουσιάζουν ϐελτιωµένη απόδοση σε σχέση µε την µεθοδολογία ROSY κατά µέσο

όρο 2 - 3%.

Και οι τρεις προτεινόµενες µέθοδοι είναι σε ϑέση να παράγουν υψηλής ποιότητας ευθυ-

γραµµίσεις των τριδιάστατων αντικειµένων, ανεξαρτήτως κλάσης προέλευσης ή µορφολογίας.

Οι ευθυγραµµίσεις αυτές είναι ταυτόχρονα σταθερές και συνεπείς.

Για την αντιµετώπιση του προβλήµατος της ανάκτησης εύκαµπτων τριδιάστατων αντικειµένων,

προτάθηκε ο περιγραφέας ConTopo++. Αυτός ο περιγραφέας ενσωµατώνει τόσο γεωµετρικά

όσο και τοπολογικά χαρακτηριστικά σε µια ενιαία διαδικασία εξαγωγής περιγραφέα. Επι-

πλέον, εισάγεται µια τεχνική συνταιριασµού γράφων, ϐασιζόµενη στην αντιστοίχιση σειρών.

Αυτή η ϐελτιωµένη µεθοδολογία ανάκτησης τριδιάστατων αντικειµένων, αποτιµήθηκε όχι

µόνο σε σχέση µε την ϐασική µορφή του αλγορίθµου (ConTopo) και τα αντίστοιχα σύνολα δε-

δοµένων που εµφανίζονται στο [102] αλλά και σε σχέση µε τυποποιηµένα σύνολα δεδοµένων

από τα SHREC’10 Nonrigid 3D Models και SHREC’11 Nonrigid 3D Watertight Meshes και

τους αντίστοιχους τριδιάστατους περιγραφείς σχήµατος τρέχουσας τεχνολογικής στάθµης. Σε

κάθε περίπτωση, η προτεινόµενη µεθοδολογία ανάκτησης για εύκαµπτα τριδιάστατα αντικεί-

µενα είναι σε ϑέση να επιτύχει υψηλά επίπεδα ακρίβειας ανάκτησης, ξεπερνώντας πολλούς

από τους ανταγωνιστικούς περιγραφείς, µε χαµηλό υπολογιστικό κόστος. Το Σχήµα 48

απεικονίζει µερικά παραδείγµατα ανάκτησης από το σύνολο δεδοµένων SHREC’10 Nonrigid

3D Models.

Στον τοµέα της ανάκτησης τριδιάστατων αντικειµένων µε ϐάση εικόνες-ερώτησης, προτεί-

ναµε µια στρατηγική χωρικών ιστογραµµάτων σε ένα BagofVisualWords πλαίσιο, η οποία

προσαρµόζει την πληροφορία των πανοραµικών προβολών στο έργο της µερικής ταύτισης.

Ιδιαίτερη προσοχή έχει δοθεί στο στάδιο προεπεξεργασίας των εικόνων-ερώτησης, όπου µια

σειρά από διαδοχικά ϕίλτρα εφαρµόζονται στις εικόνες, προκειµένου να αµβλυνθούν τα

προβλήµατα που µπορεί να έχει εισάγει η διαδικασία ψηφιοποίησης. Αυτή η ϐελτιωµένη

µεθοδολογία ανάκτησης τριδιάστατων αντικειµένων, εκτιµήθηκε όχι µόνο σε σχέση µε την
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προηγούµενη προσέγγισή µας [103] και το αντίστοιχο σύνολο δεδοµένων SHREC’10 Range

Scan Retrieval, αλλά και σε τυποποιηµένα σύνολα δεδοµένων από το SHREC’09 Querying

with Partial Models µε τις αντίστοιχες µεθοδολογίες ανάκτησης τριδιάστατων αντικειµένων,

και το SHREC’11 Shape Retrieval Contest of Range Scans. Σε κάθε περίπτωση, η προτεινό-

µενη µέθοδος ανάκτησης 3∆ αντικειµένου υπερτερεί των ανταγωνιστικών περιγραφέων.

Η παρούσα διατριβή αντιµετωπίζει µε επιτυχία µια σειρά από προβλήµατα του τοµέα της

ανάκτησης τριδιάστατων αντικειµένων. Η ανάκτηση τριδιάστατων αντικειµένων µπορεί να

ϑεωρηθεί ως ένα σχετικά νέο πεδίο που εµπίπτει στις επιστηµονικές περιοχές της υπολογισ-

τικής όρασης, των γραφικών υπολογιστή και της ανάκτησης πληροφορίας µε ϐάση το περιεχό-

µενο. Οι περιγραφόµενες µέθοδοι έχουν αποδειχθεί εύρωστοι όσον αφορά την ακρίβεια

ανάκτησης και ξεπέρασαν προηγούµενες µεθόδους τρέχουσας τεχνολογικής στάθµης στις

αντίστοιχες δοκιµές αξιολόγησης. Αυτές οι δοκιµές διεξήχθησαν σε δηµόσια διαθέσιµες ϐά-

σεις δεδοµένων.
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1 Introduction

Well begun is half done

– Aristotle

Information, commonly refers to a useful portion of data located among a collection of

related entities. Recent advances in storage technologies and the widespread use of the

Internet, have resulted in a vast increase of the amount of data stored in and distributed

from large databases. Any attempt for manual annotation and information extraction is

almost impossible, therefore rendering the need for an automated procedure, mandatory.

The process of extracting useful information from large amounts of data, in an au

tomated manner and based on an example or descriptive query, is called information

retrieval. Common types of information that can benefit from such a retrieval process are:

textual, visual, audio and video data and most recently, 3D and 4D (3D over time) data.

In recent years, through the creation of inexpensive 3D scanners and the simplification

of 3D modelling software, a large volume of 3D data has been created and stored in

corresponding scientific and industrial/commercial repositories. Furthermore, 3D data

can be processed in various, application dependent, ways and occasionally be combined

with data of other types and modalities (e.g. textual annotation and/or thumbnails of 3D

models). These data types can further be used as queries for the retrieval of 3D objects.

Some example applications that exploit the properties of 3D models and could greatly

benefit from a retrieval process follow: in medicine large diagnostic 3D data are compared

and researched in order to assist the process of making medical decisions. In biometrics

a person’s 3D facial model is searched over corresponding databases for identification
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purposes. Game development utilizes retrieval and reusability of 3D models in order

to minimize production times and reduce the size of the final product. Other example

application areas include engineering and archaeology. It can therefore be easily deduced,

that 3D object retrieval is a key process, although in general it is complex and highly

depended on the application.

1.1 Framework and problem statement

3D object retrieval applications can be classified into two major categories: interclass

and intraclass retrieval. Interclass retrieval focuses on a generic domain of 3D objects

and aims at finding the closest match among a set of 3D models that belong to a broad

range of different classes. In this case, there is usually no prior knowledge regarding the

characteristics or the nature of the 3D objects. Intraclass retrieval targets a specific 3D

object domain (e.g. 3D faces, nonrigid 3D models, human action models, engineering

models etc), where a match is sought between 3D models that belong to the same class

but have their special characteristics defined differently. Intraclass 3D object retrieval

methods usually exploit domain knowledge and shape characteristics of the 3D models,

in order to attain higher performance.

For both categories, the generic framework of a 3D object retrieval system can be out

lined as follows: preprocessing, pose normalization, shape descriptor extraction, feature

matching.

Initially, let us define that, if not otherwise stated, a triangular 3D polygonal object is

composed of a set of vertices vi = [vix, viy, viz]
T , i ∈ {1, 2, ..., Nv}, where Nv denotes the total

number of vertices, and a set of triangular faces fj = {vj1, vj2, vj3}, where j = 1, 2, ..., Np

and Np denotes the total number of triangular faces.

At the first step of the 3D object retrieval pipeline, 3D models are preprocessed. In this

step, the 3D models are cleaned up of any inconsistencies present due to the digitization

process, i.e. double or reversed faces, structural gaps, etc. This step is highly dependent

on the method/equipment used for the creation of the 3D models and may differ greatly

from one application to another.

After basic preprocessing, Pose Normalization ensures that the geometric properties of

the 3D models are defined in a uniform manner. The diversity of 3D object acquisition
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sources implies that 3D objects which may even be part of the same dataset, have their

geometrical properties arbitrarily defined. Therefore, before any kind of processing is car

ried out, it must be ensured that the 3D objects have been normalized in terms of position,

scaling and rotation (Fig 1 shows an example rotation normalization). Pose normalization

of 3D objects is a common preprocessing step in various computer graphics applications

[21, 110, 121, 141]. Visualization, broken fragment reconstruction, biometrics and 3D

object retrieval are only a few examples of applications that benefit from a pose normal

ization procedure. To achieve pose normalization, for every 3D object, a corresponding

set of normalization transformations in 3D space must be defined.

Figure 1: Examples of nonaligned objects (toprow) and the corresponding rotation nor

malizations (bottom row).

The main step of a 3D object retrieval system is the computation of a feature set for

each 3D model. In this step, the structural and/or other special characteristics of a

3D object are modelled and a shape descriptor that faithfully encodes the shape of the

3D model, in an efficient manner, is created. Feature selection is tightly connected to

the corresponding application and can vary greatly for each 3D object retrieval system

(e.g. intraclass retrieval exploits features that are more distinguishing within a specific

domain, whereas interclass retrieval uses more generic characteristics).

Finally, each 3D object’s shape descriptor is used as a signature during the matching

procedure. At this step, the signatures of the 3D models, stored in the database, are

compared to the corresponding signatures of the query 3D model(s), using a specified

Konstantinos A. Sfikas 47



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

metric. The selected metric is also dependent on both the features selected and the

corresponding application. Finally, the response of the 3D object retrieval system is the

set of 3D object(s) that correspond to the closest match(es) of the given user query.

1.2 Contributions

This thesis has made the following research contributions in the area of 3D object retrieval:

(iiii) three new 3D model pose normalization methods, (iv) a nonrigid 3D object retrieval

methodology and (v) a 3D object retrieval algorithm, based on range image queries. In

detail, the contributions of this dissertation are the following:

i ROSy: A general purpose global pose normalization method based on 3D object reflec

tive symmetry. Initially, the axisaligned minimum bounding box of a rigid 3D model

is modified by requiring that the 3D model is also in minimum angular difference

with respect to the normals to the faces of its bounding box. To estimate the modi

fied axisaligned bounding box, a set of predefined planes of symmetry are used and

a combined spatial and angular distance, between the 3D model and its symmetric

model, is calculated. By minimizing the combined distance, the 3D model fits inside

its modified axisaligned bounding box and alignment with the coordinate system is

achieved [105].

ii SymPan: A pose normalization method, based on panoramic views and reflective sym

metry, is presented. Initially, the surface of a 3D model is projected onto the lateral

surface of a circumscribed cylinder, aligned with the primary principal axis of space.

Based on this cylindrical projection, a normals’ deviation map is extracted and us

ing an octreebased search strategy, the rotation which optimally aligns the primary

principal axis of the 3D model and the cylinder’s axis is computed. The 3D model’s

secondary principal axis is then aligned with the secondary principal axis of space in

a similar manner [104].

iii SymPan+: A pose normalization method based on similar principles as the SymPan

methodology. Qualitative and experimental investigation in 3D datasets has led us to

the observation that most objects possess a single plane of symmetry. Our approach
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is thus guided by this observation. Initially, through an iterative procedure, the sym

metry plane of a 3D model is estimated, thus computing the first axis of the model.

This is achieved by rotating the 3D model and computing reflective symmetry scores

on panoramic view images. The other principal axes of the 3D model are estimated by

computing the variance of the 3D model’s panoramic views [108].

iv ConTopo: Combining the properties of conformal geometry and graphbased topolog

ical information, a nonrigid 3D object retrieval methodology is proposed, which is

both robust and efficient in terms of retrieval accuracy and computation speed. While

graphbased methods are robust to nonrigid object deformations, they require inten

sive computation which can be reduced by the use of appropriate representations,

addressed through geometrybased methods. In this respect, a 3D object retrieval

methodology, which combines the above advantages in a unified manner, is presented.

Furthermore, a string matching strategy for the comparison of graphs which describe

3D objects, is proposed [106].

v A 3D object retrieval method, based on range image queries that represent partial views

of real 3D objects, is presented. The complete 3D models of the database are described

by a set of panoramic views and a BagofVisualWords model is built using SIFT fea

tures extracted from them. To address the problem of partial matching, a histogram

computation scheme, on the panoramic views, that represents local information by

taking into account spatial context, is suggested. Furthermore, a number of opti

mization techniques are applied throughout the process, for enhancing the retrieval

performance [107].

1.3 Overview of this thesis

The organization of this thesis is as follows:

In Chapter 2, stateoftheart methods in the different fields of 3D object retrieval are

reviewed. More specifically, recent and noteworthy works on rigid and nonrigid 3D shape

descriptors, pose normalization and 3D object retrieval based on 2D image queries, are

presented.
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In Chapter 3, the proposed pose normalization methods, as well as corresponding key

concepts used, are discussed in detail.

In Chapter 4, the proposed nonrigid 3D object retrieval method is presented. Its

basic components, namely, conformal mappings and topological graphs, along with the

proposed stringbased graph matching technique, are discussed in detail.

In Chapter 5, the proposed methodology for 3D object retrieval based on 2D range

image queries, is presented. Key concepts, such as Panoramic Views, SIFT, BagofVisual

Words modelling and Spatial Histograms are discussed.

Chapter 6 presents the evaluation methodology and illustrates the extended experi

mentation results of the methods presented in this dissertation, against stateoftheart

works on standard datasets. These results are discussed in detail.

Finally, in Chapter 7 the contributions of this dissertation are summarized and con

clusions that were drawn are discussed.
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Work from this dissertation has appeared in the following coauthored publications (Cita
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• [106] Sfikas, K., Theoharis, T., & Pratikakis, I. (2012). Nonrigid 3D object retrieval using

topological information guided by conformal factors. The Visual Computer, vol. 28, no. 9,

pp. 943955.
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13511361.
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Reflective Symmetry on Panoramic Views. The Visual Computer, submitted to.
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Bronstein, A. M. Bronstein, and A. Ferreira, Eds. Eurographics Association, pp. 915.

• [104] Sfikas, K., Pratikakis, I., & Theoharis, T. (2013). SymPan: 3D Model Pose Normal

ization via Panoramic Views and Reflective Symmetry. in 3DOR, U. Castellani, T. Schreck,

S. Biasotti, I. Pratikakis, A. Godil, and R. C. Veltkamp, Eds. Eurographics Association, pp.
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2 Related Work

If I have seen further

it is by standing on the shoulders of giants

– Isaac Newton,

letter to Robert Hooke,

1676

A common toplevel categorization of 3D object retrieval methods is based on the

structure of the 3D models that they use: rigid vs nonrigid. This categorization has

prevailed, mainly due to the different processing required to search over each domain.

The former case has shown many significant works in recent years, while the latter one is

evolving rapidly and constantly important novelties are being presented. We also survey

a relatively new category of 3D object retrieval which is based on the use of 2D (instead of

3D) queries. Finally, we deal separately with pose normalization techniques.

2.1 Rigid 3D Object Retrieval

Contentbased rigid 3D object retrieval methods can be classified into three major cate

gories according to the spatial dimensionality of the information used, namely 2D, 3D and

their combination. According to this categorization, a brief overview of the related work in

the area of rigid 3D shape descriptors for generic 3D object retrieval is presented.
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2.1.1 2D-based 3D Object Retrieval

In the first category, shape descriptors are computed on projection images, which can be

contours, silhouettes, depth buffers and/or other types of 2D representations. Therefore,

similarity is measured using 2D matching techniques.

One of the most acknowledged methods for 3D object retrieval, based on the extraction

of features from 2D representations of the 3D objects, was the Light Field descriptor,

proposed by Chen et al. [28]. This descriptor is comprised of Zernike moments and Fourier

coefficients computed on a set of projections taken at the vertices of a dodecahedron.

Lian et al. [72] proposed an enhancement to the Light Field descriptor, by computing

the same features on projections taken from the vertices of geodesic spheres (triangulated

solid approximating the real sphere) generated by the regular unit octahedron.

Vranic [131] proposed a shape descriptor where features are extracted from depth

buffers produced by six projections of the object, one for each side of a cube which encloses

the object. In the same work, the Silhouettebased descriptor is proposed which uses the

silhouettes produced by the three projections taken from the Cartesian planes.

Zarpalas et al. [142] introduced a 3D shape descriptor called the spherical trace trans

form, which is the generalization of the 2D trace transform proposed by Kadyrov and

Petrou [62]. In this method, a variety of 2D features are computed for a set of planes

intersecting the volume of a 3D object.

In [91], Passalis et al. proposed PTK, a depth buffer based descriptor which uses par

allel projections to capture the object’s thickness and an alignment scheme that is based

on symmetry. The PTK descriptor encompasses symmetry, eigenvaluerelated weighting

and an object thickness related measure.

Shih et al. [109] proposed the elevation descriptor, where six depth buffers (eleva

tions) are computed from the faces of the 3D model’s bounding box and each buffer is

described by a set of concentric circular areas that give the sum of pixel values within the

corresponding areas.

Ohbuchi et al. [84] proposed the Multiple Orientation Depth Fourier Transform (MODFT)

descriptor where the model is projected from 42 viewpoints to cover all possible view as

pects. Each depth buffer is then transformed to the r−θ domain and the Fourier transform

is applied. To compare two models, all possible pairs of coefficients are compared which
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inevitably increases comparison time.

A newly proposed method is the depth line descriptor proposed by Chaouch and Ver

roust  Blondet [27, 25] where a 3D object is projected to the faces of its bounding box

giving six depth buffers. Each depth buffer is then decomposed into a set of horizontal

and vertical depth lines that are converted to state sequences which describe the change

in depth at neighboring pixels.

Papadakis et al. in [89] proposed PANORAMA, a 3D shape descriptor that uses a set of

panoramic views of a 3D object which describe the position and orientation of the object’s

surface in 3D space. For each view the corresponding 2D Discrete Fourier Transform and

the 2D Discrete Wavelet Transform are computed.

The method proposed by Alizadeh et al. [5] uses 60 different 2D silhouettes, which

are automatically extracted from different viewangles of 3D models. Solving the Poisson

equation [53] for each Silhouette assigns a number to each pixel as the pixel’s signature.

Counting and accumulating these pixel signatures generates a histogrambased signature

for each silhouette.

2.1.2 3D-based 3D Object Retrieval

In the second major category of 3D object retrieval techniques, shape descriptors are

extracted from 3D shape representations. A set of subcategories can be identified here,

namely, statistical, graphbased and spherical function based descriptors.

In the shape histogram descriptor proposed by Ankerst et al. [7], 3D space is divided

into concentric shells, sectors, or both and for each part, the object’s shape distribution

is computed giving a sum of histograms bins.

The shape distributions descriptor proposed by Osada et al. [86] measures a set of

shape characteristics for a random set of points belonging to the object, using appropriate

shape functions, e.g. the D2 function which measures the distance between two random

surface points.

Zaharia and Petreux [140] presented the 3D shape spectrum descriptor which is the

histogram that describes the angular representation of the first and second principal

curvature along the surface of the 3D object.

Xiang et al. in [135] propose a rigid transformation insensitive descriptor, called the
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Poisson shape histogram descriptor, extracted by a voxelized representation of the 3D

objects.

In [137] a twostep descriptor called Sorted Extended Gaussian Image (SEGI) is pre

sented. Based on Extended Gaussian Image and Shell histograms, SEGI initially performs

approximate 3D object retrieval based on the sorted histogram bins and them refines the

results by recording the relations between the bins.

Ohbuchi et al. [82] proposed enhanced shape functions, namely the (absolute) angle

distance histogram for inconsistently oriented meshes, which are extensions of the D2

shape distribution.

Hilaga et al. [57] introduced the multiresolution Reeb graph, which represents a 3D

object’s topology and skeletal structure at various levels of detail.

Yu et al. [136] used spherical functions to describe the topology and concavity of the

surface of a 3D object and the amount of effort required to transform it to its bounding

sphere.

In Zhang et al. [144] consider the use of medial surfaces to compute an equivalent

directed acyclic graph of an object.

In the work of Sundar et al. [119], the 3D object passes through a thinning process

producing a set of skeletal points, which finally form a directed acyclic graph by applying

the minimum spanning tree algorithm.

Cornea et al. [32] propose the use of curve skeletons produced by the application of

the generalized distance field to the volume of the 3D object and similarity is measured

using the earth mover’s distance [97].

The P3DS descriptor developed by Kim et al. [67] uses an attributed relational graph

whose nodes correspond to parts of the object that are represented using ellipsoids and

the similarity is computed by employing the earth mover’s distance.

