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Abstract

The difficulties of verifying concurrent programs lie in their inherent
non-determinism and interferences. Rely-Guarantee reasoning is one
useful approach to solve this problem for its capability in formally
specifying inter-thread interferences. However, modern verification
requires better locality and modularity. It is still a great challenge to
verify a message-passing program in a modular and composable way.

In this paper, we propose a new reasoning system for message-
passing programs. It is a novel logic that supports Hoare style triples
to specify and verify distributed programs modularly. We concretize
the concept of event traces to represent interactions among distributed
agents, and specify behaviors of agents by their local traces with regard
to environmental assumptions — an idea inspired by Rely-Guarantee
reasoning. Based on trace semantics, the verification is compositional
in both temporal and spatial dimensions. To show validity, we apply
our logic to modularly prove several examples.
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1 Introduction

With the blossom of multi-core processors and large scale network commu-
nication, concurrency has become a crucial element in software systems.
According to the ways of inter-thread communication, in general, there are
two concurrent models: shared memory and message-passing. Applications
using either of the two models are notoriously difficult to be verified because
of non-deterministic interleaves of memory accesses or message passing.

1.1 Separation Logic and Rely-Guarantee Reasoning

Separation Logic (SL) is introduced by Reynolds et al. (e.g., [19]) for
specifying and verifying programs which manipulate states with complex
structures, especially the pointers and data structures. The key idea of SL
is to include in the logic language some connectors to describe explicitly the
separation of parts in the program states. By migrating the ideas of SL,
verification of shared memory models has gained great progress. Some new
logics have been developed and their power has been well respected, e.g.,
Concurrent Separation Logic (CSL) [2], concurrent abstract predicate [5],
and lots of other separation-based reasoning [20, 21].

Separation Logic supports local reasoning for separated parts of pro-
grams states. For the concurrent programs, when different threads reside in
separated regions, their state separation enables local reasoning naturally.
However, despite of state separation, the core feature of concurrency is the
interferences among separated threads. Thus, for the formal reasoning, the
crucial difficulty is how to formally specify and verify the interferences.

One pioneer work in this area is Rely-Guarantee (RG) reasoning [8]. In
RG reasoning, the specification of a program D takes the form of:

R,G ` {p}D {q}

where R and G are the rely and guarantee conditions respectively; p and
q are pre- and post-assertions for D’s local state. In the specification, R
specifies the set of state transitions that the environment (the other threads
in the program) could apply to the local state of D. Since environmental
behavior is non-deterministic, p and q are required to be stable under the
interference of R, that is, no matter how local states transit caused by the
environment, the validity of p and q is fixed. On the other hand, G represents
the set of all possible state transition that are caused by the local execution
of D.
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One group of distinguished idea in this area is the combination of Sepa-
ration Logic and Rely-Guarantee reasoning, e.g., SAGL [6] and RGSep [20].
For instance, the parallel composition rule in RGSep takes the following
form:

[[G2]] ⊆ [[R1]] R1,G1 ` {p1}D1 {q1}
[[G1]] ⊆ [[R2]] R2,G2 ` {p2}D2 {q2}

R1 ∩R2,G1 ∪ G2 ` {p1 ∗ p2}D1||D2 {q1 ∗ q2}
where [[•]] denotes the semantics of •, and ∗ is the separating conjunction
operator that specifies separated states [19]. This rule says that two programs
are compatible with each other when they mutually include the other one’s
guarantee condition in their rely condition. The rely condition of the
combined program is the intersection of R1 and R2, and the guarantee
condition is the union of G1 and G2.

As presented, existing methods that applies RG reasoning to shared
memory still encounter several problems that greatly impede its application:

• Pre- and post-assertions are confined by the “stable” requirement,
which is quite strict that forbids users from writing assertions freely.

• The rely and guarantee conditions are globally predefined. This require
users to carefully consider all system behavior details beforehand, which
cannot be changed during reasoning.

In the rest of the paper, we apply RG reasoning to message-passing
model, which addresses the above problems.

1.2 Lamport’s Graph Model

Like SAGL and RGSep, many state-based verifications of shared memory
concurrency have been studied. But for message-passing models, although it
have been extensively studied using various process calculi [7, 14, 16], fewer
Hoare-style state-based reasoning systems are developed, especially systems
supporting modular reasoning. These are the main focus of our work.

To develop such a verifying system, the first step is to define a model
for the program states. In this paper, we choose the classic Lamport’s
event graph [10]. Lamport introduced event graphs (or event traces) as a
representation for the semantics of message-passing programs. Event graphs
are essentially Directed Acyclic Graphs (DAGs) composed by nodes and
directed arrows, where nodes represent atomic actions (e.g., send/receive
events), and directed arrows represent inter-agent communications. Each
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event graph defines implicitly a partial order — happens-before, denoted by
≺ — among nodes, which is the transitive closure combined of agents’ local
order and directed arrows, to reveal the causality relation among events.
This order will be formally defined later.

1.3 Our Approach

In terms of formal verification, for any semantics based on event graphs,
one crux is to modularly specify graph structures. As a graph represents a
collection of ordered and correlated events (nodes), the modularity could
only be achieved when we can carve out irrelevant events in reasoning a local
behavior. To make this possible, we view the structure of an event graph
from two dimensions: the spatial dimension and the temporal dimension.
We introduce a separating conjunction operator, ∗, to depict the spatial
dimension by specifying separated traces; and an operator, ◦, to represent
sequential conjunction, which defines the temporal dimension based on
happens-before relation ≺, and takes a stronger condition than the spatial
one.

Our logic adopts the Hoare style triples to specify message-passing
programs, and makes local reasoning of the programs a reality. Generally,
the semantics of a set of agents D is specified by a triple as follows:

{r, p}D {r′, q}

where r and r′ specify D’s expectations (or assumptions) about its environ-
ment (i.e., the behaviors of other agents, similar to the rely condition in RG
reasoning), and p and q specify the local states (changes) of D. The reasoning
of D relies on its environmental assumptions, and the local behaviors of D
are required to be correlated with its environmental expectations. Local
agents are able to dynamically calculate and strengthen its environmental
assumption in r′ in order to fulfill certain local function that are specified.
On the other hand, the other agents should satisfy the expectation of D in
order to parallel composite with D.

We present the proof of a tiny example to show the deduction of our
system and how the spatial and temporal modularity is achieved. We take
the following simple program as the example:

send (2, pt);

send (3, pt);
|| x := recv (pt);

y := recv (pt);
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1. {emptr, emptr}
2. {pt!X, emptr}

x := recv (pt);

3. {pt!X, pt?Y ∧ x = Y }
4. {pt!2, pt?Y ∧ x = Y }
5. {pt!2, pt?2 ∧ x = 2}

6. {emptr, emptr}
y := recv (pt);

7. {pt!3, pt?3 ∧ y = 3}

8. {pt!2, pt?2}
y := recv (pt);

9.

{
pt!2 ◦ pt!3,
pt?2 ◦ pt?3 ∧ y = 3

}

10. {emptr, emptr}
x := recv (pt);

y := recv (pt);

11.

pt!2 ◦ pt!3,(pt?2 ◦ pt?3)
∧ x = 2 ∧ y = 3



12. {emptr, emptr}
13. {emptr, emptr}

send (2, pt);

send (3, pt);

14. {emptr, pt!2 ◦ pt!3}

||

{emptr, emptr}
x := recv (pt);

y := recv (pt);

{see line 11}

15.

{
emptr,

x = 2 ∧ y = 3
∧ ((pt!2 ◦ pt!3) ∗ (pt?2 ◦ pt?3))

}

Figure 1: Modular Proof of a Tiny Example

The left agent sends messages 2 and 3 to the port pt sequentially, and the
right agent is the owner of pt, who withdraws the messages and stores them
into its local variable x and y respectively.

