20 research outputs found

    A proof system for lock-free concurrency

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaSoftware has become widespread, being used and relied upon on nearly every domain. Furthermore, as this globalization of software took place and multi-core architectures became the norm, several programs are now expected to run on a given device at the same time in a timely fashion. Attending this need, concurrent and distributed systems are a well known way of dealing with performance and scalability of computation. Although several such systems exist in the devices and services we depend on, it is frequent for those systems to be exploited or go wrong. Because most complex programs are built in modules and lack a formal specification of what they do, it is hard to prevent the emerging system from failing or being exploited. Therefore, one of the most sought after results by software industry is a way of reasoning about programs that prevents undesired behavior. Formal methods contribute to a rigorous specification, analysis, and verification of programs, having proven to be quite effective in this regard. Program logics,in particular, are able to verify validity of user-specified formulas and are the solution we propose to tackle this issue. Regarding concurrent programs, locks are a mechanism that make reasoning easier by serializing access to shared resources, taming concurrency. Since lock-free programs offer a better way of taking advantage of concurrency, we are especially interested in them. In this context, the LL/SC pair of primitives have proven to be more expressive than their widely used CAS counterpart. The goal of our work is then to develop a proof system capable of proving correctness of lock-free programs based on LL/SC primitives. In this dissertation we present a new program logic, based on those of concurrent separation logic and RGSep, which establishes a solid theoretical basis for reasoning about such programs

    Enhancing the usability of rely-guarantee conditions for atomicity refinement

    Get PDF
    Formal methods are a useful tool for increasing the confidence in the correctness of computer programs with respect to their specifications. Formal methods allow designers to model specifications and these formal models can then be reasoned about in a rigourous way. Formal methods for sequential processes are well-understood, however formal methods for concurrent programs are more difficult, because of the interference which may arise when programs run concurrently. Rely-guarantee reasoning is a well-established formal method for modelling concurrent programs. Rely-guarantee conditions offer a tractable and compositional approach to reasoning about concurrent programs, by allowing designers to reason about the interference inherent in concurrent systems. While useful, there are certain weaknesses in rely-guarantee conditions. In particular, the requirement for rely-guarantee conditions to describe whole-state updates can make large specifications unwieldy. Similarly, it can be difficult to describe problems which exhibit distinct phases of execution. The main contribution of this thesis is to show ways in which these two weaknesses of rely-guarantee reasoning can be addressed. In turn, this enhances the usability of rely-guarantee conditions. Atomicity refinement is a potentially useful tool for simplifying the development of concurrent programs. The central idea is that designers can record (possibly unrealistic) atomicity assumptions about the eventual implementation of a program. This fiction of atomicity simplifies the design process by avoiding the difficult issue of interference. It is then necessary to identify ways in which this atomicity can be relaxed and concurrent execution introduced. This thesis also argues that the choice of data representation plays an important role in achieving atomicity refinement. In addition, this thesis presents an argument that rely-guarantee conditions and VDM offer a potentially fruitful approach to atomicity refinement. Specifically, rely-conditions can be used to represent assumptions about atomicity and the refinement rules of VDM allow different data representations to be introduced. To this end, a more usable approach to rely-guarantee reasoning would benefit the search for a usable form of atomicity refinement. All of these points are illustrated with a novel development of Simpson’s Four-Slot, a mechanism for asynchronous communication between processes.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

    Full text link
    We present a lightweight approach to Hoare-style specifications for fine-grained concurrency, based on a notion of time-stamped histories that abstractly capture atomic changes in the program state. Our key observation is that histories form a partial commutative monoid, a structure fundamental for representation of concurrent resources. This insight provides us with a unifying mechanism that allows us to treat histories just like heaps in separation logic. For example, both are subject to the same assertion logic and inference rules (e.g., the frame rule). Moreover, the notion of ownership transfer, which usually applies to heaps, has an equivalent in histories. It can be used to formally represent helping---an important design pattern for concurrent algorithms whereby one thread can execute code on behalf of another. Specifications in terms of histories naturally abstract granularity, in the sense that sophisticated fine-grained algorithms can be given the same specifications as their simplified coarse-grained counterparts, making them equally convenient for client-side reasoning. We illustrate our approach on a number of examples and validate all of them in Coq.Comment: 17 page

    Rely-Guarantee Based Reasoning for Message-Passing Programs

    Get PDF
    The difficulties of verifying concurrent programs lie in their inherent non-determinism and interferences. Rely-Guarantee reasoning is one useful approach to solve this problem for its capability in formally specifying inter- thread interferences. However, modern verification requires better locality and modularity. It is still a great challenge to verify a message-passing program in a modular and composable way. In this paper, we propose a new reasoning system for message-passing programs. It is a novel logic that supports Hoare style triples to specify and verify distributed programs modularly. We concretize the concept of event traces to represent interactions among distributed agents, and specify behav- iors of agents by their local traces with regard to environmental assumptions — an idea inspired by Rely-Guarantee reasoning. Based on trace semantics, the verification is compositional in both temporal and spatial dimensions. To show validity, we apply our logic to modularly prove several examples

    Pointer Race Freedom

    Full text link
    We propose a novel notion of pointer race for concurrent programs manipulating a shared heap. A pointer race is an access to a memory address which was freed, and it is out of the accessor's control whether or not the cell has been re-allocated. We establish two results. (1) Under the assumption of pointer race freedom, it is sound to verify a program running under explicit memory management as if it was running with garbage collection. (2) Even the requirement of pointer race freedom itself can be verified under the garbage-collected semantics. We then prove analogues of the theorems for a stronger notion of pointer race needed to cope with performance-critical code purposely using racy comparisons and even racy dereferences of pointers. As a practical contribution, we apply our results to optimize a thread-modular analysis under explicit memory management. Our experiments confirm a speed-up of up to two orders of magnitude

    A framework for automated concurrency verification

    Get PDF
    Reasoning systems based on Concurrent Separation Logic make verifying complex concurrent algorithms readily possible. Such algorithms contain subtle protocols of permission and resource transfer between threads; to cope with these intricacies, modern concurrent separation logics contain many moving parts and integrate many bespoke logical components. Verifying concurrent algorithms by hand consumes much time, effort, and expertise. As a result, computer-assisted verification is a fertile research topic, and fully automated verification is a popular research goal. Unfortunately, the complexity of modern concurrent separation logics makes them hard to automate, and the proliferation and fast turnover of such logics causes a downward pressure against building tools for new logics. As a result, many such logics lack tooling. This dissertation proposes Starling: a scheme for creating concurrent program logics that are automatable by construction. Starling adapts the existing Concurrent Views Framework for sound concurrent reasoning systems, overlaying a framework for reducing concurrent proof outlines to verification conditions in existing theories (such as those accepted by off-the-shelf sequential solvers). This dissertation describes Starling in a bottom-up, modular manner. First, it shows the derivation of a series of general concurrency proof rules from the Views framework. Next, it shows how one such rule leads to the Starling framework itself. From there, it outlines a series of increasingly elaborate frontends: ways of decomposing individual Hoare triples over atomic actions into verification conditions suitable for encoding into backend theories. Each frontend leads to a concurrent program logic. Finally, the dissertation presents a tool for verifying C-style concurrent proof outlines, based on one of the above frontends. It gives examples of such outlines, covering a variety of algorithms, backend solvers, and proof techniques
    corecore