In [66, 64] Kazhdan et al. proposed planar reflective symmetry descriptor (PRSD), a

collection of spherical functions that describes the measure of a model’s rotational and

reflective symmetry with respect to every axis passing through the center of mass. This

descriptor is used for determining the existence or not of a 3D object’s principal symmetry

axes. Extending this work to every possible plane Podolak et al. presented the planar

reflective symmetry transformation (PRST) in [94].
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2.1.3 2D/3D Hybrid 3D Object Retrieval

Besides the previous categories, combinations of different methods have been considered

in order to enhance the overall performance.

Vranic [131] proposed the Raybased descriptor which characterizes a 3D object by a

spherical extent function capturing the furthest intersection points of the object’s surface

with rays emanating from the origin. Spherical harmonics or moments can be used to

represent the spherical extent function. A generalization of the previous approach uses

several spherical extent functions of different radii.

The GEDT descriptor proposed by Kazhdan et al. [65] is a volumetric representation

of the Gaussian Euclidean Distance Transform of a 3D object, expressed by norms of

spherical harmonic frequencies.

In Papadakis et al. [87], the CRSP descriptor was proposed which uses the Continuous

PCA (CPCA) along with Normals PCA (NPCA) to alleviate the rotation invariance problem

and describes a 3D object using a volumetric sphericalfunction based representation

expressed by spherical harmonics.

Generalizing from 2D to 3D, Novotni and Klein [81] presented the 3D Zernike descrip

tor, Daras et al. [35] introduced the generalized Radon transform and Ricard et al. [96]

developed the 3D ART descriptor by generalizing the 2D angular radial transform. Za

haria and Preteux [139] proposed the C3DHTD descriptor by generalizing the 2D Hough

Transform.

The approach of Bustos et al. [21] assumes that the classification of a particular

dataset is given, in order to estimate the expected performance of the individual shape

descriptors for the submitted query and automatically weigh the contribution of each

method. However, in the general case, the classification of a 3D model dataset is not fixed

since the content of a 3D model dataset is not static.

In the context of partial shape matching, Funkhouser and Shilane [46] use the pre

dicted distinction performance of a set of descriptors based on a preceding training stage

and perform a priority driven search in the space of feature correspondences to determine

the best match of features between a pair of models. The disadvantages of this approach

is its time complexity which is prohibitive for online interaction as well as the storage

requirements for the descriptors of all the models in the database.
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Based on the idea of combining features obtained from 2D and 3D representations,

Song and Golshani [115] developed a descriptor that described an object by obtaining a

set of orthogonal projections from different viewpoints and by measuring the curvature of

the object’s surface.

Vranic [132] developed a hybrid descriptor called DESIRE, that consists of the Sil

houette, Ray and Depth buffer based descriptors, which are combined linearly by fixed

weights.

Papadakis et al. [88] proposed a hybrid descriptor formed by combining features ex

tracted from a depthbuffer and spherical function based representation, with enhanced

translation and rotation invariance properties. The advantage of this method over similar

approaches is the top discriminative power along with minimum space and time require

ments.

2.1.4 Rigid 3D Object Retrieval Databases

In recent years, aiming at prototyping the research and to provide tools for the experimen

tation and the comparison of the corresponding results, an active set of rigid 3D object

databases has been created. In this chapter we will consider the most prevalent of these

databases, which have been used to conduct experiments by research groups and form a

commonly accepted benchmark.

In [110], the authors describe a widespread rigid 3D object database, known as the

Princeton Shape Benchmark (PSB). The PSB is publicly available and consisted of 3D

models, software tools and a standardized set of benchmarks for comparison between 3D

model retrieval algorithms. The dataset contains 1,814 polygonal models collected from

the World Wide Web and which have been categorized by humans depending on their

function and form. Included is also a set from hierarchical classifications, discrete sets

for training and testing, metadata for each object and a suite of software tools for testing,

analysis and visualization of retrieval results. Fig. 2 shows examples of models from the

PSB dataset.

In [138] the NTU 3D object database is presented. This database comprises a bench

mark dataset for 3D object retrieval methods, consisted of 1,833 3D models. The NTU

dataset includes 3D models from 3DCafe, retrieved in December 2001. For the categoriza
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Figure 2: 3D model examples from the PSB dataset.

tion of the models a user was used and was based on the functionality of the objects. The

dataset has been divided into 47 classes, including 549 3D models, mainly vehicles and

household items (e.g., airplanes, cars, chairs, tables, etc.), and 1,289 additional models,

which were categorized as ‘Miscellaneous’.

In [144], the McGill database is presented. The specific database includes 3D models

produced by 3D models of the PSB dataset. The dataset includes a total of 320 samples

that have been created by several primary objects (hands, humans, tables, chairs, glasses,

airplanes, birds, dolphins, etc.). Some of these models are illustrated in Fig. 3. This

database provides categorizations classified as both rigid and nonrigid.

The ESB database is presented in [60]. This database is consisted of 3D models de

rived from a variety of sources, including the National Design Repository and industry.

Furthermore, this specific database includes many CAD models, which have been created

by students at undergraduate design course at the University of Purdue. The authors
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significant articulation moderate or no articulation

Figure 3: Sample 3D models from the McGill dataset. Illustrated are models that exhibit

significant articulation, as well as moderate or no articulation.

showed spacial attention so that the specific database includes only common industrial

objects that are entirely consistent with the corresponding distribution of industrial ob

jects of the real world. The particular dataset consists of 801 models, divided into 42

classes of similar parts, as Discs, Tshaped parts and Bracketlike parts, and 66 models

divided into three classes of other common shapes.

Finally, a special reference must be made for the SHREC databases, which set a
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reference point for many 3D object retrieval methods and become annually updated with

new data. The original dataset of SHREC [43], was created using two human evaluators

that carried out the classification. In the case of disagreement, a third evaluator was

used for resolving. This categorization was carried out based solely on geometric and

topological similarity between the 3D models. Each class consists of 20 models and the

complete database includes 40 classes of objects commonly encountered in everyday life.

For all the aforementioned databases, Table 1 show a summary of the categories and

the number of models they are consisted of.

Table 1: Categories and cardinalities of the rigid 3D object benchmark databases

3D object database # of Categories # of objects

PSB training 90 907

PSB test 92 907

NTU 47 549

McGill Articulated 10 254

McGill Non Articulated 9 202

ESB 45 867

SHREC(NIST) 40 800

2.2 Non-Rigid 3D Object Retrieval

Over the past few years, a lot of research effort has successfully addressed the problem

of rigid 3D model retrieval, by exploiting interclass variability. However, in the case of

intraclass variability, nonrigid 3D shape descriptors are more effective since the objects

of the class can assume a variety of transformations, including nonrigid deformations.

Here, nonrigid 3D object retrieval methods are categorized, based on two common

classes of features, which have proven to be very discriminative for the specific domain:

geometric and topological. A third category is formed by methods exploiting both types of

features.

2.2.1 Methods based on Geometric Features

A large number of methods are based on the discrete LaplaceBeltrami operator.
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Reuter at al. [95] compare two triangulated surfaces by computing the distance be

tween two isometryinvariant feature vectors, given by the first n eigenvalues (the spectra)

of the LaplaceBeltrami operator.

Similarly, Rustamov [100] uses the eigenvectors of the LaplaceBeltrami operator.

Zaharia and Preteux [140] presented the 3D shape spectrum descriptor which is the

histogram that describes the angular representation of the first and second principal

curvature of the 3D object surface.

Xiang et al. [135] use the histogram of the solution to the volumetric Poisson equation

(∇2U = −1) as a pose invariant shape descriptor.

In a similar manner, BenChen and Gotsman [11], create a descriptor that maps the

local curvature characteristics of the 3D object. The histogram of the solution to the

conformal factor equation ∇2φ is used as the descriptor. The same principles were also

used by Wang et al. [134] for face recognition using 3D conformal maps.

Some nonrigid shape descriptors are derived from geodesic distances on the mesh,

which are invariant to isometric transformations.

Elad and Kimmel [42] proposed a canonical representation for triangulated surfaces: a

surface in R
3 is transformed into canonical coordinates in the Euclidean space R

m by ap

plying multidimensional scaling. In this canonical representation the geodesic distances

on the original surface are approximated by the corresponding Euclidean distances. The

matching problem of nonrigid and deformed objects is then reduced to the problem of

matching rigid objects embedded in R
m, which can be approached with wellknown algo

rithms.

Jain and Zhang [58] compare nonrigid objects by matching spectral embeddings that

are derived from the eigenvectors of affinity matrices, computed by considering geodesic

distances.

A shape descriptor for nonrigid 3D objects based on histograms of surface functions

is presented by Gal et al. [48], where two scalar functions are used on the mesh, the local

diameter function which measures the diameter of the 3D shape in the neighborhood of

each vertex and the centricity function which measures the average geodesic distance from

a vertex to all other vertices on the mesh.

Carlsson et al. [22] compared barcode descriptors of point clouds computed by using
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the persistence homology theory.

Dey et al. [37] compared noisy point clouds, by matching signatures extracted from

segmented parts of the point sets by making use of Morse theory.

In [75], Mademlis et al. proposed a novel shape descriptor based on the impact that the

3D objects have when they are exposed to a specific type of force field (i.e. the Newtonian

or the Coulombian field). The 3D objects are initially voxelized and subsequently the

histograms of the field factors are compared.

2.2.2 Methods based on Topological Features

Another category of nonrigid 3D object descriptors comprises methods that use graphs

for object representation.

Siddiqi et al. [114] based on a singularity theory, derive skeletal descriptors from shape

models. These descriptors (shocks) are organized into directed acyclic graphs.

Based on the same idea of shock graphs Sebastian et al. [101] match two shapes by

measuring the effort needed for the deformation of one shape into the other.

Zhang et al. [144] consider the use of medial surfaces to compute an equivalent directed

acyclic graph of an object.

In the work of Sundar et al. [119], the 3D object passes through a thinning process

producing a set of skeletal points, which form a directed acyclic graph by applying the

minimum spanning tree algorithm.

The P3DS descriptor developed by Kim et al. [67] uses an attributed relational graph

whose nodes correspond to parts of the object that are represented using ellipsoids and

the similarity is computed by employing the earth mover’s distance.

Hilaga et al. [57] presented a technique to match the topology of triangulated models,

by comparing Multiresolution Reeb Graphs (MRGs). Their algorithm for matching two

MRGs is a coarsetofine strategy, which searches the node pairs providing the largest

value of similarity while maintaining topological consistency. Similarly to [57], Hamza

and Krim [55] considered a discrete approximation of the global squared geodesic distance

function. The dissimilarity between two objects was calculated by computing the Jensen

Shannon divergence between the corresponding statistical shape descriptors.

Tung and Schmitt [127] used geodesic distances for building an MRG and merge the

Konstantinos A. Sfikas 63



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

graph geometrical and visual information to improve matching and calculation of shape

similarity between models.

2.2.3 Hybrid Methods

In recent research works, Tierny et al. [125] compare 3D models by extracting partial

signatures from disk or annuluslike charts using Reeb graph topology.

Bronstein et al. [20] instead of using geodesic distances for extracting shape signatures,

they exploit the properties of diffusion distances within the GromovHausdorff framework.

Agathos et al. [2] create a onelevel Attributed Relation Graph (ARG) of 3D objects

by using a segmentation algorithm. Furthermore, the authors propose a graph matching

algorithm based on the Earth Mover’s Distance (EMD). The attributes applied on the graph

are described in [88] and [67].

Biasotti et al. [14] described a method for the characterization of shapes by using a

set of patches, which are automatically tiled and stitched, in order to approximate the

original shape. Reeb graphs are used for the definition of the main shape features that

drive the approximation process.

2.2.4 Non-Rigid 3D Object Retrieval Databases

Similar to the rigid 3D object retrieval case, nonrigid 3D object retrieval databases have

also grown both in number and data size during the last few years. The benchmark

datasets, as well as the testing tools are common to the corresponding rigid ones, since

most of them derived from the latter. In this chapter we will consider the most prevalent

of the nonrigid 3D object retrieval benchmark datasets.

The TOSCA dataset, publicly available, contains threedimensional nonrigid shapes

in a variety of poses for nonrigid shape similarity and correspondence experiments. The

database contains a total of 148 objects, including 9 cats, 11 dogs, 3 wolves, 17 horses,

15 lions, 21 gorillas, 1 shark, 24 female figures, and two different male figures, containing

15 and 20 poses. The database also contains 6 centaurs, and 6 seahorses for partial

similarity experiments. Each object contains approximately 3000 vertices. Fig 4 depicts

some of the 3D models included in the dataset.
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Figure 4: Sample models of various classes and poses from the TOSCA collection.

The Aim@Shape Watertight database, presented in has been used for various retrieval

contests. This dataset is composed of 400 watertight 3D models, divided to 20 classes,

each containing 20 3D models. The Aim@Shape database has been also known as the

SHREC’07 Watertight Models Track dataset [50], one of the first SHREC tracks, aimed

specifically for the retrieval of watertight 3D models.

The McGill Articulated Shape Benchmark database [144] consists of 255 nonrigid 3D

models which are classified into 10 categories. The maximum number of the objects in a

class is 31, while the minimum number is 20. Based on this dataset, the SHREC’10 Non

rigid 3D Shape Retrieval database [71] has been created. More specifically, 200 models

are selected (or modified) to generate the test database ensuring that every class contains

equal number of models.

Following the same spirit, the SHREC’11 Nonrigid 3D Watertight Meshes [70] has been

one of the most recent benchmark databases, aimed at nonrigid 3D object retrieval. This

largescale database consists of 600 watertight triangle meshes that are derived from 30

original models, among which 25 objects are collected from several freely accessible repos

itories (e.g. PSB database, McGill database, TOSCA shapes etc.), while the remaining four

models (i.e. lamp, paper, scissor, and twoballs are created using Autodesk 3D studio MAX.

The 600 nonrigid models of the dataset have been equally classified into 30 categories
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(see Fig. 5).

Figure 5: Examples of models in the SHREC’11 Nonrigid 3D Watertight Meshes database

that are classified into 30 categories.

2.3 Pose Normalization

Common to both rigid and nonrigid 3D object retrieval methods, a pose normalization

preprocessing step is usually mandatory, so that the geometric properties of the 3D models

are directly comparable by the subsequent shape descriptor extraction and matching

steps.

We define pose normalization to include translation, scaling and rotation normaliza

tion; whereas alignment will refer to rotation normalization only. In most cases, transla

tion and scale normalization can be achieved by standard techniques. Alignment, how

ever, is the most difficult part and still under investigation [27, 138, 63, 90, 99, 130].

Alignment methods can be divided into three major categories: (i) methods that are based

on principal component analysis of the 3D models; (ii) methods that exploit symmetry

characteristics of the 3D models and (iii) methods that utilize invariant shape descrip

tors for the 3D models. Based on this categorization, an overview of pose normalization

methods follows.
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2.3.1 PCA-based Alignment Methods

The bestknown approach for computing the alignment of 3D objects is Principal Compo

nent Analysis (PCA) or Karhunen  Loeve transformation [90, 110, 123, 130, 141].

The PCA algorithm, based on the computation of 3D object moments, estimates the

principal axes of a 3D object that are used to determine its orientation. In its original

form, PCA has a number of disadvantages: it can be imprecise and often the principal

axes of 3D objects that belong to the same class produce poor alignments [28].

To alleviate these problems, Vranic introduced an improvement to the original method,

the Continuous PCA (CPCA) algorithm [131, 130, 132]. CPCA computes the principal axes

of a 3D object based on the continuous triangle set.

Similar to the CPCA method, Papadakis et al. proposed the Normal PCA (NPCA) algo

rithm [87, 88], which computes the principal axes of the 3D object based on the surface

normal set.

Related to PCA is the use of Singular Value Decomposition (SVD) for alignment [123].

In [41, 86], the SVD of the covariance matrix of the 3D object is computed and the unitary

matrix is applied to the 3D object for rotation normalization.

The PCAbased pose normalization methods and especially the CPCA and NPCA vari

ants, although general and well performing in most cases can fail to capture some specific

characteristics of 3D objects such as symmetries and large planar or bumpy surfaces.

2.3.2 Symmetry-based Alignment Methods

Another major category of normalization methods exploits symmetry characteristics found

in a large number of 3D objects.

Kazhdan et al. [64] define a reflective symmetry descriptor that represents a measure

of reflective symmetry for an arbitrary 3D voxel object, for all planes through the object’s

center of mass. This descriptor is used for finding the main axes of symmetry or to

determine that none of them exist in a 3D object. The descriptor is defined on a regular

parametrization (the unit sphere) and describes the global characteristics of a 3D shape.

In [94], Podolak et al. extended this work and introduced a Planar Reflective Symmetry

Transform (PRST) that computes a measure of the reflective symmetry of a 3D shape with

respect to all possible planes. This measure is used to define the center of symmetry and
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the principal symmetry axes of the global coordinate system.

Rustamov improved this approach with the augmented symmetry transform in [99].

Minovic et al. [78] compute symmetries of a 3D object, based on the computation

of a principal octree aligned with the principal axes. Then the degree of symmetry is

computed, based on the number of distinct eigenvalues associated with the principal

axes. The algorithm is based on the traversal of the octree, which is aligned with the

principal axes of space. An object can be both randomly positioned and have an arbitrary

rotation within the space of the octree. A wide range of symmetries can be recognized,

represented by a set of regular and irregular rotations.

Martinet et al. [76] use generalized moments to detect perfect symmetries in 3D shapes.

The authors perform an analysis of the extrema values, as well as the components of the

spherical harmonics and recover the parameters of the symmetries that characterize an

object. The algorithm presented operates incrementally, allowing the determination of

symmetries in larger objects, based on existing symmetries of their parts.

Mitra et al. [80] compute partial and approximate symmetries in 3D objects. Their

method is based on the matching of simple local characteristics, in pairs, and the use

of these matchings for the augmentation of information about the existence of symme

tries in the corresponding space transformations. A segmentation step extracts potential

significant symmetries of the object.

Sun and Sherrah [118] convert the symmetry detection problem to the correlation of

the Gaussian image. Once the 3D model has been transformed to its Gaussian image,

the principal axes are calculated and the existence of significant symmetries is examined

near them. The calculations are performed on the rotational histograms of the images.

Using both PCAalignment and planar reflective symmetry, Chaouch and Verroust 

Blondet [27] compute a 3D object’s alignment axes and then, using a Local Translational

Invariance Cost (LTIC), make a selection of the most suitable ones.

Using a rectilinearity measure, Lian et al. [72] attempt to find a 3D object’s best rota

tion by estimating the maximum ratio of its surface area to the sum of its three orthogonal

projected areas. Similar to the previous approach, [27], a selection between the proposed

and a PCAbased alignment is made. Most of the methods that exploit symmetry char

acteristics for achieving pose normalization, seem to perform quite well in most cases.

68 Konstantinos A. Sfikas



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

However, a major problem related to the symmetrybased techniques is that symmetry

detection either focuses on small fragments or larger abstract areas of the 3D objects, and

thus it is unable to handle 3D objects that present complex, multilevel (global and local)

symmetry in their structure.

In [9] Axenopoulos et al. combine the properties of plane reflection symmetry and rec

tilinearity for achieving alignment. In this paper both CPCA and principal plane reflective

symmetry are used, in order to achieve alignment. Rectilinearity is utilized to improve the

alignment results.

2.3.3 Rotation Invariant Rigid Shape Descriptors

A third category of methods achieves rotation invariance by the definition of the shape

descriptor. In general the price to pay for this rotational invariance, is reduced discrimi

native power.

Descriptors based on spherical harmonics [65, 121], Zernike moments [81, 121] and

shell histograms [7, 135, 137] are examples of representation methods able to achieve

rotation invariance by definition.

Kazhdan et al. in [65] introduce the Spherical Harmonic Representation, a general

method for obtaining a rotation invariant representation of spherical shape descriptors

that describes them in terms of the distribution of energies across different frequencies.

The same authors extended this method with symmetry information to provide a more

discriminating representation in [66].

Novotni and Klein in [81] use 3D Zernike invariants as descriptors for 3D shape re

trieval and Ankerst et al. [7] proposed the Shape Histograms descriptor, where 3D space

is divided into concentric shells, sectors, or both and for each part, the object’s shape

distribution is computed giving a sum of histogram bins.

Finally, Chen and Ouhyoung [138] use a region based 2D shape descriptor to recover

the affine transformation between two 3D objects and thus achieve normalization between

them.

The majority of methods that achieve rotation invariance by the definition of shape

descriptors, perform best on specific 3D object classes that are composed of 3D objects

with similar structure. Due to this explicit behavior, these methods are unable to han
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dle general 3D objects originating from different classes, or with significant structural

differences. Also, these methods generally result in descriptors with relatively low dis

criminating power.