The proof given in Fig. 1 is modular, because the system is proved
agent by agent, and an agent is separately proved command by command.

Lines 1 – 5 are the proof for the first receive command: It starts from
{emptr, emptr}, where no assumption for the environment is made (the first
emptr) and no local action is taken (the second emptr). Then in line 2,
we assume the environment sends message X to pt (pt!X), where X is an
implicitly existential-quantified logical variable and its scope is confined
within the environmental part. After executing the receive command, there
is a receive event in the local state (pt?Y ∧ x = Y ), where Y is existential-
quantified to represent the message received and its scope is the local state.
Line 4 is deduced from line 3 by strengthening the environmental assumption
(pt!2⇒ ∃X · pt!X); and line 5 comes because a receive should match with
its sender (pt!2 ∗ pt?Y ⇒ Y = 2)3.

The other receive is proved separately (lines 6 – 7) which is similar as
lines 1 – 5. Lines 8 – 9 are obtained from lines 6 – 7 by adding a “frame”

— pt!2 ∗ pt?2 — ahead of current event graph, where pt!2 is added ahead of
the environment, and pt?2 is ahead of the local state. Note that the frame
does not affect existing proofs and program state. The “ahead of” relation is
formally called “happens-before”, which is served by the operator “◦”. We

3This form of writing is just for easy understanding, precisely it should be pt?Y
pt!2
=⇒ pt?2,

which will be formally discussed in Section 5.
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can add another frame “x = 2” to the local state in line 8 and 9 in order to
ensure line 8 is the same as line 5. This step is trivial and thus omitted.

Having the proofs for the two receives, the whole specification of the
first agent is obtained by sequentially combining the two proofs (lines 10 –
11).

The specification of the sending agent shown in lines 13 – 14 is trivial
and needs no explanation. The composition for the two agents is shown
in lines 12 – 15. In line 15, the environmental assumption of the receiver
(line 11) is satisfied by the local state of the sender (line 14), therefore, the
environmental part of line 15 is emptr. The local part of line 15 is just the
composition of local state of both agents.

1.4 Contributions

In summary, the logic we developed in this work makes the following contri-
butions:

• It concretizes the concept of event graph [10] to represent the interac-
tions among agents, and proposes a set of trace predicates to specify
the properties of traces.

• It supports two-dimensional modularity: temporal modularity, as
shown by the separated proofs of the receives in above example; and
spatial modularity, as shown by the separated proofs of the agents.

• Each agent can be proved locally with suitable explicitly calculated
assumptions about its environment, and proofs of separate agents can
be combined as long as their local behaviors could mutually satisfy the
environmental assumptions of their partners.

• Comparing with classic RG reasoning, our method removes the stability
requirement of pre/post-assertions, and allows dynamically calculate
environment assumption. These relaxation strongly ease the burden of
users.

This article extends the conference paper which is presented in ICTAC
2014 [11]. There are two major improvements. First, we significantly expand
the details for reasoning distributed programs that exhibits non-deterministic
behaviors. Second, we prove another message-passing algorithm – leader
election – to further validate our theory.
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In the rest of the paper, we give a formal definition of event trace,
and present a trace algebra for separating and sequential conjunctions in
Section 2; and a formal presentation for the model and operational semantics
in Section 3. The assertion language for specifying trace structures and
the reasoning logic was presented at Sections 4 and 5. Formal semantics
are presented and proved in Section 6. Section 7 specifically shows the
application for proving non-deterministic programs. Sections 8 and 9 give
case studies, and Section 10 discusses the related work and concludes.

2 Event Trace – the Basic Program State Settings

A distributed system is composed by a set of agents4, which are run concur-
rently. Each of the agents represents a computational process that can own
several ports for receiving messages. In our setting, each port belongs to
one agent, while an agent can own multiple ports. We adopt asynchronous
message passing: send commands will not be blocked, while receives will be
blocked if there is no message received on the designated ports. We assume
the state of a port is a queue, and messages are transmitted following the
FIFO-principle [3].

2.1 Traces

We use event graphs [10] to depict the semantics of distributed programs.
The left part of Fig. 2 shows the trace of a program execution, where solid
nodes represent send events and hollow nodes are receives. The picture also
reveals that event traces are time-space graphs, where space is measured by
agents, and time is measured by agent local orders and inter-agent arrows
(which represent inter-agent communications).

The state of traces is defined formally in Fig. 2 (right part). Each event
is represented by a tuple with four components, and referred by a unique
reference e. A trace tr is a map from event references to its corresponding
event, tr(e) = (m, pt, pd, sd). In an event, component m (referred by e.val)
and pt (referred by e.port) are the value and port for the message respectively;
pd (referred by e.pred) is e’s local direct predecessor; and sd (referred by
e.src) refers to e’s corresponding send event when e is a receive. If e is the

4The agent might be called process, or thread, etc. in other works. We will use the
name agent consistently in this work.
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Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent	  1 Agent	  2 Agent	  3

Value = Int AgntID = Nat Port, EvntID : Discrete Types

(Event) (m, pt, pd, sd) : Val× Port× EvntID ∪ {AgntID}
× EvntID ∪ {nil}

(EvntTrc) tr : EvntID ⇀fin Event

Figure 2: Trace State

first event of an agent, e.pred is the agent ID where e lives in; and e.src = nil
if e is a send event.

We use isSend(e) and isRecv(e) to specify the type of e:

isSend(e)
def
= e.src = nil isRecv(e)

def
= e.src 6= nil

We recursively define a function agent(e) to return the agent ID of the
event referred by e:

agent(e)
def
=

{
e.pred e.pred ∈ AgntID
agent(e.pred) otherwise

2.2 Well-formed Traces

Event traces are specific structures to record the communicating history
among agents. In this section we present an axiomatic definition of traces.
As Lamport postulated [10], events are partially ordered by happens-before
relation ≺.

Definition 1 (Happens-Before) The happens-before relation of tr, ≺,
is:

e ≺step e
′ def

= e = e′.pred ∨ e = e′.src

e ≺ e′ def
= ∃e′′ · e ≺ e′′ ∧ e′′ ≺step e

′)

where {e, e′} ⊆ dom(tr)

Based on Def. 1, we define six axioms to specify well-formed traces.
Axioms 1 – 4 are general axioms which are proposed originally in [1]; axioms 5
– 6 are specifically proposed for our model. We use tr to denote an event
trace.
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Axiom 1 tr is self-closed:

∀e ∈ dom(tr) · e.pred /∈ AgntID⇒ e.pred ∈ dom(tr), and
∀e ∈ dom(tr) · e.src 6= nil⇒ e.src ∈ dom(tr).

Axiom 2 Happens-before relation ≺ is strongly well founded. There exists
a function f : dom(tr)→ Nat such that:

∀e, e′ ∈ dom(tr) · e ≺ e′ ⇒ f(e) < f(e′).

Axiom 3 Maps •.pred and •.src are injective:

∀e, e′ ∈ dom(tr) · e.pred = e′.pred⇒ e = e′, and
∀e, e′ ∈ dom(tr) · e.src = e′.src ∧ e.src 6= nil⇒ e = e′.

Axiom 4 The send field of a receive event refers to its corresponding send
event:

∀e ∈ dom(tr) · isRecv(e)⇒ ∃e′ · e.src = e′ ∧ isSend(e′)
∧ e.val = e′.val ∧ e.port = e′.port.

Axiom 5 Communications are robust that there is no lost message. Let e1

and e2 be two send events:

e1 ≺ e2 ∧ e1.port = e2.port ∧ ∃e′2 · e′2.src = e2 ⇒ ∃e′1 · e′1.src = e1.

That is, if e2 is received, all send events that happen before e2 on the same
channel must have been received.

Axiom 6 Messages are sent and received by the FIFO principle. Let e1 and
e2 be two send events:

e1 ≺ e2 ∧ e1.port = e2.port ∧ e′1.src = e1 ∧ e′2.src = e2 ⇒ ¬(e′2 ≺ e′1).

We use A1, . . . ,A6 to represent the above axioms, and A to denote

their conjunction: A def
= A1 ∧ . . . ∧ A6.

Theorem 1 Let Prop be the type of propositions over tr, then for all P :
EvntID→ Prop:

(∀e′ · (∀e · e ≺ e′ ∧ P (e)→ P (e′)))⇒ ∀e · P (e)
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Theorem 1 is the induction over event traces: take any event e′ in the trace,
if all events that happen before e′ satisfy P leads the truth of P at e′, then P
holds all over the trace. This theorem is useful in proving complex properties
over traces and also application in our method; [1] gives many examples
showing its usage.

Definition 2 (Well-formed Trace) Trace tr is well-formed, WF (tr), iff
there exist tr′ and tr′′ such that:

tr′′ = tr ] tr′5 ∧ tr′′ |= A

That is, any well-formed trace, tr, is a sub-trace of some “complete” trace
tr′′ such that tr′′ entails A.

In our model, events stand for the atomic actions for sending/receiving
messages. Local actions, e.g., variable assignment, control flow execution
etc., are not recorded as events in the graph. Axioms and theorems in this
section are crucial for trace implication, e.g., p⇒ q.

2.3 Trace Separation and Algebra

To structurally specify event traces, we introduce two operators, separating
conjunction ∗ and sequential conjunction ◦, where:

tr1 ∗ tr2 is the union of all the events in tr1 and tr2 as long as tr1 and tr2

contain disjointed set of events:

tr ∗ tr′ def
= tr ] tr′ iff WF (tr ] tr′)

tr1 ◦ tr2 returns tr1 ∗ tr2 if three additional conditions hold: (1) no event
in tr2 happens before any event in tr1; (2) if e1 (∈ tr1) and e2 (∈ tr2)
send messages to the same port, then e1 happens before e2; and (3) if
e1 (∈ tr1) and e2 (∈ tr2) receive messages from the same port, then e1

happens before e2.

tr ◦ tr′ def
= tr ∗ tr′ iff ∀e ∈ dom(tr), e′ ∈ dom(tr′)·
¬(e′ ≺ e) ∧ (isSend(e) ∧ isSend(e′) ∧ e.port = e′.port⇒ e ≺ e′)
∧ (isRecv(e) ∧ isRecv(e′) ∧ e.port = e′.port⇒ e ≺ e′)

5f ] g is the union of f and g but requires that f and g have disjointed domains.
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tr1 = tr2 ⇒ tr1 ∗ tr3 = tr2 ∗ tr3 tr1 ∗ tr2 = tr2 ∗ tr1

tr1 ∗ tr2 = tr1 ∗ tr3 ⇒ tr2 = tr3 tr = tr1 ◦ tr2 ⇒ tr = tr1 ∗ tr2

tr1 ◦ (tr2 ◦ tr3) = (tr1 ◦ tr2) ◦ tr3 tr1 ∗ (tr2 ∗ tr3) = (tr1 ∗ tr2) ∗ tr3

tr = tr1 ◦ (tr2 ∗ tr3)⇒ tr = (tr1 ◦ tr2) ∗ tr3

tr = (tr1 ∗ tr2) ◦ tr3 ⇒ tr = (tr1 ◦ tr3) ∗ tr2

Figure 3: Selected Properties for Traces

In [22], Wehrman et al. defined another semantics for tr ◦ tr′, which
only requires events in tr′ do not happen before events in tr. Our semantic
definition of sequential composition is stronger. Take the trace (pt!88 ◦
pt!14) ∗ (pt?x ◦ pt?y) for instance, we can deduce x = 88 ∧ y = 14 with the
additional conditions, otherwise the x = 14 ∧ y = 88 is permitted as well.

The two operators satisfy certain commutative and associative laws.
Fig. 3 lists some selected properties for trace structures, which are sound
based on the semantics.

3 Programming Language

In this section, we define the programming language used for constructing
the distributed programs (system models) and its operational semantics.

Fig. 4 gives the syntax of the language. We use E and B to denote
numerical and boolean expressions. Command send (E, pt) sends message
E to port pt; and x := recv (pt) withdraws a message from pt and stores it
into the local variable x. A distributed program is a parallel composition
of agents Ci, where each agent is tagged with a unique agent ID (i1, . . . , ik
in Fig. 4). For simplicity, we don’t consider memory management in our
model.

The program state is defined in Fig. 5. We choose the simplest setting
that defines the state composed by only a store s and a trace tr, where s
maps variable names to values, and tr is already defined in Fig. 2.

The operational semantics is defined by a set of rules which describe
configuration transitions caused by the program execution. These rules take
the following form:

(D, s, tr) (D′, s′, tr′)
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(Expr) E ::= x | X | n | E + E | E − E | . . .
(BExp) B ::= true | false | E = E | E 6= E | . . .
(Comd) c ::= x := E | skip | send (E, pt) | x := recv (pt)
(Stmts) C ::= c | C1;C2 | while B do C | if B then C1 else C2

(Prog) D ::= i1 : C1 || . . . || ik : Ck

Figure 4: The Language

Loc = Int Var : Discrete Type

(Store) s : Var ⇀fin Value
(EvntTrc) tr : EvntID ⇀fin Event
(State) σ ::= (s, tr)

Figure 5: State Definition

If there is only one agent i (D = i : C), the transition can take the form of:

(C, s, tr) i (C ′, s′, tr′)

Fig. 6 gives the operational semantics. In the rules, {i1 : v1; . . . ; in : vn}
denotes a function f with dom(f) = {i1, . . . , in} and f(ij) = vj ; f{x# v}
remaps x of f to v; f ] g is function union when dom(f)∩dom(g) = ∅; [[E]]s
and [[B]]s evaluate the numerical and boolean expressions based on store s.

In order to construct valid traces, each new event should be linked to its
predecessor – the last event of the current trace. Function last(tr, i) returns
the last event of agent i in tr. If there is no event at agent i, then the
function returns “i” since the •.pred field of the first event is an agent ID.
Since all events on a same agent are totally ordered by the happens-before
relation ”≺”, last(tr, i) always return a unique element.

last(tr, i)
def
=


i {e ∈ dom(tr) | agent(e) = i} = ∅

max
≺

{
e

∣∣∣∣ e ∈ dom(tr)
∧ agent(e) = i

}
otherwise

For receive events, since the model adopts FIFO message passing rules, a
new receive should match with the oldest message remaining in the designated
port. We define a predicate fstUnMchd(e, tr, pt) to state that e is the first
pending send event on port pt, that is, e is a send event on pt which has
not matched with a receive yet, and no other unmatched send event on pt
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[[E]]s = n
(x := E, s, tr) i (skip, s{x# n}, tr)

[[E]]s undefined
(x := E, s, tr) i abort

fstUnMchd(e, tr, pt) e.val = n e′ = last(tr, i) e′′ /∈ dom(tr)

(x := recv (pt), s, tr) i (skip, s{x# n}, tr ] {e′′ : (n, pt, e′, e)})

[[E]]s = n e = last(tr, i) e′ /∈ dom(tr)
(send (E, pt), s, tr) i (skip, s, tr ] {e′ : (n, pt, e, nil)})

[[E]]s undefined
(send (E, pt), s, tr) i abort

[[B]]s = true
(ifB thenC1 elseC2, s, tr) i (C1, s, tr)

[[B]]s = false
(ifB thenC1 elseC2, s, tr) i (C2, s, tr)

[[B]]s = true
(whileB doC, s, tr) i (C; whileB doC, s, tr)

[[B]]s = false
(while B do C, s, tr) i (skip, s, tr)

(D1, σ) abort or (D2, σ) abort
(D1 ||D2, σ) abort

(D1, σ) (D′1, σ
′)

(D1 ||D2, σ) (D′1||D2, σ
′)

(D2, σ) (D′2, σ
′)

(D1 ||D2, σ) (D1||D′2, σ′)

(C1, σ) i (C ′1, σ
′)

(C1;C2, σ) i (C ′1;C2, σ
′)

(C1, σ) i abort
(C1;C2, σ

′) i abort (skip;C, σ) i (C, σ)

Figure 6: Operational Semantics

happens before e. Formally:

rcvd(e, pt)
def
= isSend(e) ∧ ∃e′ · e′.src = e

fstUnMchd(e, tr, pt)
def
= ¬rcvd(e, pt) ∧ ¬∃e′ · (¬rcvd(e′, pt) ∧ e′ ≺ e)

Semantics of local primitives, e.g., assignment, control flow commands
are regular. Rules for send and receive primitives are added, which create
new events in the trace. For a receive command, it should find the first
unmatched send event on the port in tr according to fstUnMchd(e, tr, pt),
then create the corresponding receive event and add it to the trace.