A careful review of the works presented shows that in order to achieve better results,

most recent studies attempt to combine techniques from the same or different categories;

these often include variations of PCA and/or exploitation of 3D object symmetry charac

teristics. However, although it seems that most of these methods perform exceptionally

well, a major problem is that they usually combine results blindly without taking into

account any complementarities involved.

2.4 3D Object Retrieval based on 2D Range Image Queries

In the past few years, the increasing availability of lowcost 3D scanners has resulted in

the creation of large 3D model repositories, thus making contentbased retrieval a key

operation. 3D model retrieval has considerably matured and a number of very accurate

and robust descriptors have been proposed [89, 106, 28, 65, 132]. These methodologies

use a 3D model query to search a database of 3D models in a contentbased manner.

However, in practical situations, it is often difficult to come up with a suitable 3D model

query in the first place: this has either to be found or built, a random and timeconsuming

action, respectively.

Nowadays, 3D scanners that typically produce range images (also called range scans

and/or depth buffers) from real world 3D objects are becoming common and cheap, e.g.

Microsoft Kinect [112]. It would thus, be beneficial, to use the range scans of real objects

as queries on 3D model repositories.

However, a number of challenges exist. First, a range image represents only a partial

object. Thus, it is not straightforward to effectively match such data against a complete 3D

model representation, since an important part of it may be missing. Second, range images

can be rough and noisy. Third, it is not straightforward how to bridge the gap between

the 3D model representation and the range image, i.e. how to produce descriptors that

can be relatively invariant to these two representations. The representation gap makes it

difficult to extract a signature that will be (at least partially) similar when presented with

a complete, clean 3D model and when presented with a partial and noisy range image of
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a similar query object.

Over the past few years, the number of works addressing the problems of multimodal

3D object retrieval and recognition (and particularly those based on range image queries),

have increased significantly. Although this task still remains nontrivial, the quality of

existing works shows that very important steps have been made in the field. Common

retrieval scenarios deal with two different query image types: (i) directly captured range

images from real 3D objects (i.e. using a 3D range scanner) and (ii) artificially produced

range images via depth buffer capturing of complete 3D models. The first query image

type is closer to realworld applications and is being increasingly adopted as 3D scanning

becomes common place and corresponding datasets are created.

Hetzel et al. [56] explore a view based approach for the recognition of freeform objects

in range images. They combine a set of local features (pixel depth, surface normal and

curvature metrics) in a multidimensional histogram in order to achieve classification.

Johnson and Hebert [61], use a spin image representation scheme in order to achieve

simultaneous recognition of multiple 3D object in cluttered scenes. The spin image rep

resentation is used for matching surface points.

Chen and Bhanu [29] introduce a local surface descriptor for 3D model recognition.

This descriptor is computed on feature points of a 3D surface, where large shape variations

occur. The local surface descriptor is characterized by its centroid, its local surface type

and a 2D histogram. The latter shows the frequency of occurrence of shape index values

(calculated from principal curvatures) vs the angles between the normal of the reference

feature point and those of its neighbors.

RuizCorrea et al. [98] propose a method for recognizing 3D objects in real range image

scenes. Initially, shape class components are learnt and extracted from range images and

then the spatial relationships among the extracted components are used to form a model

that consists of a threelevel hierarchy of classifiers.

Adan et al. [1] explore the use of Depth Gradient Image (DGI) models for the recognition

of 3D models. The DGI representation synthesizes both surface and contour information,

for a specific viewpoint, by mapping the distance between each contour point and the edge

of the viewpoint image in terms of internal and external object pixels. This measure is

computed for the entire model, taken from the nodes of a tessellated sphere.
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Frome et al. [45] introduced two regional shape descriptors, the 3D generalization of

the 2D shape context descriptor and the harmonic shape descriptor. The authors evaluate

the performance of the proposed descriptors in recognizing similar objects in scenes with

noise or clutter.

Ohbuchi et al. [84] proposed the Multiple Orientation Depth Fourier Transform (MODFT)

descriptor where the model is projected from 42 viewpoints to cover all possible view as

pects. Each depth buffer is then transformed to the r−θ domain and the Fourier transform

is applied. To compare two models, all possible pairs of coefficients are compared which

inevitably increases comparison time.

Stavropoulos et al. [116] present a retrieval method based on the matching of salient

features between the 3D models and query range images. Salient points are extracted

from vertices that exhibit local maxima in terms of protrusion mapping for a specific

window on the surface of the model. A hierarchical matching based scheme is used for

matching. The authors experimented on range images acquired from the SHape REtrieval

Contest 2007 (SHREC’07) Watertight models [50] and the Princeton Shape Benchmark

(PSB) standard [110] datasets.

Chaouch and VerroustBlondet [24] present a 2D/3D shape descriptor which is based

on either silhouette or depthbuffer images. For each 3D model a set of six projections

in calculated for both silhouette and depthbuffers. The 2D Fourier transform is then

computed on the projection. Furthermore, they compute a relevance index measure which

indicates the density of information contained in each 2D view. The same authors in [26]

propose a method where a 3D model is projected to the faces of its bounding box, resulting

in 6 depth buffers. Each depth buffer is then decomposed into a set of horizontal and

vertical depth lines that are converted to state sequences which describe the change in

depth at neighboring pixels. Experimentations were conducted on range images artificially

acquired from the PSB dataset.

Shih et al. [109] proposed the elevation descriptor where six depth buffers (elevations)

are computed from the faces of the 3D model’s bounding box and each buffer is described

by a set of concentric circular areas that give the sum of pixel values within the corre

sponding areas. The models were selected from the standard PSB dataset.

Experimenting on the SHREC’09 Querying with Partial Models [39] dataset, Daras and
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Axenopoulos in [34] present a viewbased approach for 3D model retrieval. The 3D model

is initially pose normalized and a set of binary (silhouette) and range images are extracted

from predefined views on a 32hedron. The set of features computed on the views are the

PolarFourier transform, Zernike moments and Krawtchouk moments. Each query image

is compared to all the extracted views of each model of the dataset.

Ohbuchi et al. [85] extract features from 2D range images of the model viewed from

uniformly sampled locations on a view sphere. For every range image a set of multi

scale 2D visual features are computed using the Scale Invariant Feature Transform

(SIFT) [74]. Finally, the features are integrated into a histogram using the BagofFeatures

approach [49]. The same authors enhanced their approach by preprocessing the range

images, in order to minimize interfere caused by any existing occlusions, and also and

by refining the positioning of SIFT interest points, so that higher resolution images are

favored [47, 83]. Their works have experimented on and have participated on both corre

sponding SHREC’09 Querying with Partial Models and SHREC’10 Range Scan Retrieval [40]

contests.

Wahl et al. [133] propose a fourdimensional feature that parameterizes the intrinsic

geometrical relation of an oriented surface point pair (surflets). For a 3D model a set of

surflet pairs is computed over a number of uniformly sampled viewing directions on the

surrounding sphere. This work was one of the two contestants of the SHREC’10 Range

Scan Retrieval track.

2.4.1 3D Object Retrieval on 2D Range Image Queries Databases

In this subcategory of problems, only a few dedicated benchmark databases exist, mainly

due to two reasons: It is only recently that inexpensive and relatively accurate 3D object

acquisition hardware became available, and a common methodology for testing the pro

posed methodologies was to artificially create partial (range image) queries from known

complete 3D object retrieval databases.

Apart from the last case, where many authors experiment on many of the rigid and non

rigid 3D object retrieval databases that we have already presented in previous chapters,

the SHape REtrieval Contest has released a series of datasets targeted especially for this

task.
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Beginning with the SHREC’09 Querying with Partial Models dataset [39], the authors

presented a database aimed at both partial 3D object retrieval and retrieval of complete

3D objects based on query views. The target database is a subset of the shape benchmark

constructed at NIST, described in [43]. It contains 720 complete 3D models, which are

categorized into 40 classes. The classes are defined with respect to their semantic cate

gories and each contains 18 3D models. The query set is composed of 20 range images,

which are obtained by capturing range data of 20 objects from arbitrary view directions

(see Fig 6). The range images were captured using the NextEngine desktop 3D scanner.

Figure 6: The SHREC’09 Querying with Partial Models dataset query views

In SHREC’10 Range Scan Retrieval, [40] the same authors extended the previous

database and focused specifically on the range image query retrieval. The target database

is again the generic shape benchmark constructed at NIST, containing 800 complete 3D

models, which are categorized into 40 classes. The classes are defined with respect to
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their semantic categories, and each contains 20 complete 3D models. The query set is

composed of 120 range images, which are acquired by capturing 3 range scans of 40 real

objects from arbitrary view directions. These objects correspond to the 23 classes in the

target database, with one exception. The 3 scans of that object were excluded from the

evaluation; hence the evaluation is based on 117 scans. The range images are captured

using a Minolta Laser Scanner.

Following the same scheme, in the SHREC’11 Shape Retrieval Contest of Range Scans, [113]

the cardinalities of both the target and query datasets has been raised. The target

database is composed of 1000 complete 3D models, which are categorized into 50 classes,

each containing 20 models. The query set is composed of 150 range images, which are

acquired by capturing 3 range scans of 50 models from arbitrary view directions. The

range images are captured using a Minolta Laser Scanner.
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3 Pose Normalization

Nature does nothing without purpose

– Aristotle

In this chapter, three novel pose normalization methods, ROSy, SymPan and SymPan+,

are discussed in detail.

ROSy consists a general purpose global pose normalization method based on 3D object

reflective symmetry. Initially, the axisaligned minimum bounding box of a rigid 3D model

is modified by requiring that the 3D model is also in minimum angular difference with re

spect to the normals to the faces of its bounding box. To estimate the modified axisaligned

bounding box, a set of predefined planes of symmetry are used and a combined spatial

and angular distance, between the 3D model and its symmetric model, is calculated.

By minimizing the combined distance, the 3D model fits inside its modified axisaligned

bounding box and alignment with the coordinate system is achieved [105]. SymPan is a

pose normalization method, based on panoramic views and reflective symmetry. Initially,

the surface of a 3D model is projected onto the lateral surface of a circumscribed cylinder,

aligned with the primary principal axis of space. Based on this cylindrical projection, a

normals’ deviation map is extracted and using an octreebased search strategy, the rota

tion which optimally aligns the primary principal axis of the 3D model and the cylinder’s

axis is computed. The 3D model’s secondary principal axis is then aligned with the sec

ondary principal axis of space in a similar manner [104]. An extension to the SymPan

method, SymPan+, estimates the symmetry plane (and consecutively the corresponding

principal axis) using an iterative process. This is achieved by rotating the 3D model and
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computing reflective symmetry scores on panoramic view images. The remaining princi

pal axes of the 3D model are estimated by computing the pixel variance of the 3D model’s

panoramic view images [108].

All three pose normalization methods are integrated in a rigid 3D object retrieval

pipeline for quantitative evaluation purposes. The results are discussed in Chapter 6.

3.1 ROSy Pose Normalization

In the ROSy method, the problem of pose normalization is described through the Surface

Oriented Minimum Bounding Box (SoMBB), a modified version of the AxisAligned Bound

ing Box (AABB) which is commonly used in collision detection techniques [128, 51]. The

motivation behind the proposed method is to minimize the SoMBB of a 3D object so that

the latter becomes aligned with its SoMBB and consecutively with the principal axes of

space. Furthermore, to ensure that the 3D object’s large planar areas are also in align

ment with the principal planes of space, it is required that the average normal to the

object’s large planar areas become parallel to the box’s face normals. Using the properties

of the reflective symmetry transformation the problem will be mathematically formulated

and the foundation for the proposed solution will be set.

3.1.1 Surface-Oriented Minimum Bounding Box

Pose normalization is, by definition, a complex procedure, highly dependent on the target

application. For that reason, various definitions have been proposed in the literature

[66, 121, 131]. We next attempt to provide the definition of a 3D object’s SoMBB and

formulate the problem of pose normalization based on the notion of the SoMBB. A 3D

object’s SurfaceOriented Minimum Bounding Box (SoMBB) is an axisaligned bounding

box that has the minimum possible volume while simultaneously the normals to its faces

are in minimum angular difference with the majority of the contained 3D object’s face

normals (Figure 7). Pose normalization is the procedure of finding a set of homogeneous

transformations (translation, scaling, rotation) that fit a 3D object into its SoMBB.

Constraining the face normals of a 3D object to be in minimum angular difference with

the faces of its SoMBB can be interpreted as making the average normal to the object’s
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large planar areas parallel to the box’s face normals [54]. Example 3D object classes that

explicitly define large planar areas are buildings, airplanes, ships, tables, billboards, etc

(Figure 8a). Object classes that define large planar areas as the average normal of many

small triangles with similar orientation are quadruped animals, hands, human bodies,

etc (Figure 8b).

If a 3D object is not aligned with the coordinate system axes but arbitrarily positioned

in space, the calculation of the corresponding SoMBB is not an easy task. However, let

us suppose that the SoMBB is already precalculated, although the object has an arbitrary

rotation in space. If the object is fit inside its SoMBB, then it becomes aligned with the

coordinate system. Translation and scaling of the 3D object, to fit inside the SoMBB can

be adequately solved by one of the common techniques, however, the rotation of the 3D

object, so as to satisfy the two SoMBB conditions (minimum volume and minimum angular

difference between the normals to its faces and the 3D object’s face normals) remains a

(a) (b)

Figure 7: Difference between the AABB and SoMBB on objects of the same class. On

column 7a two 3D objects are enclosed inside their AABB, while on column 7b, the same

3D objects are enclosed inside their SoMBB. Marked faces indicate faces whose normals

are parallel to the SoMBB’s face normals.
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(a) (b)

Figure 8: 3D objects enclosed in their SoMBBs. Marked faces illustrate the components

of a 3D objects’ planar surface and the arrows show the direction of its averaged normal

axis (parallel to the normals to the left  right faces of the SoMBB). 8a illustrates a 3D

object that has a planar surface defined by structure and 8b illustrates a 3D object that

defines a planar surface through many small triangles with similar orientation.

hard task. To solve this problem, properties of the reflective symmetry transformation will

be taken into account.

3.1.2 Reflective Symmetry Transformation

Assume that a 3D object M , represented by a set of m vertices P ∈ R
m×3, and a cor

responding set of normals N ∈ R
m×3, exists in the Euclidean R

3 space. The reflective

symmetry transformation (or reflection) [124] is a linear transformation which computes

the symmetric object M−1
Π about a candidate plane of symmetry Π (Π : ax+by+cz+d = 0).

The planes of symmetry used, are the three principal planes of the Cartesian coordinate

system (i.e. XY, XZ, YZ). Figure 9 illustrates example reflective symmetry transformations

against the principal planes of the Cartesian coordinate system.

X

Y

Z
X

Y

Z
X

Y

Z

Figure 9: Examples of the reflective symmetry transformation on planes YZ, XY and XZ,

respectively.
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3.1.3 Euler Angles

We also need to introduce Euler angles which will prove useful in the sequel. According to

Euler’s Rotation Theorem, to reach any target frame, a specific sequence of three rotations,

that are described by three angles is required. If the three rotations are written in terms of

rotation matrices, then the general rotation can be written as the product of these rotation

matrices. The three angles giving the corresponding rotation matrices are called the Euler

angles [79, 52]. There are six possible conventions regarding the Euler angles (X−Y −X,

X−Z−X, Y −X−Y , Y −Z−Y , Z−X−Z and Z−Y −Z), depending on the axes about

which the rotations occur. The first two rotations establish a common principal rotation

axis between the source and target frames (also known as the ‘line of nodes’). The third

rotation, about the principal rotation axis, aligns the remaining axes of the reference and

target frames. Different conventions result in a different axis ordering of the target frame.

3.1.4 The Complete Method

In this section, a minimization criterion that measures the fitness of a 3D object into its

SoMBB will be defined and the complete pose normalization method will be described.

According to [23] if an arbitrary model is reoriented in such way that the areas of

the bounding boxes of its projections onto the three principal planes are minimum, then

the volume of the bounding box of the reoriented model is also minimum. Ahn et al.

in [4, 3] showed that finding the minimum convex hull of the union of two convex sets1 is

equivalent to finding maximum overlap2 between them. Therefore, defining the maximum

overlap between a 3D object and its symmetric object, with regard to a given symmetry

plane Π is equivalent to defining the two objects’ minimum convex hull projected onto Π.

However, since 3D objects M and M−1
Π are symmetric, their projected convex hulls are

identical and will be minimized simultaneously.

To define the maximum overlap between 3D objects M and M−1
Π we use a measure

based on the distance between their corresponding vertices. The distance between each

vertex pi of the original 3D object M and the corresponding vertex p−1
i,Π of the symmetric

object M−1
Π is twice the distance between pi and the plane of symmetry Π. The mean

1E.g. the convex hulls of our 3D objects.
2The maximum overlap is achieved when the union of the two convex sets occupies the minimum total

space.
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distance between all the corresponding vertices of objects M and M−1
Π can be used as a

measure of the total distance between the original 3D object and the plane of symmetry

(eq. 1). When this distance becomes minimal, with regard to the dimension defined by

the normal to the plane of symmetry, the volume of the 3D object’s SoMBB is minimized

as well (by maximizing the overlap between the two objects). During the minimization

process (see eq. 6) the 3D object is transformed while the planes of symmetry remain

fixed.

Dist(M,M−1
Π ) =

1

m

m∑

i=1

∣∣pi − p−1
i,Π

∣∣ (1)

Using eq. 1 as the minimization function, we achieve the results shown in Figure 7a.

As has been described before, our motivation is to achieve an alignment which is intu

itively shown in Figure 7b. To this end, we enrich the functional with an additional term

that expresses the minimum angular difference measure based on the angular distance

between the corresponding face normals of 3D objects M and M−1
Π . The angle θi,Π between

a surface normal ni of the original 3D object M and the corresponding surface normal n−1
i,Π

of the symmetric object M−1
Π is supplementary to the angle between the surface normal ni

and the normal to the plane of symmetry (eq. 2). When θi,Π is minimized, surface normals

ni and n−1
i,Π become perpendicular to the normal to the plane of symmetry, whereas when

θi,Π is maximized surface normals ni and n−1
i,Π become parallel to the normal to the plane

of symmetry.

θi,Π =

[
cos−1

(
ni · n−1

i,Π

|ni|
∣∣n−1

i,Π

∣∣

)]
(2)

The mean angle between all the corresponding normals of 3D objects M and M−1
Π can

be used to define the angular difference between the normal to the plane of symmetry and

the face normals of the 3D object (eq. 3).

Ang(M,M−1
Π ) =

1

m

m∑

i=1

1

π
θi,Π (3)

Since the parallelization of the corresponding face normals of a 3D object and its

symmetric object is not always perfect, Ang(M,M−1
Π ) could be relaxed so that narrower

angles are rewarded over wider angles (eq. 4). Figure 10 illustrates the difference between
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equations (3) and (4).

Angtanh(M,M−1
Π ) =

1

m

m∑

i=1

tanh

(
3

2
(θi,Π − π)

)
+ 1 (4)

When Angtanh(M,M−1
Π ) is minimized, the mean angle between the face normals of the

3D object and the normals to the SoMBB’s faces that are parallel to the plane of symmetry

is also minimized.
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Figure 10: Graphical representation of Ang(M,M−1
Π ) and Angtanh(M,M−1

Π ), respectively.

Equations (1) and (4) aim to minimize the volume of the SoMBB and to have the 3D

object’s face normals as parallel as possible to the normals to the SoMBB’s faces. We use

them together (eq. 5), with equal weights, to create our minimization criterion.

kΠ = argmin
{
Dist(M,M−1

Π ) + Angtanh(M,M−1
Π )
}

(5)

In equation (5), Dist(M,M−1
Π ) is dependent on the scaling of the 3D objects, the

distance between their centroids and the distance between the corresponding vertices,

while Angtanh(M,M−1
Π ) depends only on the angle between the normals and lies in the

range [0, 1]. To normalize equation (5) and give equal weights to the two factors, 3D

objects M and M−1
Π need to be centered at the origin and properly scaled so as to fit inside

the unit sphere. Once translation and scale normalization are performed, Dist(M,M−1
Π )

ranges in the interval [0, 2]. The final form of the minimization criterion is expressed

by equation (6), where the ranges of Dist(M,M−1
Π ) and Angtanh(M,M−1

Π ) are equalized
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through multiplication of Dist(M,M−1
Π ) with a normalization factor of 0.5.

kΠ =argmin

{
1

2
Dist(M,M−1

Π ) + Angtanh(M,M−1
Π )

}

=argmin

{
1

2m

m∑

i=1

∣∣pi − p−1
i,Π

∣∣ +

1

m

m∑

i=1

tanh

(
3

2
(θi,Π − π)

)
+ 1

}
(6)

Dist(M,M−1
Π ) and Angtanh(M,M−1

Π ) contribute equally to the computation of kΠ and,

as will be shown in the evaluation section, experimental results support this choice.