For the semantics, we have the following result:

Theorem 2 Let (D,σ) be the initial state, and σtr is the trace component
of σ, then the execution traces of any distributed program would entail A:

((D,σ) ∗ (D′, σ′)) ∧ σtr |= A ⇒ σ′tr |= A.
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(s, tr) |= emptr iff dom(tr) = ∅ (s, tr) |= truetr iff WF (tr)
(s, tr) |= B iff [[B]]s = true
(s, tr) |= pt!E iff ∃n, e · [[E]]s = n ∧ dom(tr) = {e} ∧ tr(e) = (n, pt, , nil)
(s, tr) |= pt?E iff ∃n, e · [[E]]s = n ∧ dom(tr) = {e} ∧ tr(e) = (n, pt, ,¬nil)

(s, tr) ] (s′, tr′)
def
=

{
(s ] s′, tr ∗ tr′) if s ] s′ ∧ tr ∗ tr′ defined
undefined otherwise

(s, tr)� (s′, tr′)
def
=

{
(s, tr ◦ tr′) if s = s′ ∧ tr ◦ tr′ defined
undefined otherwise

tr∗
def
= ∅ ∪ tr ∪ tr ◦ tr ∪ . . .

σ∗
def
= (s, tr∗) where σ = (s, tr)

σ |= p1 ∗ p2 iff ∃σ1, σ2 · σ1 ] σ2 = σ ∧ σ1 |= p1 ∧ σ2 |= p2

σ |= p1 ◦ p2 iff ∃σ1, σ2 · σ1 � σ2 = σ ∧ σ1 |= p1 ∧ σ2 |= p2

σ |= p∗ iff ∃σ′ · σ′ |= p ∧ σ = σ′∗ σ |= ¬p iff σ 2 p
σ |= p ∧ q iff σ |= p ∧ σ |= q σ |= p⇒ q iff if σ |= p, then σ |= q
σ |= ∃X · p iff ∃n ∈ Val · σ |= p[n/X]

Figure 7: Semantics of Assertions

4 Assertion Language

This section defines the assertion language for event traces. We assume an
infinite set of logical variables LVar = {X,Y, . . .}. The assertion language is
a mixture of store predicates, and trace predicates with the following syntax:

p, q ::= E = E | E > E | . . . (store predicates)
| emptr | truetr | pt!E | pt?E (trace predicates)
| ¬p | p ∧ q | ∃X · p | p ∗ q | p ◦ q | p∗ | . . . (connectives)

The semantics of assertions is defined in Fig. 7, where emptr and truetr
specify empty trace and any well-formed trace respectively. For the primitive
assertions, pt!E and pt?E specify singleton events, where pt!E represents
sending message E to pt and pt?E says receiving E from pt; boolean ex-
pression holds only if it is true over the state. In the semantic definitions,
σ1 ] σ2 represents the conjunction of two separated states, where σ1 and
σ2 are required to have separated traces; σ1 � σ2 is the conjunction of se-
quential states which have sequentially connected traces. For the composite
assertions, p ∗ q says p and q holds over separated states; p ◦ q holds over
sequential states; p∗ specifies traces that circulated for a finite times, where
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p ∗ q ⇔ q ∗ p p ◦ (q ◦ r)⇔ (p ◦ q) ◦ r (p ∗ q) ◦ r ⇒ (p ◦ r) ∗ q p ◦ q ⇒ p ∗ q

p ◦ (q ∗ r)⇒ (p ◦ q) ∗ r (r1 ∗ p1) ◦ (r2 ∗ p2)⇒ (r1 ◦ r2) ∗ (p1 ◦ p2)

Pure(p) or Pure(q)
p ◦ q ⇔ p ∧ q

Pure(p) or Pure(q)
p ∗ q ⇔ p ∧ q

Pure(p)
p ∧ (q ◦ r)⇒ (p ∧ q) ◦ (p ∧ r)

Pure(r)
p ◦ (q ∧ r)⇔ (p ◦ q) ∧ r

Pure(q)
(p ∧ q) ◦ r ⇔ (p ◦ r) ∧ q

Figure 8: Selected Proof Rules

σ∗ is the state that have a static store s and its trace has a sub-trace that
repeatedly appears.

We also define pure assertions like in the Separation Logic. Syntactically,
pure assertions do not contain any trace predicates.

Definition 3 (Pure Assertion) Assertion p is pure, Pure(p), iff the va-
lidity of p does not rely on the state of the trace, i.e.,

if (s, tr) |= p, then for all tr′, (s, tr′) |= p.

Fig. 8 lists some selected proof rules, which are sound w.r.t. the
semantics.

5 Inference System

In this section, we introduce our inference system, which is a separation-based
system for reasoning distributed programs.

5.1 Syntactic Control of Well-formedness

The inference rules are given in Fig. 9 and Fig. 10. In order to avoid tedious
side conditions, Syntactic Control of Interference (SCI) [18] is adopted here.
There are two syntactic context: Ovar for variable context, and Oport for port
context.

Ovar ::= x1, x2, x3, . . . Oport ::= pt1, pt2, pt3, . . .

Ovar denotes the ownership of a set of variables, and Ovar,O′var is the conjunc-
tive ownership of two separated sets of variables. Oport is a set of port names,
which specifies the access permissions of ports. If pt ∈ Oport, the current
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agent can withdraw messages out of pt, and other agents can only send
messages to pt. For simplicity, we consider full permissions. It is possible to
extend this definition with fractional permissions [17] as well.

SCI specifies the well-formedness of expressions, assertions, and pro-
grams. A variable/expression/assertion is well-formed, if and only if all
its free variables are within the scope of a syntactic context. We use
Ovar ` x Var/E Exp/p Assert to represent them respectively. The well-
formedness of a program (command), Ovar;Oport ` C Comm, can be defined
by the following selected rules:

Ovar;Oport ` skip Comm
Ovar ` x Var Ovar ` E Exp
Ovar;Oport ` x := E Comm

Ovar ` x Var
Ovar;Oport, pt ` x := recv (pt) Comm

Ovar ` E Exp pt /∈ Oport

Ovar;Oport ` send (E, pt) Comm

Ovar ` B Exp Ovar;Oport ` C Comm
Ovar;Oport ` while B do C Comm

A well-formed assignment, x := E, requires the ownership of x; x := recv (pt)
requires full permission of x and pt ∈ Oport; and well-formed receive action,
send (x, pt) requires pt /∈ Oport. That means a thread can only receive
messages from the ports that it owns, or send messages that it doesn’t own
(the ports of others). We don’t list all the rules, because other rules are
straight forward.

A syntactic context can be weakened by extending Ovar:

Ovar ` E Exp

Ovar,O′var ` E Exp

Ovar ` p Assert

Ovar,O′var ` p Assert

Ovar;Oport ` C Comm

Ovar,O′var;Oport ` C Comm

5.2 Program Specification

The specification of a message-passing program takes the form as:

Ovar;Oport ` {r, p}D {r′, q}

It specifies the partial correctness of D: if D starts from a pre-state satisfying
r ∗ p, where r for the environmental state and p for the local state, then
D will not abort, and when D terminates, if the environment satisfies r′,
the local state satisfies q. If D contains only one agent, e.g., i : C, the
specification can be written as:

Ovar;Oport `i {r, p}C {r′, q}
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x ∈ Ovar pt ∈ Oport x /∈ freeVar(r) ∪ freeVar(p)

Ovar, X;Oport `i {r, p}x := recv (pt) {r, p ◦ pt?X ∧ x = X} (RECV)

x ∈ Ovar pt /∈ Oport

Ovar,Oport `i {r, p} send (x, pt) {r, p ◦ pt!x} (SEND)

Ovar;Oport `i {r, p}C1 {r′, p′} Ovar;Oport `i {r′, p′}C2 {r′′, p′′}
Ovar;Oport `i {r, p}C1;C2 {r′′, p′′}

(SEQ)

Ovar;Oport `i {r, (p ∧B)}C1 {r′, q} Ovar;Oport `i {r, (p ∧ ¬B)}C2 {r′, q}
Ovar;Oport `i {r, p} if B then C1 else C2 {r′, q}

(IF)

Ovar;Oport `i {r∗, p∗ ∧B}C {r∗, p∗}
Ovar;Oport `i {r∗, p∗}whileB doC {r∗, p∗ ∧ ¬B)} (WHILE)

Figure 9: Selected Inference Rules — Basics

It is innovative that we syntactically separate the pre- and post-conditions
into two parts: one assumption for the environment, and one specification
for the local state. In the precondition, r is the environmental assumption
before the execution, and p specifies the local pre-state. During execution, D
may receive (send) messages from (to) the environment, so we can calculate
the post-assumption of environment from D’s local requirements. When D
terminates, its environmental assumption becomes r′ and local state becomes
q. Clearly, the trace specified by r′ and q will not be shorter than r and p.

Note that we always consider well-formed triples in this paper. That is,
for all expressions, assertions and programs in a tuple, they are implicitly
required to be well-formed.

5.3 Reasoning Rules

In Fig. 9, the rule (RECV) for receiving commands is straightforward, where
freeVar(•) returns the set of all free variables in •. In this rule, variable X
is a fresh logical variable to represent the message received by the current
agent. No environmental assumption should be made at this stage. The
rule for send event is similar. Note that no agent can send messages to itself
(pt /∈ Oport). Both (SEQ) for sequential composition and (IF) for conditional
are trivial. (WHILE) is normal too, where each iteration should maintain the
validity of loop invariant {r∗, p∗}. Other rules, which are used for structural
reasoning, are defined in Fig. 10.

Definition 4 (Environmental-aided Implication) Environmental-aided
implication, written as p

r⇒ p′, implies p′ from p with an extra coupled trace
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p
r⇒ p′ q′

r′⇒ q Ovar;Oport ` {r, p′}D {r′, q′}
Ovar;Oport ` {r, p}D {r′, q}

(CONSEQ-A)

r1 ⇒ r r2 ⇒ r′ Ovar;Oport ` {r, p}D {r′, q}
Ovar;Oport ` {r1, p}D {r2, q}

(CONSEQ-B)

Ovar;Oport ` {r, p}D {r1, q1} Ovar;Oport ` {r, p}D {r2, q2}
Ovar;Oport ` {r, p}D {r1 ∨ r2, q1 ∨ q2}

(DISJ)

Ovar;Oport ` {r, p}D {r1, q1} Ovar;Oport ` {r, p}D {r2, q2}
Ovar;Oport ` {r, p}D {r1 ∧ r2, q1 ∧ q2}

(CONJ)

Ovar;Oport ` {r, p}D {r′, q} O′var ` r′′Assert notInterfere(r′′,Oport)
Ovar,O′var;Oport ` {r ∗ r′′, p}D {r′ ∗ r′′, q}

(FRM-ENV)

Ovar;Oport ` {r, p}D {r′, q} O′var ` p′Assert notInterfere(p′,Oport)
Ovar,O′var;Oport ` {r, p ∗ p′}D {r′, q ∗ p′}

(FRM-LOC)

Ovar;Oport ` {r, p}D {r′, q} O′var ` r′′Assert r′ ./Oport q

Ovar,O′var;Oport ` {r, p}D {r′ ◦ r′′, q}
(FRM-BHD)

Ovar;Oport ` {r, p}D {r′, q} O′var ` r′′, p′Assert r′′ ./Oport p
′

Ovar,O′var;Oport ` {r′′ ◦ r, p′ ◦ p}D {r′′ ◦ r′, p′ ◦ q}
(FRM-AHD)

Ovar1;Oport1 ` {emptr, p1}D1 {r1, q1} q1 ∗ r ⇒ r2 ∗ r′2 notInterfere(r′2,Oport2)
Ovar2;Oport2 ` {emptr, p2}D2 {r2, q2} q2 ∗ r ⇒ r1 ∗ r′1 notInterfere(r′1,Oport1)

Ovar1,Ovar2;Oport1,Oport2 ` {emptr, p1 ∗ p2}D1||D2 {r, q1 ∗ q2}
(PAR)

Figure 10: Selected Inference Rules — Others

r. It is true when ∀σ1 = (s, tr1), σ2 = (s, tr2):

σ1 ∗ σ2 |= r ∗ p ∧ σ1 |= r ∧ σ2 |= p
∧ ∀e ∈ tr2 · isRecv(e)⇒ e.src ∈ dom(tr1)

⇒ σ2 |= p′

Def. 4 enables local deduction (p ⇒ q) with the extra knowledge about
environmental state (r). Particularly, all receives in the local state should

match with some sends in the environment. For instance, we have pt?X
pt!2
=⇒

X = 2, while pt?X ∗ pt!2 ⇒ X = 2 is not true since ∗ does not enforce
send-receive matches in the trace.

In Fig. 10, there are two rules of consequences. (CONSEQ-A) adopts
environmental aided implication for local deduction. To weaken a specifi-
cation, we can either strengthen its local precondition, or weaken its local
post-condition. (CONSEQ-B) is for the environmental state. Different from
(CONSEQ-A), it only allows strengthening the assumption of environment,
either at precondition or postcondition. These two rules are usually applied
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together with rule (RECV). (RECV) makes no assumption about the mes-
sage received. Using (CONSEQ-B), the current agent can make assumption
for the received value by strengthening the predicate in the assumption part.
Then, by using (CONSEQ-A), we can deduce the local state with the aid of
a stronger environmental assumption.

Rules (DISJ) and (CONJ) allows combing bifurcated deductions. For
(DISJ), the two post-assertions rely on different environmental assumptions,
so if at least one of these assumptions is satisfied, the local state must
satisfies q1 ∨ q2. (CONJ) is similar that needs no more explanation.

Our system supports spatial modularity, because it allows the proof of
a local agent to be extended with a frame by ∗, as long as the frame does
not interfere with existing proofs.

Definition 5 (Non-Interference) For an assertion r, we say that r does
not interfere with Oport, written as notInterfere(r,Oport), when:

r ⇒ (truetr ∗ (pt! ∨ pt? )⇒ pt /∈ Oport)

Predicate notInterfere(r,Oport) says that the trace specified by r does not
interfere with Oport, that is, it does not send or receive messages via any
port in Oport.

The spatial modularity is described by rules (FRM-ENV) and (FRM-
LOC) in Fig. 10. Rule (FRM-ENV) is the frame rule for the environment. It
allows the environment to be extended with frame r′′, as long as r′′ does not
interfere with D, i.e., r′′ must not race with r′ by sending messages to D; and
not race with q by receiving messages form r′. Rule (FRM-LOC) is the frame
rule for local state. If p′ does not contain any message passing predicates,
this rule is reduced to the standard frame rule in SL. If p′ contains some
message passing events, it must not interfere the existing communication
between r′ and q.