Next, the use of the minimization criterion will be expanded on all three principal

planes of the Euclidean space. The complete method is called 3D object pose normalization

based on Reflective Object Symmetry (ROSy) and aligns an arbitrary 3D object with a

reference coordinate system. The corresponding algorithm is outlined in Algorithm 1.

A preliminary step of the proposed method is the resampling of the input 3D object

M (Algorithm 1: step 2) to ensure that any deficiencies of the digitization process are

eliminated. Unwanted conditions like irregular distribution of vertices on the 3D object’s

surface could potentially result in a poor alignment. Object resampling is achieved by

redistributing the vertices of the 3D object along its surface triangles, based on a ratio of

fi =
tareai

tareasum
, where tareai denotes the area of triangle i and tareasum denotes the total area of the

object’s surface. Note that at least one vertex will accrue from every initial triangle and

so, it is possible that the final number of 3D object vertices is greater than the original.

Standard translation and scale normalizations are then performed (Algorithm 1: steps 3

 4). Translation invariance is achieved by using the Continuous Principal Component

Analysis (CPCA). The centroid of the object is computed using CPCA and then the whole

object is translated, so that the centroid coincides with the coordinate origin [87, 131, 130].

Scale invariance is achieved through the scaling of M so that it fits exactly into the unit

sphere. Translation and scale normalization, position the object ‘inside’ its SoMBB and

limit the range of Dist(M,M−1
Π ) in the interval [0, 2].

At this point, although 3D object M is positioned at the center of its SoMBB, it is

uncertain if it complies with the two SoMBB constraints: minimum bounding box volume
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Algorithm 1 Object pose normalization based on Reflective Object Symmetry (ROSy)

1: Read input 3D object M ;

2: Resampling of M ;

3: Translation normalization of the centroid of M to the origin of the coordinate system;

4: Scale normalization of M to the unit sphere;

5: for ROT_AXIS in (Z, Y, Z) do

6: if ROT_AXIS = Y then

7: Π← Y Z;

8: else if ROT_AXIS = Z then

9: Π← XZ;

10: end if

11: kbest ←∞;

12: M−1
Π ← Reflection_Transform(M , Π);

13: for ANGLE = 0◦ to 180◦ step 2◦ do

14: M ← Rotation_Transform(M , ANGLE, ROT_AXIS);

15: M−1
Π ← Rotation_Transform(M−1

Π , ANGLE, ROT_AXIS);

16: kΠ = 1
2
Dist(M,M−1

Π ) + Angtanh(M,M−1
Π );

17: if kΠ < kbest then

18: kbest ← kΠ;

19: Mbest ←M ;

20: end if

21: end for

22: end for

23: for Π in (XY, Y Z, ZX) do

24: M−1
Π ← Reflection_Transform(Mbest,Π);

25: dΠ = 1
2
Dist(Mbest,M

−1
Π );

26: end for

27: Label axes in ascending plane distance order (XY < Y Z < ZX); return Mbest;

and minimum angular difference between the 3D object’s face normals and the normals

to the bounding box’s faces. To ensure this, criterion kΠ must be minimized on all three

orthogonal planes of symmetry (Algorithm 1: steps 5  22).

In the proposed methodology, following the concept of Euler angles, the target is to

establish the common principal rotation axis, by aligning the 3D object with two faces

of the corresponding SoMBB. Then, the input object will be rotated about this common

principal rotation axis, so as to further align it with the third face of the SoMBB and

thus with the coordinate system. Criterion kΠ will ensure that the normals to the faces

of the SoMBB will attain minimum angular difference to the 3D object face normals and,

simultaneously, that the SoMBB will attain minimum volume. Note that since the ordering

of axes is not important, the Z − Y − Z convention will be arbitrarily selected, for the
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(a) (b) (c)

(d) (e) (f)

Figure 11: Illustration of the alignment procedure for a single rotation step on the Y Z
plane of symmetry. The bounding rectangle illustrates the SoMBB of the 3D object’s

projection on plane XY . 11a Original 3D object orientation. 11b Original (M ) and its

symmetric (M−1
Π ) 3D objects. 11c Selected principal axes projection of the original (dashed

axis) and the symmetric (solid axis) 3D object, on principal plane Y Z. 11d  11f Stepwise

minimization of the distance between the original and its symmetric 3D object.

alignment procedure.

The selected plane of symmetry for each iteration step must fulfill two conditions: (i)

its normal must be perpendicular to the target SoMBB face normal and (ii) the axis about

which the rotation occurs must be perpendicular to the plane’s normal. On each itera

tion, 3D object M and its symmetric object M−1
Π are rotated by 180 degrees in opposing

directions with a step of 2 degrees, until kΠ is minimized (Figure 11). Since vertex and

normal cardinality is fixed for each model, the time required for the alignment process to

complete is linear in the number of iteration steps. We have selected a step of 2 degrees

which results in good alignments while preserving acceptable processing speed. Exhaus

tive search is performed here as kΠ is not necessarily a monotonic function. When the

rotation normalization procedure is complete, object M will be aligned with the Cartesian
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coordinate system.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: Overview of all the steps of the alignment procedure. 12a initial 3D object

orientation. 12b symmetric 3D object against plane XZ. 12c  12d minimum kXZ point

after rotation of the 3D object and its symmetric object about axis z. 12e symmetric object

against plane Y Z. 12f  12g minimum kY Z point after rotation of the 3D object and its

symmetric object about axis y. 12h symmetric 3D object against plane XZ. 12i minimum

kXZ point after rotation of the 3D object and its symmetric object about axis z. 12j final

aligned 3D object.

In detail, let us assume that the initial orientation of the 3D object is arbitrary. The

first rotation about axis z, given minimization criterion kXZ , aligns the 3D object with

the first selected plane of symmetry, XZ. The direction of the 3D object’s orientation

becomes constrained by the first plane of symmetry. The second rotation, about axis y,

given minimization criterion kY Z (symmetry plane Y Z), further aligns the input 3D object

M with axis z of the coordinate system (the 3D object is aligned with both planes XZ

and Y Z). The direction of the 3D object’s orientation thus becomes constrained by axis

z of the coordinate system, which is the intersection of the first and the second planes of

symmetry, XZ and Y Z, respectively. Once the common principal rotation axis has been

established, rotation of the 3D object about this axis, around symmetry plane XZ, given

minimization criterion kXZ , results in the alignment of the 3D object with the remaining
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axes x and y of the coordinate system (Figure 12).

The symmetric object M−1
Π of the input 3D object M is created by the reflective sym

metry transformation function (Algorithm 1: step 12) that takes as input the vertices and

surface normals of a 3D object M and a plane of symmetry. The rotation transformation

function (Algorithm 1: steps 14  15) takes as input a 3D object, an angle of rotation and

the axis about which the rotation occurs and returns the rotated 3D object. The rotation

function is iteratively used with opposing angles for the 3D object and its symmetric object

(to maintain the symmetry property) and the transformation that results from the best kΠ

value, is kept.

The aforementioned pose normalization procedure is able to orient the principal axes

of a 3D object with the Cartesian coordinate system axes. However, although the object is

correctly aligned with the reference coordinate system, the ordering of the dimensions is

not defined, yet. The final step of the method is to label the principal axes of the aligned

object by computing the mean distance of its vertices from each coordinate system axis

(Algorithm 1:steps 23  27). Although the direct calculation of the mean distance between

the vertices of the 3D object and each of the three coordinate system axes is the simplest

method, structural specificities like symmetries or density variations of the 3D object’s

surface could lead to inaccurate results. To overcome this problem, symmetric objects

can also be used for the labeling of the 3D object’s axes.

This procedure is similar to using the Manhattan distance for the calculation of the

mean distance between the 3D object vertices and the coordinate system axes, and the

results derive from a 2step calculation, therefore distinguishing better similar dimensions

of the 3D object. If the mean distance between the vertices of the original and symmetric

3D objects is small, against a specific principal plane, then most of the 3D object’s vertices

lie close to that plane, which possibly contains the primary and secondary principal axes

of the 3D object. If the vertex distance is large, then most of the 3D object’s vertices lie

far from the principal plane and thus, this plane cannot contain the principal axis of the

3D object.

The primary principal plane, which has the smallest vertex distance between the 3D

object and its symmetric 3D object, is assumed to contain the 3D object principal axis,

while the tertiary principal plane (with the largest vertex distance) is assumed to contain
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the tertiary principal axis. Since the principal axes are perpendicular, they are defined as

the two noncommon axes of the primary and the tertiary principal planes and the second

principal axis of the 3D object is defined as their common axis.

3.2 SymPan, SymPan+ Pose Normalization

In the sequel, two novel pose normalization methods that produce stateoftheart results,

in both qualitative and quantitative terms, are presented.

The motivation for both methods is that the use of reflective symmetry as a feature for

pose normalization and 3D object retrieval seems to enhance the results [66], as most of

the 3D objects exhibit symmetrical properties to some degree. These properties tend to be

distinct between different classes and similar between objects of the same class, therefore

enhancing the discrimination achieved by other commonly used characteristics, such as

the spatial distribution and/or surface orientation of the 3D models.

In the SymPan methodology, the surface of the 3D model is initially projected on

the lateral surface of a circumscribed cylinder, aligned with the primary principal axis

in space. For each point on the cylinder’s surface, the angular difference of its normal

against a corresponding surface point of the 3D model is computed, thus creating a

Normals’ Deviation Map. The maximization of the mean value of the NDM will result in the

minimization of the angular difference between the 3D model’s surface normals and those

of its circumscribed cylinder, therefore achieving alignment between the primary principal

axis of the 3D model and the corresponding axis of the cylinder. The alignment process is

further enhanced by a measure based on the 3D model’s symmetry characteristics using

an octreebased search strategy. In particular, the NDM image is scanned for a column

of vertical symmetry that results in the polar coordinate at which the model exhibits the

greatest degree of reflective symmetry. Following the alignment of the 3D model’s primary

principal axis, a similar search methodology is used for its secondary principal axis. The

insight for the proposed approach is that the principal axis of a model often coincides with

its axis of symmetry.

The SymPan+ method is based on the same principle as for SymPan, plus on the

observation, that many common 3D objects possess at least one plane of symmetry.

Detecting this symmetry plane is, therefore, the first step of our method and gives the
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first principal axis of the model. The surface of the 3D model is initially projected on

the lateral surface of a selected circumscribed cylinder, aligned with one of the principal

axes of space. The 3D model is iteratively rotated accordingly and the reflective symmetry

scores of its projections are computed. The axis of the projection cylinder, along with

the axis of maximum reflective symmetry, as this is computed on the set of panoramic

projections, define the 3D model’s plane of symmetry, the normal of which, defines one of

the 3D model’s principal axes. The other principal axes of the 3D model are estimated via

the computation of the variance on the pixel values of the panoramic views.

3.2.1 Panoramic Views Representation

Let us define a projection cylinder as a cylinder whose axis is aligned with one of the

principal axes of space (e.g. the z axis), as described by Papadakis et al. [89]. To obtain

a panoramic view for a 3D model, we project the 3D model onto the lateral surface of a

cylinder of radius R and height H = 2R, centered at the origin, with its axis parallel to

one of the principal axes of space, see Fig. 13a. We set the value of R to 2 ∗ dmax where

dmax is the maximum distance of the model’s surface from its centroid.

In the following, we parameterize the lateral surface of the cylinder using a set of points

s(φ, y) where φ ∈ [0, 2π] is the angle in the XY plane, y ∈ [0, H ] and we sample the φ and y

coordinates at rates 2B and B, respectively (we set B = 180). We sample the φ dimension

at twice the rate of the y dimension to account for the difference in length between the

perimeter of the cylinder’s lateral surface and its height. Thus we obtain the set of points

s(φu, yv) where φu = u ∗ 2π/(2B), yv = v ∗H/B, u ∈ [0, 2B − 1] and v ∈ [0, B − 1]. These

points are shown in Fig. 13b.

We shall next determine the value at each point s(φu, yv) of the panoramic view. The

computation is carried out iteratively for v = 0, 1, ..., B − 1, each time considering the set

of coplanar s(φu, yv) points, i.e. a cross section v of the cylinder at height yv and for each

cross section we cast rays from its center cv in the φu directions.

The cylindrical projections are used to capture two different characteristics of a 3D

model’s surface; (i) the position of the model’s surface in 3D space, (referred to as Spatial

Distribution Map or SDM), and (ii) the orientation of the model’s surface, (referred to as

Normals’ Deviation Map or NDM). To capture these characteristics we use two kinds of
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(a) (b)

Figure 13: (a) A projection cylinder for the acquisition of a 3D model’s panoramic view

and (b) the corresponding discretization of its lateral surface to the set of points s(φu, yv)

cylindrical projections s1(φu, yv) and s2(φu, yv).

To capture the position of the model’s surface, for each cross section at height yv we

compute the distances from cv of the intersections of the model’s surface with the rays

at each direction φu. Let pos(φu, yv) denote the distance of the furthest from cv point

of intersection between the ray emanating from cv in the φu direction and the model’s

surface; then s1(φu, yv) = pos(φu, yv). The value of a point s(φu, yv) lies in the interval

[0, R], where R denotes the radius of the cylinder.

To capture the orientation of the model’s surface, for each cross section at height yv

we compute the intersections of the model’s surface with the rays at each direction φu and

measure the angle between a ray and the normal vector of the triangle that is intersected.

To determine the value of a point s2(φu, yv) we use the cosine of the angle between the ray

and the normal vector of the furthest from cv intersected triangle of the model’s surface.

If ang(φu, yv) denotes the aforementioned angle, then the values of the s(φu, yv) points are

given by s2(φu, yv) = | cos(ang(φu, yv))|n.

We take the nth power of | cos(ang(φu, yv))|, where n ≥ 2, since this setting enhances

the contrast of the produced cylindrical projection. We have experimentally found that

setting n to a value in the range [4, 6] gives the best results. Also, taking the absolute

value of the cosine is necessary to deal with inconsistently oriented triangles along the

model’s surface.

A cylindrical projection can be viewed as a 2D grayscale image where pixels correspond

to the sk(φu, yv) intersection points in a manner reminiscent of cylindrical texture mapping
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and their values are mapped to the [0, 1] space. In Figs. 14a and 14c, we show two

example 3D models aligned with the z axis. In Figs. 14b and 14d the unfolded visual

representations of its corresponding cylindrical projections s1(φu, yv) and s2(φu, yv) are

given, respectively.

(a) (b) (c) (d)

Figure 14: (a),(c) Two example 3D models and (b),(d) their corresponding cylindrical pro

jections capturing the position of the surface (top row) and the orientation of the surface

(bottom row), on the z axis.

3.2.2 Image Reflective Symmetry Estimation

Image
Sliding

Window

(w,h)

height

width

H

W

Figure 15: Illustration of the sliding window parameters used for the estimation of the

reflective symmetry found in a 2D image

To measure the reflective symmetry of a 2D grayscale image I, a method similar to the

one proposed in [143] is followed. A sliding window of width W and height H is defined.

The sliding window is initially positioned at the center of the image, see Fig. 15. At each

window position, the reflective symmetry measured at its central column w, is:
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Sym(w) = 1− 1

2m

height

2
+m∑

h=height

2
−m

SymDiff(w, h) (7)

SymDiff(w, h) =
1

n

n∑

x=1

|(w − x, h)− (w + x, h)| (8)

where (w, h) denotes the image pixel located at column w and row h. We set n = 10%

of the image’s width and m = 40% of the image’s height, resulting in a sliding window of

dimensions W = 0.20∗width and H = 0.80∗height.

The process is repeated for every sliding window position on the image and the max

imum Sym(w) value is stored as the image’s symmetry score. Fig. 16 illustrates two

example panoramic view images with the symmetry columns indicated and the corre

sponding symmetry score graphs, as extracted by the proposed method. We thus define

the maximum symmetry score for a 2D image I and the image column where this score

is attained as:

S(I) = max{Sym(w)|w ∈ 1 : width} (9)

Sindex(I) = argmax{Sym(w)|w ∈ 1 : width} (10)
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Figure 16: Top row: example panoramic view images with symmetry column indicated

and, bottom row: the corresponding symmetry score graphs as extracted by the proposed

method.
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3.2.3 SymPan Pose Normalization

To achieve alignment between a 3D model and a projection cylinder, we compute two

equally weighted factors: (i) a measure of how parallel the surface of the 3D model is to

the lateral surface of the cylinder, as given by the mean value of the NDM and (ii) the

degree of reflective symmetry established by the NDM:

D = NDM + S(NDM) (11)

where NDM stands for the mean value of the NDM and S(NDM) measures the reflective

symmetry of the NDM.

According to Euler’s Rotation Theorem, to reach any target frame, a specific sequence

of three rotations, that are described by three angles is required. The first two rotations

establish a common principal rotation axis between the source and target frames (also

known as the ‘line of nodes’). The third rotation, about the principal rotation axis, aligns

the remaining axes of the reference and target frames [52, 79].

To this end, we use an octree search strategy for the estimation of the two rotations

required for the 3D model’s principal axis to become aligned with the cylinder’s axis:

Rotate the 3D model around the secondary and tertiary principal axes of space by both

θ◦ and −θ◦ and compute the symmetry measure D for the resulting NDM image. Set the

3D model’s new orientation to the one which results in the maximum value of D. Set

θ = θ/2 and repeat the search process until θ = 0.125◦. Initially θ = 90◦. During our

experiments the algorithm always converged within 20 steps; we used a maximum of 30

steps to guarantee termination.

After the alignment of the 3D model’s principal axis, a search on the 3D model’s NDM

for its secondary principal axis is carried out, based solely on the 3D model’s reflective

symmetry characteristics. Again, Sym(w) is computed for every column of the aligned

model’s NDM and the position of the maximum Sym(w) value is stored as the 3D model’s

secondary principal axis:

Sindex(NDM) = argmax{Sym(w)|w ∈ 1 : width} (12)

The model is then rotated around its primary principal axis so that its secondary
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principal axis becomes aligned with the corresponding secondary principal axis of space

(i.e. the x axis).

3.2.4 SymPan+ Pose Normalization

3.2.4.1 3D Model Symmetry Plane Estimation The estimation of the plane of symmetry of the

3D model is based on the reflective symmetry of its corresponding panoramic view. Once

the plane of symmetry is defined, the first principal axis of the model is also defined as

the normal to the plane of symmetry.

Initially, a 3D model, having arbitrary pose, is normalized in terms of translation and

scaling using the corresponding standard techniques described in ROSy pose normaliza

tion method. More specifically, translation normalization is achieved though the definition

of the 3D model’s centroid and the displacement of this centroid to the coordinate system

origin. Consecutively, the 3D model is scaled so that it becomes exactly inscribed inside

the unit sphere.

Since translation normalization has been performed, the plane of symmetry of the

3D object passes through the origin of the coordinate system. Our aim is to rotate the

symmetry plane so that it includes the z axis; then the pane of symmetry will be detected

in the panoramic image.

Figure 17: Aligning the symmetry plane normal with the XY plane

Consider the normal vn to the plane of symmetry. When this normal is included in

the XY plane, then the plane of symmetry will include the z axis; a rotation around the

x axis by BestRot is sufficient for this to happen (Fig 17):
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BestRot = argmax{S(Iθ)|θ ∈ 0◦ : 180◦} (13)

Where Iθ is the panoramic image produced by rotating the 3D model by θ degrees

around the x axis. S(Iθ) is the corresponding symmetry score.

Sindex(Iθ) along with the z axis then define the plane of symmetry.

In Fig. 18 the best rotation of the 3D model and its symmetry axis is illustrated. The

corresponding graph of S(Iθ) score is shown and BestRot is indicated. Furthermore, the

NDM image and its symmetry score graph, resulting from BestRot are also depicted. On

both the NDM image and the graph is indicated the Sindex point.

Figure 18: 3D model symmetry plane estimation. (left top) The 3D model with its plane

of symmetry and (left bottom) the symmetry scores of the corresponding NDM images,

computed under rotation θ. Marked is the rotation (in degrees) giving the maximum

symmetry score. (right top) The NDM image of the best rotation, (right bottom) along

with its symmetry score plot. Marked is the maximum symmetry score value and the

corresponding symmetry column.

Before we proceed to the principal axes estimation, we shall prove that to transform

normal vector vn so that it is included in the XY plane (or it becomes perpendicular to

the normal to the XY plane, the z axis), given any rotation axis R, which is perpendicular

to the z axis (i.e. the x and y axes), is dependent only on rotation angle θ.