Definition 6 (Hooked Assertions) Assertion p is hooked with q by Oport,
which is denoted as p ./Oport q, iff for any trace tr such that tr |= p ∗ q, any
event e ∈ dom(tr), and any port pt ∈ Oport, the following conditions hold:

isSend(e) ∧ e.port = pt⇒ ∃e′ ∈ dom(tr) · e′.src = e, and
isRecv(e) ∧ e.port = pt⇒ ∃e′ ∈ dom(tr) · e.src = e′.

Intuitively, p ./Oport q says that for any trace tr which satisfies p ∗ q, there is
no pending send or receive event that accesses ports in Oport.
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Example 1 Let Oport = {pt}, posiSend = (∃X ·pt!X∧X > 0)∗, posiRecv =
(∃X · pt?X ∧X > 0)∗, we will have

• posiSend ./Oport posiRecv does not hold, and

• (posiSend ◦ pt!0) ./Oport (posiRecv ◦ pt?0) holds.

Here posiSend is a sequence of events sending positive numbers, and posiRecv
is a sequence of events receiving positive numbers. These two assertions are
not hooked, because there may exist pending events in posiSend. However,
the second pair above is hooked, since each sequence is appended with a
sentinel 0 at the end, which enforces each send to be paired with a receive
and vice versa.

There are some rules for hooked assertions, which are useful for program
reasoning.

p1 ./Oport q1 p2 ./Oport q2
p1 ◦ p2 ./Oport q1 ◦ q2

p1 ◦ p2 ./Oport q1 ◦ q2 p1 ./Oport q1
p2 ./Oport q2

p1 ./Oport q1 p2 ./Oport q2
p1 ∗ p2 ./Oport q1 ∗ q2

p1 ∗ p2 ./Oport q1 ∗ q2 p1 ./Oport q1
p2 ./Oport q2

With the definition of hooked assertion, we support temporal modularity
as well, that is, we allow a trace to be connected ahead or behind of
current trace. Temporal modularity is supported by rules (FRM-BHD) and
(FRM-AHD). Rule (FRM-BHD) allows appending an extra r′′ to the end
of environmental assumption. To ensure soundness, r′ should be hooked
with q′ so that the extra trace r′′ in the environment should not affect the
behavior of existing trace q. Rule (FRM-AHD) allows appending the frame
r′′ ∗ p′ ahead of the current trace, where r′′ is added to the environment, and
p′ is added to the local trace. The two assertions must be hooked together
so that they do not affect the communication of later traces. This rule can
be applied when proving sequential composition in programs.

Informally, in order to prove C1;C2, we can prove C1 and C2 indepen-
dently in the first to get, e.g., {r1, p1}C1 {r′1, p′1} and {emptr, emptr}C2 {r′2, p′2}.
By applying (FRM-AHD), C2 satisfies {r′1, p′1}C2 {r′1 ◦r′2, p′1 ◦p′2}. Therefore
by rule (SEQ), the conjunct program can be specified by {r1, p1}C1;C2 {r′1 ◦
r′2, p

′
1 ◦ p′2}.
Rule (PAR) is for parallel composition of separated agents. For D1||D2,

the local trace of D1 becomes the environment of D2, and vice versa. In the
rule, r is the environment of D1 and D2. Informally, D1’s environment is
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r ∗ traceOf(D2), and D2’s environment is r ∗ traceOf(D1)6. q1 ∗ r ⇒ r2 ∗ r′2
ensures D2’s environment is satisfied; and q2 ∗ r ⇒ r1 ∗ r′1 ensures D1’s
environment is satisfied.

6 Semantics and Soundness

From the view of a local agent, state transitions could be caused either by

itself or by other agents. We use (D,σ)
λ
 (D′, σ′) to represent the transition

of a local agent, where λ ∈ {e, l}, e denotes the transition caused by the
environment, and l denotes the transition caused by the agent itself.

Consider the configuration of an agent (i : C, s, tr), where the domain
of s is the set of variables owned by i. From its local view, the local state
includes store s, and local event trace (a sub-state of tr), and environmental
event trace (the other part of tr). Local event trace of agent i contains all
events e in tr where agent(e) = i.

Definition 7 (Trace Projection) tr � {i1, ..., im} projects tr to the local
trace of agents {i1, ..., im}:

(tr � {i1, ..., im})(e)
def
={

tr(e) e ∈ dom(tr) ∧ agent(e) ∈ {i1, ..., im}
undefined otherwise

Definition 8 (State Projection) Let D = i1 : C1 || . . . ||im : Cm be a
distributed program, then for any state σ = (s, tr), we define the local state
and environmental state for D:

σ.loc
def
= (s, tr � {i1, . . . , im})

σ.env
def
= σ′ if σ = σ.loc ] σ′

State projection separates a state into local and environmental parts:
σ.loc is the local state for agents in D; and σ.env is the environmental state.

Lemma 1 For any transition (D,σ)
λ
 (D′, σ′):

• if λ = e, then D = D′ ∧ σ.loc = σ′.loc

• if λ = l, then σ.env = σ′.env
6traceOf(D) is an informal operator that returns the trace state of program D.
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In Lemma 1, the first property says the environment could not affect the
state of local resource; and the second property specifies that local state
transition would not affect the current environmental state.

Definition 9 (Semantics) Ovar;Oport |= {r, p}D {r′, q} holds, iff for all σ
such that σ.env |= r ∧ σ.loc |= p, and if the followings are true:

• (D,σ)
λ
 ∗(skip7, σ′);

• σ′.env |= r′.

Then σ′.loc |= q.

Intuitively, definition of Ovar;Oport |= {r, p}D {r′, q} says that D starts
from a state σ |= r ∗ p, where r specifies the state of environment, p specifies
local state. Then if the D terminates at the state σ′, that σ′.env |= r′, then
σ′.loc |= q.

Theorem 3 (Soundness) If the specification of D is Ovar;Oport ` {r, p}D {r′, q},
then Ovar;Oport |= {r, p}D {r′, q}.

The soundness is proved by induction over reasoning rules. By proving
the soundness for each rule, the theorem follows by a straightforward rule
induction. Detailed proof of this theorem is available online [12].

7 Non-determinism: A Case Study

The difficulty for understanding a concurrent program lies on non-deterministic
inter-thread interleaving, for both shared memory and message-passing mod-
els.

In our setting, since each port belongs to one agent, all receive events
on a port are therefore deterministically ordered by the syntactic program
order. In this circumstance, non-determinism is only caused by send events
to the same port which come from different agents, because these events are
not ordered by the happens-before relation.

Consider the following example:

send (2, pt); || send (3, pt); || x := recv (pt);

y := recv (pt);

7Here the skip represents that the code of each agent in D is the skip.
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The program consists of two senders (two agents which send messages,
namely sender1 and sender2) and one receiver (receiver). The final state
of the receiver could be either x = 2 ∧ y = 3 or x = 3 ∧ y = 2, since the
two sends do not have a determined order. This program can be proved by
different ways based on associativity: either by (sender1 || sender2) || receiver,
or by sender1 || (sender2 || receiver), or sender2 || (sender1 || receiver), where
the later two possibilities are quite symmetric, thus we will consider only
the first two cases below.

For the first case, the post-condition of two senders, sender1 || sender2,
is:

1. {emptr, pt!2 ∗ pt!3}

Note that the two send events are unordered, so they are connected by ∗.
For the receiver, the proof takes the similar form as the proof example

in Section 1, we can prove the following two specifications:

2. {emptr, emptr}
x := recv (pt);

y := recv (pt);

3. {pt!2 ◦ pt!3, x = 2 ∧ y = 3 ∧ truetr}

4. {emptr, emptr}
x := recv (pt);

y := recv (pt);

5. {pt!3 ◦ pt!2, x = 3 ∧ y = 2 ∧ truetr}

Applying rule (DISJ) to the two deductions, the post-condition for the
receiver is:

6. {pt!2 ◦ pt!3 ∨ pt!3 ◦ pt!2, ((x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2)) ∧ truetr}

Since pt!2 ∗ pt!3⇒ (pt!2 ◦ pt!3 ∨ pt!3 ◦ pt!2), the environmental part of
line 6 is satisfied by the local state of line 1. By parallelling line 1 and 6, we
have:

7. {emptr, ((x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2)) ∧ truetr}

Line 7 is the specification of the whole system. It depicts the two possible
post-conditions for the program.

Another proof is based on the second associative form, which combines
the receiver with a sender first. We present a proof for the receiver first:

8. {emptr, emptr}
9. {pt!2 ∗ pt!3, emptr}

x := recv (pt);

y := recv (pt);

10. {pt!2 ∗ pt!3, pt?X ◦ pt?Y ∧ x = X ∧ y = Y }
11. {pt!2 ∗ pt!3, ((x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2)) ∧ truetr}
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Line 9 is obtained by line 8 by assuming two unordered send events in the
environmental state. Line 11 comes from line 10 according to environmental
aided deduction: there are two possible post-conditions for the value of x
and y.

The post-condition of one sender is {emptr, pt!3}. According to rule
(PAR), the sender needs to conjoin with another environmental assumption,
which is pt!2 here, in order to satisfy the environmental state of line 11. By
rule (PAR), we can parallel compose the sender with the receiver and have
a resulted post-condition:

12. {pt!2, ((x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2)) ∧ truetr}

The other sender can satisfy the rest of the assumption in line 12, which
results in the same post-condition as line 7. This step is similar and thus
omitted.

The examples shows the usage of our logic to reason the systems
that exhibit non-deterministic behaviors. The local thread only needs to
assume unordered send events in the environment, which will result in non-
deterministic local state from environmental aided deduction. The proofs for
a program can be various depending on different association among threads.

8 Example: Filters

Filters form a common class of distributed systems. A filter is an agent that
receives messages from one or more ports and send messages to some other
ports. In this section, we prove a filter example — Merging Network.

Fig. 11 (upper part) shows the architecture of a merging network. Each
agent in the network is a filter that merges two monotonic positive streams
into one monotonic stream, and 0 marks the end of streams. Fig. 11 (lower
part) shows an implementation of agent 5. Here each port takes a unique
ID, and k@i denotes port k of agent i.

Agent 5 owns two variables and two ports, and is sequentially composed
by three while loops. As the proof of the trivial example in Section 1, we
prove these loops separately and then sequentially compose these independent
proofs together.
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Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Agent 1

Agent 2

Agent 3

Agent 5

Agent 4

Port: 1

Port: 2

Agent 6

agent5 () {
v1 = recv (1@5); v2 = recv (2@5);

while (v1 6= 0 ∧ v2 6= 0){
if (v1 > v2) {send (v2, 2@6); v2 := recv (2@5);}
else {send (v1, 2@6); v1 := recv (1@5);}}

while (v1 6= 0) {send (v1, 2@6); v1 := recv (2@5);}
while (v2 6= 0) {send (v2, 2@6); v2 := recv (1@5);}
send (0, 2@6);

}

Figure 11: Merge Sort

For clarity, we define the following predicates to simplify descriptions:

mono(pt)
def
= (truetr ∗ pt!X) ◦ (truetr ∗ pt!Y )⇒ 0 < X ≤ Y

monoEnd(pt)
def
= mono(pt) ◦ pt!0

large(var)
def
= ∀n · (truetr ∗ 2@6!n⇒ var = 0 ∨ var ≥ n)

eqLast(pt, var)
def
= truetr ◦ pt?X ⇒ var = X

mono(pt) says the environment sends positive monotonic messages to pt, and
monoEnd(pt) additionally says the stream has ended; large(var) says var is
either larger than any message that previously sent to 2@6 or equal to 0;
eqlast(pt, var) says var equals to the last message that received from pt.

Fig. 12 lists the proof for the first loop. Line 1 is the loop invariant.
It assumes that the environment send monotonic streams to 1@5 and 2@5,
and its local trace is a composition of some receive events of that two ports
and a set of monotonic sends to port 2@6. Line 2 is obtained from line 1 by
conjoining the boolean condition of the while. Line 3 falls into a branch of
the if statement. In this branch, the agent sends v2 and receives messages
from 2@5. Therefore, we treat some assertions about v1 and 1@5 in line 2 as
frame, and line 3 is deduced by framing out those irrelevant traces. Line 4 is
the same as line 3, because according to large(v2) ∧ v2 6= 0, v2 is larger than
any message that was previously sent to 2@6, so mono(2@6) holds in line
4; also since v1 > v2, large(v1) remains to be true in line 4. The deduction
from line 4 to 5 is also the standard local deduction. Deductions for the
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1

monoEnd(1@5) ∗monoEnd(2@5),
(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)

∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)


while (v1 6= 0 ∧ v2 6= 0){

2

monoEnd(1@5) ∗monoEnd(2@5),
(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6) ∧ v1 6= 0

∧ v2 6= 0 ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)


if (v1 > v2){

3

{
monoEnd(2@5),

(2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2)
∧ eqLast(2@5, v2) ∧ v1 > v2 > 0

}
send (v2, 2@6);

4

{
monoEnd(2@5),

(2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2)
∧ eqLast(2@5, v2) ∧ v1 > v2 > 0

}
v2 := recv (2@5);}

5
{

monoEnd(2@5), (2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2) ∧ eqLast(2@5, v2)
}

else{
send (v1, 2@6);

v1 := recv (1@5);}
}

6

monoEnd(1@5) ∗monoEnd(2@5),
(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)

∧ (v1 = 0 ∨ v2 = 0) ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)


Figure 12: Proof of the First While-loop

other branch are symmetric and thus omitted. Line 6 is obtained from line
5 by conjoining with the frame that was put aside in line 3.

Proof of the second loop is given in Fig 13. Line 7 is obtained from line
6 by framing out irrelevant assertions about 2@5 and adjoining the boolean
predicate that guarded by the loop. The proof from line 7 to line 8 is just
local reasoning as the proof from line 3 to 5. Line 9 is obtained by conjoining
the frame of line 7 back to the post-condition. The third loop is symmetric
with the second, and therefore we omit its proof.

The sketch of the overall proof is given in Fig. 14, where we only present
the assertions at the critical places, e.g., the position where a framework is
put aside or taken back. As we have already discussed, the overall proof is
obtained by sequentially conjoining several separated proofs of some locally
connected commands. The post-condition says that if the environment send
monotonic streams to the two ports of agent 5, then the agent will send
monotonic streams to 2@6.

Note that the specification of agent 5 can be joined with the specification
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while (v1 6= 0){

7

{
monoEnd(1@5),

(1@5? )∗ ∗mono(2@6) ∧ v1 6= 0 ∧ v2 = 0
∧ large(v1) ∧ eqLast(1@5, v1)

}
send (v1, 2@6);

v1 := recv (2@5);

8

{
monoEnd(1@5),

(1@5? )∗ ∗mono(2@6) ∧ v2 = 0 ∧ large(v1)
∧ eqLast(1@5, v1)

}
}

9

{
monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ v1 = 0 ∧ v2 = 0

}
Figure 13: Proof of the Second While-loop

of other agents, just like the proof of the tiny example in Section 1. It is
feasible if other agents take different algorithms as long as the assumption
of agent 5 is satisfied.

9 Example: Leader Election

Assume there are n agents that are connected in a ring. We count them mod
n, then 0 is another name for agent n, n+ 1 is another name for agent 1, etc.
Each agent i holds a unique fixed positive integer tokeni and a local boolean
variable ldi whose initial value is false. When the program terminates, the
agent who has the biggest token wins, and its local variable ldi is set to true.