Let us consider that the normal to the symmetry plane has an arbitrary rotation in

space, vn = [x′, y′, z′]. Furthermore, let us define a matrix describing a rotation of angle θ
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around an axis perpendicular to the target vector. This is a combination of two principal

rotations, a first one around axis z by an angle γ, defining the angular difference between

the arbitrary rotation axis and a known axis in space (i.e. the xaxis), and then the actual

rotation around the known axis, by angle θ:

R = RzRx =




cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1







1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)




=




cos(γ) − sin(γ) cos(θ) sin(γ) sin(θ)

sin(γ) cos(γ) cos(θ) − cos(γ) sin(θ)

0 sin(θ) cos(θ)




Given rotation R, the dot product of vn and the z axis should equal to zero, in order

to be perpendicular:

Rvn · z = 0




cos(γ) − sin(γ) cos(θ) sin(γ) sin(θ)

sin(γ) cos(γ) cos(θ) − cos(γ) sin(θ)

0 sin(θ) cos(θ)







x′

y′

z′


 ·




0

0

z


 =




0

0

0







x′ cos(γ)− y′ sin(γ) cos(θ) + z′ sin(γ) sin(θ)

x′ sin(γ) + y′ cos(γ) cos(θ)− z′ cos(γ) sin(θ)

y′ sin(θ) + z′ cos(θ)


 ·




0

0

z


 =




0

0

0




z(y′ sin(θ) + z′ cos(θ)) = 0 (14)

Equation 14 shows that given a rotation of vector vn around an axis perpendicular to

axis z (i.e. the x axis), an angle θ exists, which makes the two vectors perpendicular.

3.2.4.2 3D Model Principal Axes Estimation The normal to the plane of symmetry defines

one of the principal axes of the 3D model, but the remaining two principal axes have yet
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to be estimated. The 3D model can thus be rotated so that its symmetry plane coincides

with one of the principal planes of space (e.g. the XY plane).

To complete the rotation normalization task, the 3D model is projected onto the surface

of a projection cylinder whose axis is one of the principal axes of space, perpendicular to

the symmetry plane’s normal. The 3D model is iteratively rotated around the normal axis

to the symmetry plane and the corresponding SDM images are calculated. For each SDM

image, the variance of its pixel values is computed and the rotation that minimizes this

variance, is defined as the rotation which aligns the principal axis of the 3D model to the

axis of the projection cylinder (see Fig. 19).

Since the SDM image represents the distance between the surface if the 3D model and

the surface of the projection cylinder, low variation of its pixel values can be interpreted as

higher distance between the surface of the 3D model and the surface of the cylinder (i.e.

the 3D model is parallel to the surface of the cylinder), whereas high variation denotes

that certain areas of the 3D model lie closer to the cylinder than others (i.e. the 3D model

is, close to, perpendicular to the cylinder’s axis).

Figure 19: 3D model principal axes estimation, illustrated are the axis aligned 3D model,

the corresponding SDM image along with its pixel value variance score. Marked is the

minimum variance score.

The complete algorithm for the proposed pose normalization methodology is outlined

in Algorithm 2.
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Algorithm 2 Object pose normalization based on Reflective Symmetry and Panoramic

Views

Input: M ; ⊲ Input 3D model M
1: Translation normalization of the centroid of M to the origin of the coordinate system;

2: Scale normalization of M to the unit sphere;

3: BestSym← 0; ⊲ Best symmetry value so far

4: MinV ar ← − inf; ⊲ Minimum 2D image pixel values variance so far

5: CylAxis← (0, 0, 1); ⊲ Projection cylinder’s axis

6: RotAxis← (1, 0, 0); ⊲ Selected rotation axis

7: for θ ← 0◦ to 180◦, step 1◦ do

8: M ′ ← ROTATE(M,RotAxis, θ); ⊲ 3D model rotation transformation (in degrees)

9: NDM ← PROJECTION(M ′, CylAxis); ⊲ 3D model cylindrical projection

transformation

10: SymNDM ← S(NDM); ⊲ Equation 9

11: if SymNDM ≥ BestSym then

12: BestRot← θ ⊲ Store θ giving the maximum Sym(NDM) value

13: BestSym← SymNDM ; ⊲ Equation 10

14: PosSym← Sindex(NDM);
15: end if

16: end for

17: SymPlane(1)← (0, 0, 0); ⊲ Define the 3D model’s plane of symmetry by 3 points in

3D space

18: SymPlane(2)← CylAxis;
19: SymPlane(3)← (0, cos(PosSym), sin(PosSym));
20: M ← ROTATE(M,RotAxis, BestRot) ⊲ Based on the best rotation found...

21: M ← TRANSFORM_BASIS((1, 1, 0), SymP lane); ⊲ ...transform 3D model’s plane of

symmetry to principal plane

22: for θ ← 0◦ to 180◦, step 1◦ do

23: M ′ ← ROTATE(M,CylAxis, θ); ⊲ The new rotation axis is perpendicular to the

selected principal plane

24: SDM ← PROJECTION(M ′, RotAxis); ⊲ The new projection axis is contained in

the selected principal plane

25: V arSDM ← var(SDM); ⊲ 2D image pixel values variance

26: if V arSDM ≤MinV ar then

27: MinV ar ← V arSDM ;

28: PosV ar ← θ;
29: end if

30: end for

31: Mout ← ROTATE(M,CylAxis, PosV ar);

Output: Mout; ⊲ Return the pose normalized 3D model
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4 Non-Rigid 3D Object Retrieval

The unapparent connection

is more powerful than the apparent one

– Heraclitus

0

0.2

0.4

0.6

0.8

1

Figure 20: Example models from the class ‘Centaur’ of the TOSCA dataset, colorcoded

with the corresponding conformal factors.

In this chapter, the proposed nonrigid 3D object retrieval methodology will be de

tailed. The motivation behind this methodology, named ConTopo, is to combine, in a

unified manner, the properties of both geometrical (i.e. conformal geometry) and topo

logical descriptors (i.e. graphbased topological information), in order to achieve elevated

performance. While graphbased methods are robust to nonrigid object deformations,

they require intensive computation which can be reduced by the use of appropriate rep

resentations, addressed through geometrybased methods. In this respect, a topological

structure of a 3D model is constructed with the aid of discrete conformal factors. Further
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more, a string matching strategy for the comparison of graphs which describe 3D objects,

is proposed [106].

Initially, let us define a triangular mesh M = {V, F, E}, represented by the set of

vertices V , the set of faces F and the set of edges E connecting neighboring vertices.

Optionally, the set of the boundary vertices B could be defined. For a vertex vi, V1(i)

denotes the 1ring set of adjacent vertices to vi and F1(i) denotes the 1ring set of adjacent

faces to vi.

A
Voronoi

vi

θ
i

f

vj

βij

αij

Figure 21: Adjacent faces of vertex vi at 1ring neighborhood.

4.1 The Discrete Conformal Factor

BenChen and Gotsman in [11] have introduced the discrete conformal factor for a 3D

mesh, which is used as a nonrigid shape descriptor. The conformal factor φi at a vertex

vi of the triangular 3D mesh M is the solution to the following discrete linear equation

(see Fig. 20):

φi =
ktarg
i − korig

i

L(vi)
(15)

where korig
i is defined as the discrete Gaussian Curvature at vertex vi of the triangular

3D mesh:

korig
i =





2π −
∑

f∈F1(i)

θfi , vi ∈ V \B

π −
∑

f∈F1(i)

θfi , vi ∈ B
(16)
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The first case of equation (16) is used for vertices of the triangular mesh whose 1ring

of adjacent faces is closed, whereas the second case is used for vertices that belong to the

boundary of the triangular mesh (if such boundary exists). θfi is the angle near vertex vi

of face f (see Fig. 21).

In (15), ktarg
i denotes the uniform Gaussian Curvature:

ktarg
i =

(∑

j∈V

korig
j

)
∑

f∈F1(i)

1

3
area(f)

∑

f∈F

area(f)
(17)

ktarg
i assigns to each vertex a portion of the total curvature of the mesh.

In (15), L(vi) denotes the discrete Laplace  Beltrami operator, at vertex vi, with cotan

gent weights, defined in [77] as:

L(vi) =
1

2AMixed

∑

j∈V1(i)

(cotαij + cotβij)|vi − vj| (18)

where AMixed denotes the mesh surface area in a 1ring neighborhood around a vertex

vi, which is computed as shown in Algorithm 3 (see also Fig. 21).

Algorithm 3 Pseudocode for the calculation of the AMixed surface area of vertex vi on an

arbitrary mesh

1: AMixed = 0

2: for f ∈ F1(i) do

3: if f is nonobtuse then

4: AMixed+ = AV oronoi(i)
5: else

6: if the angle of f at vi is obtuse then

7: AMixed+ = area(f)/2
8: else

9: AMixed+ = area(f)/4
10: end if

11: end if

12: end forreturn (AMixed)

area(f) denotes the triangular area of face f , which is computed using Heron’s for

mula. AV oronoi denotes the surface area contribution of a single nonobtuse triangle in

F1(i) (see Fig. 21):
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AV oronoi =
1

8

∑

j∈F1(i)

(cotαij + cot βij)‖vi − vj‖2 (19)

where αij and βij denote the two angles opposite to the common edge v̂ivj (see Fig. 21).

Figure 22: Example partitionings and the corresponding graphs of 3D meshes from the

class ‘Centaur’ using the discrete conformal factor.

4.2 Graph Construction

A graph can be used as a topological map that represents the skeletal structure of an

object with arbitrary dimensions. An example of methods for the characterization of 3D

mesh topological information is the Reeb Graph [57, 31, 13]. Here, in similar manner, we

will define a graph, that captures the topological structure of an arbitrary 3D mesh.

A graph is a representation of a set of objects where some pairs of objects are connected

by links. The interconnected objects are represented by mathematical abstractions called

nodes (or vertices), and the links that connect some pairs of nodes are called edges [126].

Each node of the graph represents a unique connected component, while each edge

of the graph describes the relation between adjacent connected components. Each con

nected component is composed of 3D mesh faces that have the same label and are also

pathwiseconnected (i.e. there exists a path that connects each face of the connected

component to every other face that belongs to the same connected component). A simple

example of a multithresholding criterion is the height function [36, 111, 120, 122]. Other

options include functions that measure the distance between each vertex on the surface

of a 3D mesh and an approximation of its center of mass and/or using other geodesic
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properties of the 3D mesh.

In this work we have used discrete conformal factors [11] as a multithresholding

criterion due to their ability to identify the protrusive parts in a mesh (Fig. 22). The faces

of the 3D mesh are partitioned based on a linear multithresholding of the values of the

discrete conformal factor, thus splitting the mesh into a set of connected components (see

also Fig. 23a).

At this point, we note that the computation of the graph is based on the triangle set

F of the 3D mesh and not on the corresponding vertex set. Therefore, it is necessary to

map the magnitude of the discrete conformal factors from the vertices to the faces of the

triangulated mesh. To achieve this, for each triangular face we aggregate the conformal

factor values of the three vertices φf
i , weighted by their barycentric coordinates, with

respect to the corresponding triangular face’s centroid:

φf =
3∑

i=1

bfi φ
f
i , f ∈ F (20)

where bfi , denotes the barycentric coordinates of vertex i that belongs to triangle f ,

with regard to its centroid.

(a) (b)

{

Rn

FRi

Re

(c)

Figure 23: Detailed steps for the construction of the graph for a 3D mesh. Example Rn,

Re, and FRi are illustrated.

The algorithm for the computation of the graph is composed of the following steps:

• Quantization of the 3D mesh surface into q discrete intervals, based on conformal

factors as the multithresholding criterion. (Fig. 23a).

• Estimation of boundary edges between adjacent connected components (Fig. 23b).
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• Creation of graph edges between neighboring nodes that represent adjacent con

nected components (Fig. 23c).

The outcome of the graph construction is:

Rn: The nodes of the graph.

Re: The edges are represented by an N ×N adjacency matrix, where N is the cardinality

of the sets of nodes.

FRi: The set of faces (triangles) corresponding to the graph node Ri (partition).

F area
Ri : The area of the faces in FRi. F area

Ri is normalized with respect to the total area of

the 3D mesh.

BRiRj : The set of common border vertices between the partitions corresponding to nodes

Ri and Rj.

φ̄Ri: The mean value of the conformal factor for the partition corresponding to node Ri.

In our implementation we have selected q = 8, which creates an eightlevel graph. An

example of a quantized mesh along with its corresponding graph is illustrated in Fig. 24.

This choice has been experimentally determined as it yields good results while simul

taneously preserving acceptable computational speed. During the graph construction

procedure, if any small connected components are found, then these sets are removed

as outliers. In our implementation we define a connected component as small, if it is

composed of less than (3/q)% of the total 3D mesh surface.

Once the graph of the 3D mesh has been constructed, one final step is required before

the matching can be performed. The connected partitions of the graph need to be ordered

according to their distance from the core partition of the 3D mesh. To define the core

partition and perform the ordering, an allpairs shortest path algorithm, (i.e. the Floyd

Warshall [44] algorithm) is applied on the node (Rn) and edge (Re) sets of the graph. This

algorithm calculates the graph distance of each node to all others (i.e. least number of

nodes that need to be traversed to reach the target node). Therefore, the partition for which

the corresponding graph node has the minimum graph distance from all other nodes of

the graph is defined as the core partition; every other partition is ordered according to its
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Figure 24: Illustration of an eightlevel quantized mesh and the corresponding graph.

A

B

C

D

E

Figure 25: Illustration of the way a cycle is broken and considered as two different

branches by the shortest path algorithm.

distance from the core partition. Since the allpairs shortest path algorithm is applied on

the graph of the 3D mesh and not on the full mesh, this procedure is very efficient.

The result of this procedure is an acyclic graph. Note that if any cycles exist these are

detected and broken by the shortest path algorithm. This is achieved by considering the

node of the circle which is most distant from the core partition as a leaf node and each

path leading to it as a different branch (see Fig. 25).

Every path from the root node of the acyclic graph down to each of its leaves is consid

ered as a string, used in the mesh matching algorithm described in the following section
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(see Figs 5 and 7).

4.3 Mesh Matching

Mesh matching compares both geometrical and topological features as a measure of sim

ilarity between two 3D meshes in a unified manner. During matching, the topological

equivalence between the graphs of two 3D meshes is examined and enhanced by nodeto

node comparison of geometrical features.

The matching procedure described in this section is based on string matching. Each

ordered path, of graph nodes, that extends from the core partition of the 3D mesh down

to each of its articulations is considered a string. Furthermore, besides the ordered

connectivity of the string (graph) nodes, a number of features are also attached to them,

which will be used for the geometrical matching.

To address the matching problem between two 3D meshes that possibly have: (i)

different numbers of strings and (ii) large string length variations, we consider the following

algorithm:

Let M1, G1 = (Rn1, Re1) and M2, G2 = (Rn2, Re2) be two 3D meshes and their graphs

respectively. Also, let S1 be the set of m strings derived from the graph of M1 and S2 be

the set of n strings derived from the graph of M2, respectively. Each string is a sequence

of nodes i, where i > 0. The set of features of each node si of the string is denoted as

si.ftrs.

For each string in S1, the features of its nodes are compared to the features of the

corresponding nodes of every string in S2. In the case of unequal lengths between two

compared strings, the features of the exceeding nodes are added as is to the string dif

ference, thus penalizing that the particular articulations are not of the same topological

structure. This procedure is mathematically formulated below and graphically illustrated

in Fig. 26.

D(p, q) =




∑length(p)
k=1 |p[k].f trs− q[k].f trs|+

∑length(q)
l=length(p)+1 q[l].f trs




length(q)
(21)

where p, q denote the two strings compared, assuming (without loss of generality) length(q)≥length(p),
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where length is the number of nodes in the corresponding tree path.

The specific feature set that we used consists of:

1. Area of corresponding partition, normalized with respect to the area of the full mesh

(F area
Ri ).

2. Mean conformal factor value of corresponding partition (φ̄Ri).

3. The geodesic length between the common borders of the current partition and the

adjacent ones, where adjacency is considered in string order.

The last feature can achieve isometric invariance (i.e. preservation of lengths before

and after the transformations, or across shapes) [10]. For each two adjacent partitions of

the 3D mesh, the set of vertices that are common to their faces define their common border

vertex set (BRiRj ). The geodesic measure that we use is defined as the mean geodesic

distance between each two consecutive common border vertex sets. The method used for

the computation of the geodesic distances is the Fast Marching method by Sethian [6, 93].

To alleviate any inconsistencies due to variations in the resolution of the 3D mesh, the

AB

C
DEF

(a) S1

a

b
c

d

(b) S2

|A.ftrs - a.ftrs| + |B.ftrs - b.ftrs| + |C.ftrs - c.ftrs| + |D.ftrs-d.ftrs| + |E.ftrs| + |F.ftrs|

A           B   C   D       E          F

a           b   c   d

s1

s2

Figure 26: Feature comparison between two strings that are composed of different num

bers of nodes. String s1 ∈ S1 is marked in 26a and string s2 ∈ S2 is marked in 26b
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above measure is normalized with respect to the sum of geodesic distances between the

common border vertex sets of the longest string.

Once all the strings in S1 have been compared to all strings in S2, an m×n matrix con

taining the difference between their features, is created (String Difference Matrix  SDM ).

If m 6= n we further penalize that the two 3D meshes do not have the same number of

articulations extruded from their core partition. Therefore, the smallest dimension of the

SDM is padded with elements containing a penalizing factor (PF ), set as the difference

between the number of nodes in each graph divided by their sum:

PF = |m− n|/(m+ n) (22)

The final similarity measure between M1 and M2 is computed by applying the Hun

garian algorithm [68] on the padded SDM . The Hungarian algorithm is a combinatorial

optimization algorithm which solves the assignment problem and returns the minimum

cost (ranging in [0,∞)), which in this case is taken to be the difference between the two

3D meshes.

The mesh matching algorithm is summarized in Algorithm 4.

Algorithm 4 String Matching Algorithm

Input: S1,S2 ⊲ String sets

1:

2: m = card(S1), n = card(S2)
3: MaxStrings = max(m,n) ⊲ maximum # of strings of the two 3D meshes.

4: SDM [MaxStrings,MaxStrings] = PF ⊲ see eq.22

5: for i = 1→ m do

6: for j = 1→ n do

7: SDM [i, j] = D(S1[i],S2[j]) ⊲ see eq.21

8: ⊲ S1[i],S2[j] denote the ith, receptively jth string of sets S1, S2

9: end for

10: end for

11: Diff = Hungarian(SDM ) ⊲ combinatorial optimization algorithm [68] return Diff
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5 3D object retrieval based on 2D Range Image Queries

Since we can’t change reality,

let’s change the eyes which see reality

– N. Kazantzakis

In this chapter, the proposed methodology for 3D object retrieval via range image

queries will be detailed. The motivation behind the proposed method, is to use a 2D image

in order to query a database of 3D objects and bridge the representation gap between

the two in an efficient manner. For the complete 3D objects of the database, shape

description is achieved through a set of panoramic views and a BagofVisualWords model

is built using SIFT features extracted from these views. To address the problem of partial

matching, a histogram computation scheme, on the panoramic views, that represents

local information by taking into account spatial context, is suggested. Furthermore, a

number of optimization techniques are applied throughout the process, for enhancing the

retrieval performance [107].

5.1 Panoramic Views Computation

For each 3D model of the database a number of panoramic views (or cylindrical projections)

are extracted. These projections are computed on cylindrical axes that are perpendicular

to and uniformly distributed over the surface of the 3D model’s circumscribed sphere,

in accordance with the PANORAMA [89] projection methodology. To obtain a panoramic

view, we project the 3D model to the lateral surface of a cylinder of radius R and height

H = 2R, centered at the origin with its axis parallel to one of the selected axes (in this
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(a) (b)

Figure 27: 27a A projection cylinder for the acquisition of a 3D model’s panoramic view

and 27b the corresponding discretization of its lateral surface to the set of points s(φu, yv)

example the principal axis z, see Fig. 27a). We set the value of R to 2 ∗ dmax where

dmax is the maximum distance of the model’s surface from its centroid. In the following,

we parameterize the lateral surface of the cylinder using a set of points s(φ, y) where

φ ∈ [0, 2π] is the angle in the XY plane, y ∈ [0, H ] and we sample the φ and y coordinates

at rates 6B and B, respectively (we set B = 360). Thus we obtain the set of points s(φu, yv)

where φu = u ∗ 2π/(2B), yv = v ∗H/B, u ∈ [0, 2B − 1] and v ∈ [0, B− 1]. These points are

shown in Fig. 27b.

The next step is to determine the value at each point s(φu, yv). The computation is

carried out iteratively for v = 0, 1, ..., B − 1, each time considering the set of coplanar

s(φu, yv) points, i.e. a cross section of the cylinder at height yv and for each cross section

we cast rays from its center cv in the φu directions. To capture the position of the model’s

surface, for each cross section at height yv we compute the distances from cv to the

intersections of the model’s surface with the rays at each direction φu.

Let pos(φu, yv) denote the distance of the furthest from cv point of intersection between

the ray emanating from cv in the φu direction and the model’s surface; then s(φu, yv) =

pos(φu, yv). The value of a point s(φu, yv) lies in the interval [0, R], where R denotes the

radius of the cylinder.

A cylindrical projection can be viewed as a 2D grayscale image where pixels corre

spond to the s(φu, yv) intersection points in a manner reminiscent of cylindrical texture

mapping [124] and their values are mapped to the [0, 1] interval. The number of extracted

cylindrical projections for each complete 3D model is 60, which maintains acceptable
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processing speed and coverage of the surface of the 3D model’s circumscribed sphere. In

Fig. 28a, we show an example 3D model and in Fig. 28b the unfolded visual representation

of its corresponding cylindrical projection s(φu, yv).

5.2 SIFT Descriptors Extraction

After the panoramic view extraction, the SIFT (Scale Invariant Feature Transform) [74] de

scriptor is calculated on the produced cylindrical depth images. The first step to the SIFT

descriptor computation is the definition of an interest point set on the image, upon which

the descriptors are calculated. The original implementation by Lowe, defines these inter

est points through the Difference of Gaussians (DoG) algorithm, which is geared towards

enhancing the edges and other details present in the image. It has been experimentally

found that the calculation of the SIFT descriptors over the complete image for a large

number of randomly selected points [16, 17] (frequently defined as Dense SIFT/ DSIFT,

in the literature), instead of selecting a limited number of interest points, yields better

results in terms of retrieval accuracy.

At each interest point, an image descriptor is computed. The SIFT descriptor is defined

as a positiondependent histogram of local gradient directions around the interest point.

(a) (b)

Figure 28: 28a An example 3D model and 28b its corresponding cylindrical projection on

the z axis.
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To achieve scale invariance of the descriptor, the size of this local neighbourhood is nor

malized in a scaleinvariant manner. To achieve rotational invariance of the descriptor,

the dominant orientation of the neighbourhood is determined from the orientations of the

gradient vectors in this neighbourhood and is used for orienting the grid over which the

positiondependent histogram is computed.

One recently proposed improvement technique for SIFT, by Arandjelovic and Zisser

man [8], aims at enhancing the similarity measure used when comparing the descriptors

(RootSIFT). The authors show that using a square root (Hellinger) kernel (also known as

the Bhattacharyya’s coefficient [12]) instead of the standard Euclidean distance measure,

for the comparison of the SIFT descriptors (or SIFT histograms), increases performance.

The intuition behind this proposal is based on the observation that Euclidean distance

can be dominated by large bin values, whereas Hellinger distance is more sensitive to

smaller bin values (See Fig. 29.
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Figure 29: Comparison between the Euclidean distance and the Hellinger distance.

The Hellinger kernel for two L1 normalized histograms, x and y is defined as:

H(x, y) =
n∑

i=1

√
xiyi (23)

To compare the SIFT vectors with a Hellinger kernel is a simple twostep algebraic

manipulation (thus easy to implement in any existing SIFT implementation). First L1
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normalization of the SIFT vector, which originally has L2 norm [74, 8], and then square

rooting each of its elements. Computing Euclidean distance in the feature map space is

equivalent to Hellinger distance in the original space:

√
x
T√

y = H(x, y) (24)

5.3 Bag-of-Visual-Words Modelling

Once the panoramic views extraction and the SIFT descriptor calculation steps are com

plete, the BagofVisualWords (BoVW) visual model for the database is built. In visual

information retrieval, the BoVW model defines that each image contains a number of local

visual features. Since every visual feature, or collection of similar visual features, can

appear with different frequencies on each image, matching the visual feature frequencies

of two images, achieves correspondence. In our case, the SIFT descriptors are defined as

the BoVW model’s visual features.

The basic step in the process of building the BoVW model for the 3D model database

is the generation of a codebook (or a vocabulary), a collection of visual features that

appear on each image. The codebook is generated by considering the visual features of

a representative number of training database models (see Fig. 30). To achieve greater

flexibility, rather than generating the codebook by selecting individual visual features of

the training models, the corresponding panoramic views are clustered into several similar

patches, the codewords. One simple method is performing kmeans clustering [73] over

all the visual features. Codewords are then defined as the centers of the learned clusters.

The number of the clusters is the codebook size. Thus, each patch in an image is mapped

to a certain codeword through the clustering process and the image can be represented

by the histogram of the codewords.

After the codebook generation procedure, the next step is the description of the

database 3D models using the corresponding codewords. In a similar manner, for each

panoramic view of the database 3D model set, the visual features are computed and

matched to their closest codewords, by comparing them to the corresponding clusters,

generated in the previous step. Again, the kmeans algorithm is used for matching. Note

that the kmeans clustering method makes use of the Euclidean distance for the com
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Figure 30: Sample BoVW codebook creation from a number of panoramic views extracted

from 3 different corresponding 3D models

parison between the clusters and the visual features. According to the RootSIFT trans

formation, applied on the visual features, this results in using the Hellinger distance for

the operation. The set of histograms describing the frequency of occurrence of the gener

ated codewords, for each 3D model’s panoramic views, is stored as the corresponding 3D

model’s signature.

5.4 Spatial Histograms

In an extension of the standard BagofVisualWords model, described in the previous

subsection, and targeting the matching between a complete 3D model and a range image

representing a partial query, we have modified the histogram generation in the following

manner. Since a panoramic view of a complete 3D model contains 360◦of information,

an attempt to match it to a query range image, which contains only a portion of that

information, will produce poor results in the majority of cases. To alleviate this problem
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we suggest a progressive partitioning scheme for the panoramic views of the database 3D

models. Each panoramic view image is iteratively split along the horizontal dimension

(width), which is perpendicular to the axis of the corresponding projection cylinder (see

Fig. 31).

The spatial histograms are then computed for each resulting subpart of the image. For

example, on a first level of progressive partitioning, the spatial histogram is computed on

the complete panoramic view image of the 3D model. On the second level, the panoramic

view image is partitioned once along the horizontal dimension and two spatial histograms

are computed for the resulting left and right subimage, respectively. On the third level,

the complete panoramic view image is partitioned twice along the horizontal dimension

and three spatial histograms are computed for each of the three resulting subimages. The

process continues until a certain level of progressive partitioning is reached, which in our

case has been selected to be 6.

As the complete panoramic view images contain 360◦of information, each level of pro

gressive partitioning produces spatial histograms that reflect a fraction of that information

(i.e. 180◦, 120◦, 90◦, ..., etc). Therefore, the matching between each spatial histogram of a

(a) (b)

Figure 31: 31a simulated rendering of three progressive partitioning levels for a complete

3D model. At each level only one subimage is displayed. 31b unwrapped cylindrical

projections of the aforementioned progressive partitioning levels with all subimages illus

trated.
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3D model and the corresponding histograms of a query range image needs to be weighted

based on a ratio that measures the possibility of achieving a match between the contained

information of the two (spatial) histograms, at each level of progressive partitioning:

PQratio(i) =

∣∣∣∣
Qangle

Pangle(i)

∣∣∣∣ (25)

where Pangle(i) is the FieldofView [124] of the panoramic view (sub)image at the ith

level of progressive partitioning and Qangle is the FieldofView of the query range image,

measured in degrees. The Qangle is based on the properties of the camera used for captur

ing the range images and in our experiments, we have estimated this angle at 60◦, which

simulates the projection of the query range image to one of the faces of a hexagon.

5.5 Range Image Matching

(a) (b) (c) (d)

Figure 32: An example query range image 32a before preprocessing, 32b after dilation,

32c closing and 32d erosion steps, in consecutive order.

A range image is defined as a 2D image whose pixel values store the distance of each

corresponding scene point from the projection plane [117]. Usually, the projection plane

is associated with the range image camera sensor (see Fig 32a).

Based on the constructed BoVW model, for the database 3D models, the matching of

the query range images is performed. The query range images are usually very noisy, due

to the capturing process and an extra preprocessing step is often necessary before the

actual matching. Here, we have followed a simple strategy that attempts to fill any holes,

resulting from the object scanning and/or eliminate any outliers that do not belong to the

actual objects (i.e. parts of the background).
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Initially, morphological dilation [38] is performed on the original query range image.

This step grows the range image regions, so that any moderate holes, that could have

occurred due to errors in the capturing process, become small enough, in order to be

considered as candidates for closing (see Fig. 32b). On the second step, morphological

closing [38] is performed on the dilated image, in order to achieve closing of any small

open areas that have been produced due to the digitization process (see Fig. 32c). The next

step of the preprocessing strategy is the morphological erosion [38] of the image, so that

it returns to its original form, with any small to moderate holes closed (see Fig. 32d). All

of the aforementioned morphological operators are applied using diskshaped structuring

elements of size 3. The final step of the preprocessing strategy involves smoothing the

range image by convolving it with an isotropic Gaussian kernel, which ensures that any

rough edges are leveled and any small outlying regions, remote from the main object, are

discarded.

Following the preprocessing, the range images are used as queries for the 3D model

database. In a strategy similar to the histogram computation for the panoramic views of

the database 3D models, the queries are compared to the models of the database. The

SIFT descriptor is extracted from the range image, RootSIFT transformation is applied

on the descriptor and finally, based on the generated BagofVisualWords, a histogram

describing the codebook frequencies of occurrence is computed as the query’s descriptor.

The similarity between the spatial histograms H of a 3D model and the histogram h of

a query range image is calculated as follows: for each level l of progressive partitioning,

the spatial histograms Hl are compared to the query range image histogram h using as a

metric the Normalized Histogram Intersection distance (DNHI(H, h)), defined by [30] as:

DNHI(H, h) =

n∑

i=1

min(H(i), h(i))

H(i) + h(i)
(26)

The best match is recorded and weighted by PQratio for the corresponding level. Then,

for all progressive partitioning levels, the best matches are summed to create the final

distance between the query and the corresponding database model. We define max_l to

be the maximum level of progressive partitioning set to 6.
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Dist(H, h) =
max_l∑

l=1

PQratio(l)[argminHl(DNHI(Hl, h))] (27)

The complete descriptor extraction and matching algorithm is outlined in Algorithm 5

and Algorithm 6, respectively.

Algorithm 5 Bag_of_Visual_Words Model Building Algorithm

Input: 3D_models ⊲ Database 3D model set

1:

2: n_models = card(3D_models) ⊲ The number of 3D models of the database

3:

4: n_axes = 60 ⊲ Define 60 random axis points

5:

6: max_l = 6
7: for n = 1→ n_models do

8: axes = rand(n_axes)
9: for m = 1→ n_axes do

10: pan(n,m) = EXTRACT_PVIEW(3D_model(n), axes(m))
11: sift(n,m) = DSIFT(pan(n,m))
12: rsift(n,m) = ROOTSIFT(sift(n,m))
13: end for

14: end for

15: train_set = rand(rsift, n_model/10)

16: codebook = TRAIN_BOVW(train_set)
17: for n = 1→ n_models do

18: for m = 1→ n_axes do

19: for l = 1→ max_l do

20: histl(n,m) = EXTRACT_HIST(codebook, rsift(n,m))
21: end for

22: end for

23: end forreturn codebook, hist

Note that the EXTRACT_PVIEW, DSIFT, ROOTSIFT, TRAIN_BOVW and EXTRACT_HIST

functions refer to the panoramic view extraction, Dense SIFT descriptor calculation, Root

SIFT transformation, BagofVisualWords codebook generation and (spatial) Histogram

extraction operations of the pipeline, respectively.
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Algorithm 6 Query Range Image Matching Algorithm

Input: codebook, hist, query_image
Input: n_models, n_axes ⊲ The number of 3D models of the database and the random

axis points, as defined in Algorithm 5

1:

2: siftq = DSIFT(query_image)
3: rsiftq = ROOTSIFT(siftq)
4: histq = EXTRACT_HIST(codebook, rsiftq(n))
5: for n = 1→ n_models do

6: for m = 1→ n_axes do

7: query_dist(n,m) = Dist(hist(n), histq)
8: end for

9: end for

10: final_dist = min(query_dist) return final_dist
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6 Experimental Results

God ever geometrizes

– Plato

In this chapter, the experimental evaluation of the presented methods will be discussed

in detail. Both quantitative and qualitative (applicable to the pose normalization methods)

means of evaluation were used. First, we shall define the framework chosen for conducting

the experiments. This framework is uniform across every presented method, allowing the

reader to easily extract comparative conclusions.

The experimental evaluation is based on the PrecisionRecall curves and five quantita

tive measures: Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), Emeasure (E) and

Discounted Cumulative Gain (DCG) [110] for the classes of each corresponding dataset.

For every query model that belongs to a class C, Recall denotes the percentage of mod

els of class C that are retrieved and Precision denotes the proportion of retrieved models

that belong to class C over the total number of retrieved models. The best score is 100%

for both quantities. Nearest Neighbor (NN) indicates the percentage of queries where the

closest match belongs to the query class. First Tier (FT) and Second Tier (ST) statistics,

measure the recall value for the (D− 1) and 2(D− 1) closest matches respectively, where

D is the cardinality of the query’s class. Emeasure combines precision and recall metrics

into a single number and the DCG statistic weighs correct results near the front of the

list more than correct results later in the ranked list under the assumption that a user is

less likely to consider elements near the end of the list [59, 110].

For each presented method, the evaluations were conducted on widely used datasets,
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allowing the comparison of the results with both stateoftheart and future methods. In

the following sections, the experimental evaluation for each of the methods introduced in

this thesis will be presented.

6.1 Rigid 3D Object Retrieval

This section provides detailed performance results of the ROSy and SymPan, SymPan+

pose normalization methods. The first step of the evaluation process is to set up the

testing framework. The result of pose normalization is an aligned placement of the input

3D object in space. As it is not trivial to directly quantify the quality of the alignment, an

indirect way of testing and comparison will be used. Since pose normalization procedures

are primarily used as a preprocessing step in graphics applications like visualization,

reconstruction from broken fragments and 3D object retrieval, it is possible to evaluate

the performance of the proposed method through the final results of such a system. Our

evaluation is based on rigid 3D object retrieval.

6.1.1 ROSy for 3D Object Retrieval

For the evaluation of the ROSy pose normalization method, we have chosen a state

oftheart 3D object retrieval methodology, by Papadakis et al. [88] as the evaluation

vehicle. The datasets, on which the experiments were conducted, are the following: the

training and test sets of the Princeton Shape Benchmark (PSB) [110], the classified objects

of the National Taiwan University database (NTU) [28], the MPEG7 dataset [129], the

Engineering Shape Benchmark dataset (ESB) [60] the National Institute of Standards and

Table 2: Categories and cardinalities of evaluation datasets

3D object dataset # of Categories # of objects

PSB training 90 907

PSB test 92 907

NTU 41 549

MPEG7 135 1300

ESB 48 866

NIST 40 800

McGill Articulated 10 254

McGill Non Articulated 9 202
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Technology dataset (NIST), which contains shape normalized and visually categorized 3D

objects found in the SHREC 2009 competition [43] and both the Articulated and Non

Articulated objects of the McGill dataset [144]. From the NTU dataset, only the classified

objects were used, as unclassified objects would not give accurate retrieval results. Table 2

shows the number of categories and the total number of objects in each dataset used for

the experiments.

In previous section, 1
2
Dist(·) and Angtanh(·) were defined as equally weighted in the

equation of the minimization criterion kΠ. This choice is justified through a series of

retrieval tests with differently normalized weight factors. In these tests ROSy was used

as the pose normalization procedure of the 3D object retrieval system and the resulting

Discounted Cumulative Gain (DCG) [59] was measured on the PSB test, the NIST, the

ESB and the MPEG7 datasets. The DCG statistic gives a sense of how well the overall

retrieval would be viewed by a human. Correct shapes near the front of the list are more

likely to be seen than correct shapes near the end of the list. Table 3 confirms that the

most suitable choice is the use of equal weight factors in the minimization criterion.

Table 3: Impact of the weight factor (in the minimization criterion kΠ) on DCG score for

four datasets. Higher DCG score is better.

Weight Factors DCG Score
1
2
Dist(·) Angtanh(·) PSB test NIST ESB MPEG7

0 1 0.665 0.719 0.729 0.805

0.25 0.75 0.666 0.756 0.732 0.812

0.5 0.5 0.678 0.764 0.732 0.821

0.75 0.25 0.667 0.763 0.700 0.809

1 0 0.645 0.724 0.698 0.790

Papadakis’ 3D object retrieval system, in its original form, uses a combination of the

CPCA and NPCA algorithms to achieve pose normalization of a 3D object set. This ap

proach defines a successful hybrid scheme that could be further improved by the proposed

method. However, to test if the three pose normalization methods can benefit the retrieval

process, without adding any redundant complexity to it, a complementarity test needs

to be performed. This test assesses the number of classes that are best aligned by each

method in terms of retrieval accuracy, by performing the DCG test on the retrieval results

of the test PSB dataset. If the percentages of success of the three methods are similar, then
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1 (62) sedan 47 (92) church

2 (63) hourglass 48 (29) covered_wagon

3 (64) monster_truck 49 (65) electrical_guitar

4 (1) hammer 50 (66) fighter_jet

5 (2) human 51 (30) gazebo

6 (67) dining_chair 52 (70) enterprise_like

7 (68) biplane 53 (31) head

8 (3) race_car 54 (32) stealth_bomber

9 (69) handgun 55 (33) desk_chair

10 (4) glider 56 (34) chess_set

11 (71) glass_with_stem 57 (72) motorcycle

12 (5) face 58 (73) commercial

13 (6) horse 59 (35) bench

14 (7) flying_saucer 60 (84) rectangular

15 (8) human_arms_out 61 (36) computer_monitor

16 (9) potted_plant 62 (78) umbrella

17 (10) tie_fighter 63 (37) submarine

18 (11) jeep 64 (79) barren

19 (75) door 65 (38) ship

20 (74) streetlight 66 (39) hot_air_balloon

21 (77) mailbox 67 (40) dog

22 (76) sword 68 (80) sea_turtle

23 (12) helicopter 69 (41) desktop

24 (13) ant 70 (42) hand

25 (82) geographic_map 71 (43) fish

26 (14) bush 72 (44) skull

27 (15) large_sail_boat 73 (45) fireplace

28 (83) knife 74 (46) shovel

29 (16) gear 75 (47) shelves

30 (17) hat 76 (48) flying_bird

31 (18) ladder 77 (88) train_car

32 (19) eyeglasses 78 (49) semi

33 (81) rabbit 79 (50) single_leg

34 (20) billboard 80 (51) conical

35 (21) snake 81 (52) flowers

36 (86) vase 82 (85) walking

37 (22) city 83 (53) axe

38 (23) butterfly 84 (54) book

39 (87) wheel 85 (55) newtonian_toy

40 (24) slot_machine 86 (89) cabinet

41 (25) standing_bird 87 (56) school_desk

42 (26) two_story_home 88 (57) pail

43 (91) barn 89 (58) one_peak_tent

44 (90) sink 90 (59) one_story_home

45 (27) staircase 91 (60) skyscraper

46 (28) satellite 92 (61) satellite_dish

(c)

Figure 33: DCG retrieval scores for the CPCA, NPCA and ROSy pose normalization meth

ods, color coded by the method that achieves the best results per class. 33a Per class CPCA

and NPCA complementarity results. 33b Per class CPCA, NPCA and ROSy complementar

ity results. 33c The correspondence between class IDs and class names. Parenthesized

IDs refer to plot

33b.

the methods can be considered complementary. Firstly, a test of the complementarity be

tween the CPCA and the NPCA methods was performed and then the same evaluation was

conducted for all three pose normalization methods. The results, illustrated in Figure 33,

confirm that both CPCA and NPCA methods are between them complementary in terms

of per class retrieval accuracy and that the proposed method is also complementary to

them. Therefore, the addition of the ROSy method to the pose normalization procedure,

could potentially improve the overall performance of the retrieval system, by achieving

better alignment (in terms of retrieval accuracy) on a subset of objects where the original

two component approach fares badly.

The next step is to test whether the retrieval system can actually benefit by using ROSy
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in addition to the original pose normalization approach.

In Figure 34, the PR plot of the retrieval process on the PSB test dataset is illustrated.

The proposed triple (CPCA, NPCA and ROSy) approach, identified as ROSy+ for the re

mainder of the text, is compared against the CPCA, NPCA and ROSy standalone methods

and the dual (CPCA, NPCA) approach.
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CPCA [0,673, 0,426, 0,546, 0,676]

NPCA [0,677, 0,402, 0,524, 0,664]

ROSy [0,678, 0,446, 0,550, 0,678]

Figure 34: PrecisionRecall plot for the Princeton Shape Benchmark test dataset. The

use of ROSy alongside the original approach significantly boosts the performance of the

retrieval process.

ROSy itself has similar performance to CPCA and NPCA. However, the combination

of the three pose normalization methods (namely ROSy+) gives a significant boost to the

discriminative power of the retrieval process, outperforming the original hybrid (CPCA,

NPCA) approach. Similar to the original methodology, the descriptor consists of three

sets of coefficients corresponding to the three aligned versions of the object (using CPCA,

NPCA and ROSy). The comparison between two objects is done between the corresponding

aligned sets, consequently, the CPCA aligned query object is compared with the CPCA

aligned version of the gallery object, the NPCA aligned query object is compared with the

NPCA aligned version of the gallery object and similarly for the ROSy version. The 2D

and 3D features are computed for three alternative rotation normalized versions of a 3D

object. Thus, the final hybrid 3D shape descriptor si of an object i is the concatenation of

the 2D and 3D features for each aligned version of the 3D object, giving:
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si = (2DfCPCA
i , 2DfNPCA

i , 2DfROSy
i ,

3DfCPCA
i , 3DfNPCA

i , 3DfROSy
i ) (28)

where 2Df j
i and 3Df j

i are the 2D and 3D feature vectors of model i, respectively. Each

feature vector is computed by an alignment of model i, using CPCA, NPCA or ROSy,

denoted by j ∈ {CPCA,NPCA,ROSy}.

To compare the descriptors s1 and s2 of two 3D objects the following schema is adopted,

to compute their distance:

Distance(s1, s2) = dist2Df + dist3Df (29)

where dist2Df and dist3Df is the distance between the 2D and 3D features, respectively,

computed as:

dist2Df = minj(L1(2Df j
1 , 2Df j

2 ))

dist3Df = minj(L1(3Df j
1 , 3Df j

2 )) (30)

where j ∈ {CPCA,NPCA,ROSy} and L1 is the Manhattan distance between the corre

sponding features.

The comparison giving the minimum distance sets the distance score between the

query and gallery objects. The notion of taking the minimum distance is based on the ex

pectation that the best establishment of correspondences between two objects is achieved

when the difference between the shape descriptors is minimum.

In Figure 35 it is further illustrated that the 3D object retrieval system using ROSy+

outperforms two recent pose normalization methods: DLA [27] and GSMD+SHD+R [72],

the PANORAMA descriptor [89] and also three classic 3D object retrieval methods: Light

field [28], SHGEDT [65] and DESIRE [132] approaches. Again, the PR plot of the retrieval

process on the PSB test dataset and the four quantitative measures (NN, FT, ST, DCG)

are displayed.

128 Konstantinos A. Sfikas



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

0

0,2

0,4

0,6

0,8

1

0 0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95

R
e

ca
ll

Precision

PSB Dataset (test subset)

ROSy+ [0.779, 0.524, 0.659, 0.756]

GSMD+SHD+R [0.731, 0.472, 0.602, 0.721]

LFD [0.657, 0.380, 0.487, 0.643]

DLA [0,713, 0,429, 0,552, 0,687]

SH-GEDT [0.553, 0.310, 0.414, 0.584]

DESIRE [0.658, 0.404, 0.513, 0.633]

PANORAMA [0,753, 0,479, 0,603, 0,750]

Figure 35: PrecisionRecall plot for the Princeton Shape Benchmark test dataset. ROSy+

retrieval results are compared against stateoftheart 3D object retrieval techniques.

To establish that increase in the discriminative power is not dependent on the PSB

dataset, the dual (CPCA, NPCA) and the ROSy+ approaches were tested on the rest of the

available datasets. The quantitative measure scores of the results are shown in Table 4.

These scores show that the results are consistent throughout the datasets, revealing the

stability of the proposed approach and the gain with respect to the original hybrid (CPCA,

NPCA) system. Furthermore, it is clear that ROSy+ performs better than previous methods

and the recently proposed methods by Chaouch and Verroust Blondet, using the Depth

Line Approach descriptor [27], by Lian et al. using the combined GSMD  SHD descriptors

with Rectilinearity [72] and by Papadakis et al. using the PANORAMA descriptor [89] by

about 2%  5%.

Comparing the plots and the four quantitative measures, it can be concluded that

the combined use of the three complementary pose normalization methods significantly

elevates the discriminative power of the 3D object retrieval system. On all 8 datasets,

ROSy+ is able to achieve an average performance gain of about 3% over the previous

dual approach (mean value over the quantitative measures used). This gain is significant,

because it is accomplished exclusively by enhancing the pose normalization procedure

and not the core retrieval algorithm. Note that Papadakis’ object retrieval system [88] has

achieved stateoftheart performance.
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(a)

(b)

(c)

Figure 36: Alignments of the ‘MAILBOX’ class: 36a ROSy pose normalization results 36b

a consistently rotated version of ROSy pose normalization results by 90 degrees around

the z axis 36c results of the method proposed in [27]

A visual qualitative evaluation is next provided. In Figure 36, comparative alignments

between ROSy and the proposed method by Chaouch and Verroust  Blondet [27], on the

complete ‘MAILBOX’ class of the PSB dataset, are illustrated. These alignments show

that ROSy is able to produce accurate alignments, similar to those of the method pro

posed by Chaouch and Verroust  Blondet, while simultaneously achieving better quanti

tative scores. As is illustrated in Figure 37, ROSy is also capable of producing accurate

alignment results that, regardless of the originating class or the morphology of the in

put objects, are consistent and stable. In Figure 37, 3D objects 37a  37d show perfect

global symmetry against one principal plane. 3D Objects 37e  37h show global symmetry

against one principal plane, that is not perfect however, because of minor parts of the

objects that don’t fully match. 3D Objects 37i and 37j show global symmetry against two

principal planes simultaneously, while 3D objects 37k  37n have local symmetries in
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 37: Sample alignments of 3D objects originating from different PSB classes, using

ROSy pose normalization method. The illustrated 3D objects exhibit various types of

global symmetries 37a  37j, local symmetries 37k  37n or no symmetries, at all 37o 

37p.
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(a) (b) (c)

Figure 38: Alignments of the PSB class ‘SWINGSET’. 38a CPCA, 38b NPCA, 38c ROSy.

their structures. 3D Objects 37o and 37p exhibit no symmetry at all.

With respect to the CPCA and NPCA approaches, ROSy uses a combination of spa

tial (vertices) and angular (normals) features, to achieve 3D object alignment. The NPCA

method performs better with objects that have dominant flat surfaces, while CPCA best

aligns objects that are composed of bumpy surfaces. The ROSy method, while able to han

dle well 3D objects composed of either flat or bumpy surfaces, also exhibits no degradation

of performance in the alignment of 3D objects that have both types of surfaces. Compar

ative examples of alignments, against the CPCA and NPCA methods, on the ‘SWINGSET’

class which contains roundedged 3D objects are illustrated in Figure 38. Also, Figure 39

shows comparative alignment results for 3D objects that belong to the ‘LAMP’ class and

are composed of both flat and bumpy surfaces.

At this point a paradox arises. Although ROSy alone clearly produces visually better

alignments than CPCA or NPCA, its standalone retrieval results are not spectacularly dif

ferent from those of CPCA and NPCA (Figure 34). Since a 3D object retrieval system is a

complex procedure, only speculations can be made about the cause. However the experi

mental process reveals an interesting fact: 3D objects that belong to different classes, but

have related structure (e.g. trucks and cars) are also aligned similarly by ROSy. Although

this is correct, in terms of alignment, it possibly interferes with the retrieval process

because it enhances the similarities between the 3D objects and hides their differences.
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(a)

(b)

(c)

Figure 39: Comparison between the alignment results of the CPCA [131], NPCA [87] and

ROSy methods on objects of the ‘LAMP’ class of the PSB dataset. 39a CPCA, 39b NPCA,

39c ROSy.

6.1.1.1 Remark: For the corresponding numerical results, please refer to the appropriate

tables in Appendix A.

6.1.2 SymPan, SymPan+ on PANORAMA

Similar to the way that the ROSy+ system has been used for the quantitative evaluation

of the ROSy pose normalization method, for SymPan and SymPan+ we have chosen the

PANORAMA stateoftheart 3D object retrieval system, by Papadakis et al. [89] as the

evaluation vehicle. The proposed method replaces the NPCA pose normalization method

in the existing hybrid scheme.

The main dataset, on which the experiments were conducted, is the test subset of the

Princeton Shape Benchmark (PSB) [110]. This dataset is composed of 907 3D models

classified into 92 classes. The direct effect of the proposed alignment methods can be

evaluated by comparing against the original PANORAMA performance. In terms of object
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Figure 40: PrecisionRecall plot for the Princeton Shape Benchmark test dataset. Sym

Pan, SymPan+ 3D model pose normalization methods on PANORAMA retrieval results are

compared against stateoftheart 3D object retrieval techniques.

retrieval performance, we compare against DLA [27], GSMD+SHD+R [72], ROSy+ [105],

Lightfield [28], SHGEDT [65] and DESIRE [132].

Regarding SymPan+, to further establish that the discriminative power of the method

is not dependent on the PSB dataset we also conducted a number of experiments on the

following datasets: the MPEG7 dataset [140, 67], the Engineering Shape Benchmark

dataset (ESB) [60] and the National Institute of Standards and Technology dataset (NIST),

which contains shape normalized and visually categorized 3D objects found in the SHREC

2009 competition [43]. The proposed method was tested against the performance of the

original PANORAMA and ROSy+ approaches.

In Fig. 40, using the experimental results given in [105, 104], we illustrate the P

R scores for the test subset of the PSB dataset, for the PANORAMA 3D object retrieval

system enhanced by the SymPan and SymPan+ pose normalization methods. Table 5

shows quantitative measures for the same methods. The quantitative measure scores

for the remaining test datasets of the SymPan+ pose normalization method are shown in

Table 6.

The results demonstrate that the proposed scheme outperforms stateoftheart meth

ods and significantly increases the performance of the PANORAMA 3D object retrieval
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system compared to its original pose normalization scheme. Furthermore, these scores

show that the results are consistent throughout the datasets, revealing the stability of the

proposed approach and the gain with respect to the original system.

Figure 41: Sample alignments of 3D objects originating from different PSB classes. Top

Row: SymPan+ alignment method, middle row: CPCA alignment method, bottom row:

NPCA alignment method.

In Fig. 41 comparative alignments between SymPan+ and CPCA, NPCA pose normal

ization methods on various 3D models from the PSB dataset, are illustrated. These align

ments show that SymPan+ is able to produce accurate alignment results that, regardless

of the originating class or the morphology of the input objects, are consistent and stable.

An interesting observation that has motivated our research, is that most of the objects

found in the benchmark datasets, exhibit some degree of planar symmetry. This is es

pecially true for real life objects, e.g. humans, animals, insects, faces etc. and also for

many manmade items, like tools, cars, bikes, aeroplanes etc. We have also found that

the majority of these objects only have one plane of symmetry, a moderate portion of the

dataset has two or more (e.g. mechanical objects found in the ESB dataset) and only a

small fraction exhibit no symmetry at all. In a preliminary research on the PSB dataset,

using Eq. 9 on the panoramic views extracted from 3 the orthogonal principal axes after

alignment of the 3D models, we have found that: approx. 31.25% of the 3D model have

2 or more symmetry planes, approx. 64.58% of the 3D models have one symmetry plane

and approx. 4.16% of the 3D models exhibit no symmetry plane.

6.1.2.1 Remark: For the corresponding numerical results, please refer to the appropriate

tables in Appendix B.
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6.2 Non-Rigid 3D Object Retrieval

In this section we show the performance results of the proposed nonrigid 3D object

retrieval methodology (denoted as ConTopo++) on a number of standard datasets and

compare the updated implementation with the one proposed in [102]. The datasets that

we used for the experimental evaluation are the following: (i)TOSCA [19, 18], (ii) SHREC’07

Watertight Models [50], (iii) SHREC’10 Nonrigid 3D Models [71] and (iv) SHREC’11 Non

rigid 3D Watertight Meshes [70].

We first conducted a number of experiments comparing to the segmentation method

proposed by Agathos et al. [2] (denoted as EMDPPPT ), in order to justify if the selected

feature set as well as the proposed quantization and graph matching strategy are suitable

for the nonrigid 3D mesh matching problem. These experiments were conducted on the

SHREC’10 Nonrigid 3D Models dataset and are composed of the following evaluations, in

terms of retrieval performance:

1. Compare against EMDPPPT implementation.

2. Use ConTopo++ feature set, based on EMDPPPT segmentation and graph matching

strategy.

3. Use EMDPPPT feature set, based on ConTopo++ quantization and graph matching

strategy.

The results on Table 7 show that the proposed scheme (i.e. both the feature set and the

partitioning/ matching strategy used in ConTopo++) performs better than the complete

EMDPPPT method and/or any combination between the feature sets and the partition

ing/ matching strategies involved. Moreover, it is evident that the use of the proposed

quantization and graph matching strategy yields better results than the corresponding

segmentation strategy of EMDPPPT. We can assume that this is due to the multilevel

hierarchical partitioning of the proposed scheme over the singlelevel partitioning of the

EMDPPPT method.

We next compare ConTopo++ against other stateoftheart methods on standard datasets.

On the TOSCA dataset we compared against the nonrigid discrete Conformal Factor

(Cfact) [11] and ConTopo descriptors [102] as well as the rigid LightField (LF) [28] and
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Spherical Harmonics (SH) [65] descriptors. On the SHREC’07 Watertight Models dataset

we compared against the nonrigid discrete Conformal Factor (Cfact) descriptor, the Con

Topo descriptor and the augmented Multiresolution Reeb Graph (aMRG) method [127].

On the SHREC’10 Nonrigid 3D Models and SHREC’11 Nonrigid 3D Watertight Meshes

datasets we compared against the published results of the participating contestants (for

the presented contestant methodologies refer to the corresponding papers [71] and [70],

respectively). The LF and SH benchmark code is publicly available, the discrete Confor

mal Factor code was obtained from the author of [11], whom we gratefully acknowledge,

while the aMRG code is not publicly available and therefore, the original graphs from the

SHREC’07 Watertight Models [50] competition were used instead, since it was necessary

for making a comparison.

On the first two datasets, in accordance with the published results in [102], the ex
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Figure 42: Comparative results based on the average PR scores for the TOSCA dataset.

Konstantinos A. Sfikas 137



Retrieval of 3-Dimensional Rigid and Non-Rigid Objects

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0

P
re

ci
si

o
n

Recall

SHREC'07 Water ght Models Dataset

ConTopo++

ConTopo

Cfact

aMRG

Figure 43: Comparative results based on the average PR scores for the SHREC’07 Water

tight Models dataset.

perimental evaluation is based on PrecisionRecall plots for the classes of the correspond

ing datasets. On the remaining two datasets, five more quantitative measures are also

computed: Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), Emeasure (E) and

Discounted Cumulative Gain (DCG).

In Fig. 42, in accordance to the experimental results shown in [11] and [102], we

illustrate the PR plots for the complete TOSCA dataset for the proposed nonrigid 3D

object retrieval methodology (ConTopo++), the ConTopo descriptor, the discrete Conformal

Factor (Cfact) descriptor and two stateoftheart shape descriptors for 3D objects: the

LightField (LF) and the Spherical Harmonics (SH) descriptor, which are used to give a

lower bound on the performance of any shape descriptor for nonrigid objects. The PR

scores of the methods clearly illustrate the increase in accuracy of the proposed method
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ConTopo++, which outperforms the original ConTopo nonrigid 3D object descriptor.

According to the SHREC’07 Watertight Models classification scheme, the dataset, com

posed of 400 3D objects, is classified into 20 classes, each of which contains 20 objects.

Fig. 43 illustrates the PR plots for the complete dataset. The proposed method performs

better than the original ConTopo descriptor and both the discrete Conformal Factor and

the aMRG approaches.
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Figure 44: Comparative results based on the average PR scores for the SHREC’10 Non

rigid 3D Models dataset.

In Figures 44 and 45 we illustrate the PR scores of the proposed method (ConTopo++)

against the published results of the SHREC’10 Nonrigid 3D Models and SHREC’11 Non

rigid 3D Watertight Meshes datasets, respectively. The corresponding quantitative mea

sures are displayed in Tables 8 and 9, respectively. In Fig. 44 it is clear that the proposed

method outperforms the track contestants, even though the published results were al

ready of high performance. This can also be seen by the quantitative measures of Table 8

where the proposed method has the highest scores on three out of five measures (and

is also second on the remaining two measures, by a small margin). In the SHREC’11

Nonrigid 3D Watertight Meshes dataset, the proposed method performs better or exhibits

mixed results with respect to approximately 65% of the contestant results. Fig. 45 and

Table 9 illustrate this.
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Figure 45: Comparative results based on the average PR scores for the SHREC’11 Non

rigid Watertight 3D Meshes dataset.

6.2.0.2 Remark: For the corresponding numerical results, please refer to the appropriate

tables in Appendix C.

6.3 3D object Retrieval based on 2D Range Image Queries

The datasets that we used for the experimental evaluation of our method are the following:

(i) SHREC’09 Querying with Partial Models [39], (ii) SHREC’10 Range Scan Retrieval [40]

and (iii) SHREC’11 Shape Retrieval Contest of Range Scans [113]. The target subset of the

datasets used is based on the generic shape benchmark constructed at NIST [43].

On the first two datasets, SHREC’09 Querying with Partial Models and SHREC’10

Range Scan Retrieval, we compared against existing results of the participating contes

tants. More specifically, on the SHREC’09 Querying with Partial Models we compared

against the variations of CMVD (Compact MultiView Descriptor) by Daras and Axenopou

los [34] and the BFSIFT and BFGridSIFT methods by Furuya and Ohbuchi. On the
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SHREC’10 Range Scan Retrieval dataset we compared against the variations of the BF

DSIFTE method proposed by Ohbuchi and Furuya [83] and the variations of the SURFLET

method proposed by Hillebrand et al. [133]. Furthermore, on this dataset we compared

against the initial version of our method (without BagofVisualWords) presented in [103].

In the SHREC’11 Shape Retrieval Contest of Range Scans competition, due to lack of par

ticipants no results were published. We publish our results on this dataset for future

reference.

According to the SHREC’09 classification scheme, the target subset is composed of

720 complete 3D models, classified into 40 classes, each of which contains 18 models.

The query set is composed of 20 range images taken from 20 objects from arbitrary view

directions.

Figure 46, using the experimental results given in [39], illustrates the PR scores for

the complete SHREC’09 Querying with Partial Models dataset for the proposed 3D model

retrieval method (PV  BoVW) and the methods by Daras and Furuya. Table 10 shows the

corresponding five quantitative measures for the same methods.

Both the PR scores of Fig. 46, as well as the quantitative measures of Table 10 illus

trate that the proposed method achieves superior performance compared to the variations

of the CMVD, as well as both the BFSIFT and the BFGridSIFT retrieval methods.

The next dataset, SHREC’10 Range Scan Retrieval is composed of the following two

subsets: the target subset which contains 800 complete 3D models, classified into 40

classes, each of which has 20 models and the query subset which contains 120 range

images that have been acquired by capturing 3 range scans of 40 objects from arbitrary

view directions.

In Figure 47, using the experimental results given in [39], we show the PR scores for

the complete SHREC’10 Range Scan Retrieval dataset for the proposed 3D object retrieval

method and the methods by Ohbuchi and Hillebrand. Table 11 shows the corresponding

five quantitative measures for the same methods.

Table 11 shows that the proposed method has the highest scores on three out of five

measures (and is also close on the remaining two measures, by a small margin). The PR

scores of Fig. 47, illustrate that the proposed method outperforms the track contestants,

as well as our previously proposed method (PanoramicViews  SIFT), presented in [103].
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Figure 46: Comparative results based on the average PR scores for the SHREC’09 Query

ing with Partial Models dataset.

Finally, in the SHREC’11 classification scheme, the target subset is composed of 1000

complete 3D models, categorized into 50 classes, each of which contains 20 models. The

query set is composed of 150 range images acquired by capturing 3 range scans, of each

of 50 objects that correspond to the above classes, from arbitrary view directions.

In Table 12 we show the five quantitative measures for the complete SHREC’11 Shape

Retrieval Contest of Range Scans dataset for the proposed 3D model retrieval method.

6.3.0.3 Remark: For the corresponding numerical results, please refer to the appropriate

tables in Appendix D.
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Figure 47: Comparative results based on the average PR scores for the SHREC’10 Range

Scan Retrieval dataset.

6.4 Computational Time

The methods presented in this dissertation were developed and tested on an Intel®

Core2Quad 2.5 GHz CPU system, with 6 GB of RAM, running a recent version of Matlab

(R2009  R2012). Based on this system, the computational times of the proposed algo

rithms are presented in the following.

6.4.1 ROSy+

The methods’s speed is dependent on the number of 3D object vertices. The iterations are

exhaustive in the current implementation but an optimization method could be developed

to improve its speed. For a typical 100,000 vertex object, the time required for the pose

normalization process is approximately 60 seconds.
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6.4.2 SymPan, SymPan+ on PANORAMA

The methods were developed in a hybrid Matlab/C++/OpenGL architecture, which re

sulted in low computational times. The average pose normalization time of SymPan for

a typical 100,000 vertex 3D model is approximately 15 seconds. The SymPan+ method

requires approximately 25 seconds to perform pose normalization for a 100,000 vertex 3D

model.

6.4.3 Non-Rigid 3D object Retrieval

The time complexity of the proposed method can be broken down into its two main con

stituents: (i) graph construction/ feature extraction and (ii) string matching. The first,

requires linear time to complete, since both graph construction (including the computa

tion of the conformal factor) and feature extraction are performed in linear time with

respect to the faces of the 3D mesh (O(f)). The second part, is dependent on the

number of string matches between two 3D shapes, dominated by the Hungarian Algo

rithm, which requires O(MaxStrings3) time to complete. The total complexity sums up

to O(f) +O(MaxStrings3).

The average descriptor extraction time for a typical 100,000 vertex 3D mesh is approx

imately 4 seconds.

6.4.4 3D object retrieval based on 2D Range Image Queries

The system was developed in a hybrid Matlab/C++/OpenGL architecture, which resulted

in low computational times. The average computation time for the Bag_of_Visual_Words

Model Building algorithm (see Algorithm 5) on a 1,000 3D model database is approxi

mately 4,5 hours (an offline process). The average computation time required for querying

a range image object on the aforementioned database (see Algorithm 6) is approximately

5 seconds.
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7 Conclusions - Further Work

Any element of our past

is compared with the end result

– Demosthenes

In this final chapter, conclusions regarding each of the proposed methods will be

drawn. A general review summarising the overall contribution of this thesis, as well as a

brief discussion on directions for future work, will be made. To address the problems of

3D model pose normalization, 3D object retrieval with applications to rigid and nonrigid

models, as well as image based 3D object retrieval, four novel methodologies have been

developed.

In the field of 3D model pose normalization three novel methods, based on the reflective

symmetry properties of 3D objects, have been proposed. ROSy successfully complements

the CPCA and NPCA methods as a pose normalization preprocessing step for a 3D object

retrieval system. The addition of the proposed method increases the discriminative power

of the system by approximately 3%, over the previously best approach. The SymPan

methodology for 3D model pose normalization is based on a Normals’ Deviation Map of

the 3D model’s surface as well as reflective object symmetry properties. The proposed

pose normalization method uses information extracted from the 3D models by project

ing them on their circumscribed cylinder. Based on the same principles as the SymPan

pose normalization method and driven by the motivation that most 3D objects posses

at least one plane of symmetry, in the SymPan+ method we attempt to determine this

plane and consecutively align it with one of the principal planes of space. In the sequel,

the principal axes of the 3D model are estimated via the computation of the variance

on the pixel values of the panoramic views. The proposed pose normalization method is
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based on information extracted from the 3D models by projecting them on their circum

scribed cylinder. The quality of the proposed alignment methods is proven both visually

and through the performance of a stateoftheart 3D object retrieval system. SymPan

improves the discriminative power of the PANORAMA 3D object retrieval system by an

average of 6% over the original approach. SymPan+ further improves the discriminative

power of the SymPan on PANORAMA 3D object retrieval system by an average of 1%, thus

giving a 7% increase over the original approach. Both SymPan and SymPan+ methods

exhibit improved performance over ROSy+ by an average of 2  3%. All three proposed

methods are able to produce high quality alignments of 3D objects, regardless of their

originating class or morphology. These alignments are both stable and consistent. The

experimentations performed, indicate that the use of reflective symmetry is a promising

feature for pose normalization of 3D models. The three proposed methods exploited this

feature separately in both 3D and 2D representations. Further work should integrate the

estimation of 3D and 2D reflective symmetry as well as the use of PCA analysis for the

iterative steps of the procedures.

To address the problem of nonrigid 3D object retrieval the ConTopo++ descriptor has

been proposed. This descriptor integrates both geometrical and topological features in a

unified descriptor extraction procedure. Furthermore, a graph matching technique based

on string matching is introduced. This improved 3D object retrieval methodology, was

evaluated not only against the primary form of the algorithm (ConTopo) and the cor

responding datasets shown in [102] but also on standard datasets from the SHREC’10

Nonrigid 3D Models and SHREC’11 Nonrigid 3D Watertight Meshes tracks and the corre

sponding stateoftheart 3D shape descriptors. In every case, the proposed nonrigid 3D

object retrieval methodology is able to achieve high levels of retrieval accuracy and outper

form many of the competing descriptors at a low computational cost. Fig. 48 illustrates

some retrieval samples from the SHREC’10 Nonrigid 3D Models dataset. As a future step

of improvement on the presented nonrigid 3D object retrieval methodology, a segmen

tation procedure could be used in place of the quantization step during the graph node

creation. This could take into account the special features of each 3D object class and

thus result into more consistent graph representations. Moreover, the use of dynamic

programming could benefit the graph matching strategy by reducing penalties induced
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due to poorly correlated segmentations.

Figure 48: Sample queries from the SHREC’10 Nonrigid 3D Models dataset. First column

indicates the query model and results are illustrated in ranking order. The thumbnails

have been taken from the SHREC’10 Nonrigid 3D Models dataset.

In the field of imagebased 3D object retrieval, we proposed a spatial histograms strat

egy in a BagofVisualWords context that fits the information present in panoramic views

of 3D objects to the task of partial matching. Special attention has been given to the

query image preprocessing stage, where a number of consecutive filters are applied on

the images in order to alleviate problems introduced by the digitization process. This

improved 3D object retrieval methodology, was evaluated not only against our previous

approach [103] and the corresponding SHREC’10 Range Scan Retrieval track dataset but

also on standard datasets from the SHREC’09 Querying with Partial Models track and the

corresponding stateoftheart 3D object retrieval methodologies and the SHREC’11 Shape

Retrieval Contest of Range Scans track. In every case, the proposed 3D object retrieval

method outperforms competing descriptors. Future steps in the field of imagebased 3D

object retrieval should include alignment of the 3D models and the partial queries, so that

the extraction of the 2D image representations could directly match the captured features.

This step could greatly increase the speed of the algorithm, as well as its accuracy, by
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disqualifying early noncorresponding representations from the matching procedure.

This dissertation successfully addressed a number of problems in the field of 3D Object

Retrieval. 3D Object Retrieval can be considered as a relatively new field that falls under

Computer Vision, Computer Graphics and Content Based Information Retrieval. The

described methodologies have proven to be robust in terms of retrieval accuracy and

outperformed previous stateoftheart methods in the corresponding evaluation tests.

These tests were conducted on publicly available datasets.
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Appendices

A ROSy+ 3D Object Retrieval Results

Table 4: Quantitative measures of ROSy+ and the CPCANPCA pose normalization meth

ods for the PSB train, NTU, MPEG7, ESB, NIST, McGill datasets. The quantitative mea

sures of Figures 34 and 35 are also presented. All measures are normalized.

Dataset Method NN FT ST DCG

PSB Test

ROSy+ 0.779 0.524 0.659 0.756

CPCANPCA 0.742 0.473 0.606 0.712

CPCA 0.673 0.426 0.546 0.676

NPCA 0.677 0.402 0.524 0.664

ROSy 0.678 0.446 0.550 0.678

PANORAMA 0.753 0.479 0.603 0.750

DLA 0.713 0.429 0.552 0.687

GSMD+SHD+R 0.731 0.472 0.602 0.721

LFD 0.642 0.375 0.484 0.642

SHGEDT 0.553 0.310 0.414 0.584

DESIRE 0.658 0.404 0.513 0.663

PSB Train
ROSy+ 0.799 0.521 0.655 0.765

CPCANPCA 0.730 0.460 0.598 0.718

NTU
ROSy+ 0.434 0.237 0.326 0.521

CPCANPCA 0.413 0.222 0.300 0.503

MPEG7
ROSy+ 0.879 0.619 0.731 0.837

CPCANPCA 0.861 0.596 0.707 0.819

ESB
ROSy+ 0.874 0.508 0.657 0.796

CPCANPCA 0.829 0.465 0.605 0.747

NIST
ROSy+ 0.918 0.634 0.776 0.867

CPCANPCA 0.881 0.556 0.721 0.841

McGill Articulated
ROSy+ 0.965 0.599 0.753 0.871

CPCANPCA 0.941 0.568 0.721 0.857

McGill Non Articulated
ROSy+ 0.881 0.517 0.696 0.822

CPCANPCA 0.891 0.513 0.689 0.817

For a typical 100,000 vertex object, the time required for the pose normalization process

is approximately 60 seconds.
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B SymPan, SymPan+ on PANORAMA 3D Object Retrieval

Results

Table 5: Quantitative measures of SymPan and SymPan+ 3D model pose normalization

methods on PANORAMA, and the corresponding 3D object retrieval methods illustrated

in Fig 40. All measures are normalized.

Method NN FT ST DCG

SymPan+, PANORAMA 0.793 0.553 0.683 0.784

SymPan, PANORAMA 0.785 0.544 0.673 0.778

PANORAMA 0.753 0.479 0.603 0.750

ROSy+ 0.779 0.524 0.659 0.756

GSMD+SHD+R 0.731 0.472 0.602 0.721

DLA 0.713 0.429 0.552 0.687

DESIRE 0.658 0.404 0.513 0.663

LFD 0.642 0.375 0.484 0.642

SHGEDT 0.553 0.310 0.414 0.584

Table 6: Quantitative measures of SymPan+ 3D model pose normalization method

on PANORAMA, the original PANORAMA and the ROSy+ 3D object retrieval methods.

Datasets presented are the MPEG7, ESB and NIST. All measures are normalized.

Method NN FT ST DCG

MPEG7

SymPan+, PANORAMA 0.883 0.641 0.751 0.858

PANORAMA 0.872 0.618 0.731 0.831

ROSy+ 0.879 0.619 0.731 0.837

ESB

SymPan+, PANORAMA 0.880 0.526 0.678 0.815

PANORAMA 0.865 0.494 0.641 0.795

ROSy+ 0.874 0.508 0.657 0.796

NIST

SymPan+, PANORAMA 0.925 0.656 0.800 0.901

PANORAMA 0.906 0.634 0.775 0.852

ROSy+ 0.918 0.634 0.776 0.867

The average pose normalization time of SymPan for a typical 100,000 vertex 3D model is

approximately 15 seconds. The SymPan+ method requires approximately 25 seconds to

perform pose normalization for a 100,000 vertex 3D model.
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C ConTopo++ 3D Object Retrieval Results

Table 7: Comparison between ConTopo++ and EMDPPPT methodologies, as well as pos

sible combinations between their feature sets and partitioning/graph matching strategies

using five quantitative measures, on the SHREC’10 Nonrigid 3D Models dataset. All

measures are normalized.

Feature Set Partitioning/ Matching Strategy NN FT ST E DCG

ConTopo++ ConTopo++ 0.995 0.907 0.978 0.714 0.978

EMDPPPT EMDPPPT 0.965 0.862 0.938 0.675 0.967

ConTopo++ EMDPPPT 0.870 0.558 0.801 0.550 0.859

EMDPPPT ConTopo++ 0.923 0.875 0.906 0.750 0.965

Table 8: Five quantitative measures of ConTopo++ and the participants of the SHREC’10

Nonrigid 3D Models dataset. All measures are normalized.

Method NN FT ST E DCG

ConTopo++ 0.9950 0.9070 0.9780 0.7140 0.9780

MRBFDSIFTE 0.9850 0.9092 0.9632 0.7055 0.9763

BFDSIFTE 0.9800 0.7658 0.8924 0.6447 0.9409

DMEVDrun1 1 0.8611 0.9571 0.7012 0.9773

DMEVDrun2 0.9950 0.7884 0.9442 0.6796 0.9612

DMEVDrun3 0.9600 0.7189 0.8505 0.6157 0.9203

CF 0.9200 0.6347 0.7800 0.5527 0.8781

Table 9: Five quantitative measures of ConTopo++ and the participants of the SHREC’11

Nonrigid Watertight 3D Meshes dataset. All measures are normalized.

Method NN FT ST E DCG

SDGDMmeshSlFT 1.0000 0.9720 0.9901 0.7358 0.9955

MDSCMBOF 0.9950 0.9127 0.9691 0.7166 0.9822

ConTopo++ 0.9930 0.8850 0.9520 0.6950 0.9810

OrigMn12normA 0.9917 0.9153 0.9569 0.7047 0.9783

FOG+MRR 0.9600 0.8810 0.9461 0.6958 0.9586

BOGH 0.9933 0.8111 0.8839 0.6469 0.9493

LSF 0.9950 0.7988 0.8631 0.6327 0.9432

TNoNorm40Coef 0.9550 0.6717 0.8026 0.5791 0.8972

PatchBOF_150 0.7483 0.6419 0.8333 0.5881 0.8367

HKS 0.8367 0.4061 0.4973 0.3525 0.7304
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The average descriptor extraction time for a typical 100,000 vertex 3D mesh is approxi

mately 4 seconds.
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D 3D object Retrieval based on 2D Range Image Queries

Results

Table 10: Comparison between the proposed method and the methods presented on

the SHREC’09 Querying with Partial Models track using five quantitative measures. All

measures are in the interval [0, 1].

Method NN FT ST E DCG

CMVDBINARY 0.350 0.217 0.283 0.200 0.521

CMVDDEPTH 0.450 0.197 0.267 0.174 0.511

and CMVDBINARY

BFSIFT 0.150 0.114 0.186 0.116 0.423

BFGridSIFT 0.450 0.225 0.297 0.204 0.532

PV  BoVW 0.600 0.251 0.292 0.206 0.553

Table 11: Comparison between the proposed method and the methods presented on the

SHREC’10 Range Scan Retrieval track using five quantitative measures. All measures are

in the interval [0,1].

Method NN FT ST E DCG

BFDSIFTE (LFE) 0.573 0.380 0.524 0.367 0.683

Closing_3x3_BFDSIFTE (LFE) 0.598 0.393 0.535 0.382 0.696

Closing_6x6_BFDSIFTE (LFE) 0.650 0.424 0.569 0.398 0.713

Dilation_3x3_BFDSIFTE (LFE) 0.675 0.405 0.557 0.392 0.713

Dilation_6x6_BFDSIFTE (LFE) 0.547 0.395 0.550 0.386 0.696

SURFLET  mean 0.325 0.244 0.363 0.252 0.556

SURFLET  meanraw 0.171 0.153 0.242 0.163 0.462

SURFLET  meansqrd 0.231 0.197 0.322 0.213 0.513

SURFLET  median 0.282 0.226 0.325 0.224 0.528

SURFLET  mediansqrd 0.282 0.226 0.325 0.224 0.528

PanoramicViews  SIFT 0.512 0.374 0.466 0.256 0.598

PV  BoVW 0.691 0.413 0.570 0.386 0.720

Table 12: Five quantitative measures for the proposed 3D object retrieval method on the

SHREC’11 Shape Retrieval Contest of Range Scans dataset. All measures are normalized.

Method NN FT ST E DCG

PV  BoVW 0.512 0.374 0.466 0.256 0.598

The average computation time for the Bag_of_Visual_Words Model Building algorithm (see

Algorithm 5) on a 1,000 3D model database is approximately 4,5 hours (an offline pro
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cess). The average computation time required for querying a range image object on the

aforementioned database (see Algorithm 6) is approximately 5 seconds.
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Notation

R Real numbers

R
m mdimensional vector space

R
m×n m× n vector space

Z Integers

Z
m×n m× n integer grid

Cm Class of mtimes continuously differentiable functions

C∞ Class of smooth functions

| · | Absolute value

‖ · ‖ Norm

‖ · ‖p pnorm

∇f Gradient of f

∇2φ = f Poisson equation

a =
[
a1 · · · am

]T
Vector a ∈ R

m

ai = [a]i = a(i) ith component of a vector

A =




a11 · · · a1n
...

. . .
...

am1 · · · amn


 Matrix A ∈ R

m×n

aij = [A]ij = A(i, j) (i, j) element of a matrix

Aj = A(:, j) jth columnvector of a matrix

A
T , a

T Transpose of a matrix or vector

A
−1 Inverse of a matrix

det(A) Determinant of a matrix

trace(A) Trace of a matrix

rank(A) Rank of a matrix

diag(A) Diagonal elements of a matrix in vector form

1 Identity matrix

⊙ Elementwise (Hadamard) product

f , f Scalar/vector function

df Differential of f
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∆f LaplaceBeltrami operator on f

I Intensity (B/W) image

IG Geometry map/image

IN Normal map/image

IZ Depth map/image

Pr[·] Probability

Var[·] Variance

Covar[·, ·] Covariance

D Distance measure

S Similarity measure

g Lowpass Haar filter

h Highpass Haar filter

← , → Mapping

:= Assignment

. . . Up to

O(·) Algorithm complexity
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Acronyms

2D TwoDimensional

3D ThreeDimensional

4D FourDimensional / 3D Video

AABB Axis Aligned Bounding Box

ARG Attributed Reeb Graph

ART Angular Radial Transform

BoW BagofWords

BoF BagofFeatures

BoVW BagofVisualWords

CMVD Compact MultiView Descriptor

ConTopo Conformal geometry and graphbased Topological information, nonrigid 3D

object retrieval method

CPCA Continuous PCA

CPU Central Processing Unit

CRSP Concrete Radialized Spherical Projection

DB Data Base

DCG Discounted Cumulative Gain

DGI Depth Gradient Image

DLA Depth Linebased Approach

DoG Difference of Gaussians

DPD Dynamic Programming Distance

DSIFT Dense SIFT

E EMeasure

EMD Earth Mover’s Distance

ESB Engineering Shape Benchmark

FT First Tier

GEDT Gaussian Euclidean Distance Transform

GPU Graphics Processing Unit

GSMD Geodesic Sphere based Multiview Descriptor

LF Light Field
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LTIC Local Translational Invariance Cost

MODFT Multiple Orientation Depth Fourier Transform

MPEG Motion Pictures Experts Group

MRG Multiresolution Reeb Graph

NDM Normals’ Deviation Map

NHI Normalized Histogram Intersection

NIST National Institute of Standards and Technology, USA

NN Nearest Neighbor

NPCA Normal PCA

NTU National Taiwan University, Taiwan

PR Precision  Recall

P3DS Perceptual 3D Shape Descriptor

PCA Principal Component Analysis

PF Penalizing Factor

PRSD Planar Reflective Symmetry Descriptor

PRST Planar Reflective Symmetry Transform

PSB Princeton Shape Benchmark

PV Panoramic View

RAM Random Access Memory

ROSy Reflective Object Symmetry pose normalization method

SDM String Difference Matrix

SEGI Sorted Extended Gaussian Image

SH Spherical Harmonics

SHD Spherical Harmonics Descriptor

SHD+R Spherical Harmonics Descriptor + Rectilinearity

SHREC SHape Retrieval Contest

SIFT Scale Invariant Feature Transform

SoMBB Surfaceoriented Minimum Bounding Box

ST Second Tier

SVD Singular Value Decomposition

SymPan Panoramic views and reflective Symmetry pose normalization method

TOSCA TOols for nonrigid Shape Comparison and Analysis
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Index

AxisAligned Bounding Box (AABB), 78

BagofVisualWords (BoVW), 115

Codebook, 115

Codewords, 115

Continuous PCA (CPCA), 67

ConTopo, 101

Dense SIFT (DSIFT), 113

Discrete Conformal Factor, 102

Euler Angles, 81

Conventions, 81

Line of Nodes, 81

Graph, 104

Hungarian Algorithm, 110

Hybrid Descriptor, 58

Image Reflective Symmetry, 92

Normal PCA (NPCA), 67

Normals’ Deviation Map (NDM), 90

PANORAMA Descriptor, 55

Panoramic View, 90

Penalizing Factor (PF ), 110

Precision, 123

Principal Component Analysis (PCA), 67

Qualitative Measures, 123

Discounted Cumulative Gain (DCG), 123

First Tier (FT), 123

Nearest Neighbor (NN), 123

Second Tier (ST), 123

Range Image, 118

Recall, 123

Reflective Symmetry Transformation, 80

RootSIFT, 114

ROSy, 78

ROSy+, 127

Scale Invariant Feature Transform (SIFT),

113

Spatial Distribution Map (SDM), 90

String Difference Matrix, 110

SurfaceOriented Minimum Bounding Box

(SoMBB), 78

SymPan, 94

SymPan+, 95

Triangulated 3D Object, 46
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