Since each agent has only one port, we reuse agent ID as port ID. The
program is given in Fig. 15. Each agent sends its token following the ring at
the start and then goes into a loop. When an agent receives an incoming
token, it compares the token with its own. If the incoming token is greater, it
keeps passing the token; if the token is less, it discards the incoming message
by doing nothing; if it is equal to its own, the agent sends out 0 to claim the
leader has been chosen, and all agents terminate after 0 has past around the
ring.

We use maxtk(i, j) to represent the largest token from agent i to j
(including both i and j). Assertion p(i) says if agent i sends tokenj to the
next, then tokenj is the largest token from j to i:

p(i)
def
= ∀j · (i+ 1)!tokenj ⇒ tokenj = maxtk(j, i)

Note that tokenj is not a variable, but is a predefined constant, thus all
maxtk(j, i) are constants as well.
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agent5 (){
{emptr, emptr}
v1 = recv (1@5);

v2 = recv (2@5);

{1@5!X ∗ 2@5!Y, 1@5?X ◦ 2@5?Y ∧ v1 = X ∧ v2 = Y }
{monoEnd(1@5) ∗monoEnd(2@5), 1@5?X ◦ 2@5?Y ∧ v1 = X ∧ v2 = Y }monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)


while (v1 6= 0 ∧ v2 6= 0){

if (v1 > v2){send (v2, 2@6); v2 := recv (2@5);}
else{send (v1, 2@6); v1 := recv (1@5);}

}monoEnd(1@5) ∗monoEnd(2@5),
(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)

∧ (v1 = 0 ∨ v2 = 0) ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)


while (v1 6= 0){{

monoEnd(1@5),
(1@5? )∗ ∗mono(2@6) ∧ v1 6= 0 ∧ v2 = 0
∧ large(v1) ∧ eqLast(1@5, v1)

}
send (v1, 2@6); v1 := recv (2@5);{

monoEnd(1@5), (1@5? )∗ ∗mono(2@6) ∧ v2 = 0 ∧ large(v1) ∧ eqLast(1@5, v1)
}

}
while (v2 6= 0){send (v2, 2@6); v2 := recv (1@5);}
{monoEnd(1@5) ∗monoEnd(2@5), (1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6) ∧ v1 = 0 ∧ v2 = 0}
send (0, 2@6);

{monoEnd(1@5) ∗monoEnd(2@5), (1@5? )∗ ∗ (2@5? )∗ ∗monoEnd(2@6)}
}

Figure 14: Proof Sketch of Merge Sort

We are expected to prove that for any agent i, if the local variable
ldi = tt, then agent i holds the largest token around the ring. We use
predicate valid(ldi) to specify the status of ldi:

valid(ldi)
def
= ldi = tt⇒ tokeni = maxtk(1, n)

The system should satisfy the following tuple:

{emptr,∀i · valid(ldi)}

Note that valid(ldi) always holds when ldi = ff.
Proof of one agent in the program is given in Fig. 16, where we have

proved the following triple:

{emptr, emptr} agenti {p(i− 1), p(i) ∧ valid(ldi)}
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agenti(){
ldi := ff;

send (tokeni, i+ 1);
tki := recv (i− 1);
while (tki 6= 0){

if (tokeni < tki){send (tki, i+ 1);}
if (tokeni = tki){ldi = tt; send (0, i+ 1);}
tki := recv (i-1);

}
if (ldi = ff){send (0, i+1);}

}

Figure 15: Leader Election: Program

From the triple, we proved that the local state of each agent satisfies the
environmental assumption of the next agent. Since all agents are connected
in a circle, so the system is self-satisfied, and we can easily have the following
specification using (PAR) rule:

{emptr, emptr} agent1 || . . . || agentn {emptr, valid(ld1) ∧ . . . ∧ valid(ldn)}

Therefore, in the post-condition, each thread in the system holds a valid
boolean. If a boolean is tt, the agent must have the largest token around
the circle.

Leader election is a classic algorithm that has been proved by many
others. However, the most distinguished feature is that our method can
directly prove upon the real code, rather than mathematical abstractions and
auxiliary lemmas. Besides, the system is proved modularly: each agent is
proved against its local environmental reliance, and the parallel composition
ensures the system to be self-contained.

10 Related Work and Conclusions

Now we summarize some related work, and then give a conclusion.
Program verification has been studied from various standpoints for

decades. Verification of concurrent systems is especially interesting because
of their inherent non-determinism.

Process Calculus. For the message-passing models, there exist many
well-known works on process calculi, e.g., CSP (Communicating Sequential
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agenti(){
{emptr, emptr}
ldi := ff;

{emptr, emptr ∧ ldi = ff}
{emptr, emptr ∧ valid(ldi)}
send (tokeni, i+ 1);
{emptr, (i+ 1)!tokeni ∧ valid(ldi)}
tki := recv (i− 1);
{emptr, (i+ 1)!tokeni ◦ (i− 1)?X ∧ tki = X ∧ valid(ldi)}
{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?X) ∧ tki = X ∧ valid(ldi)}
while (tki 6= 0){
{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?X) ∧ tki = X ∧X 6= 0 ∧ valid(ldi)}
if (tokeni < tki){
{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?X) ∧ tki = X ∧X > tokeni ∧ valid(ldi)}
send (tki, i+ 1);
{p(i− 1), p(i) ∧ valid(ldi)}

}
if (tokeni = tki){
{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?X) ∧ tki = X ∧X = tokeni ∧ valid(ldi)}
{p(i− 1), p(i) ∧ tki = tokeni ∧ tokeni = maxtk(i+ 1, i)}
ldi = tt;

{p(i− 1), p(i) ∧ tki = tokeni ∧ tokeni = maxtk(i+ 1, i) ∧ ldi = tt}
{p(i− 1), p(i) ∧ valid(ldi)}
send (0, i+ 1);
{p(i− 1), p(i) ∧ valid(ldi)}

}
tki := recv (i-1);

{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?X) ∧ tki = X ∧ valid(ldi)}
}
{p(i− 1), p(i) ∧ (truetr ◦ (i− 1)?0) ∧ tki = 0 ∧ valid(ldi)}
if (ldi = ff){send (0, i+1);}
{p(i− 1), p(i) ∧ valid(ldi)}

}

Figure 16: Leader Election: Proof

Processes) [7], CCS (Calculus of Communicating System) [13], π-calculus [15],
and KPN (Kahn Process Network) [9]. However, those algebraic systems
focus mainly on the agent behavior deductions and equivalence, e.g., bi-
simulation. It is not very clear how to apply those calculi to modularly
specify and reason the properties of local states of the agents, which are
written in real code and defined with stated-based semantics. The later is
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the main focus in this work.

Separation Logic. Recently there is a clear trend that concurrency verifi-
cation should support better modularity and locality, in order to verify larger
systems. Modular verification of shared memory models has gained much
progress since the development of the Separation Logic [19]. Separation Logic
treats the program state as resource, and modularity is achieved by curving
irrelevant resource (namely the frame) out of current state and conjoining
the frame back when merging the local state back into the environment. In
considering shared memory concurrency, a typical idea is to take the state of
memory (heap) as the resource, which is a mapping from locations to values.
In the reasoning, a portion of memory could be curved out or merged back,
as well as transferred between the agents, those make the inference modular.

However, in the message-passing model, event traces are, unlike heap,
well-organized structures that associate with many add-on restrictions, e.g.,
acyclic, send-receive match, etc. The complexity of trace structures impedes
state-based Hoare type reasoning. The challenge (and also a shining spot
of our paper) is to structurally specify event traces so that local reasoning
could be achieved by curving out irrelevant events, as in other Separation
Logic related works. Our framework solves this problem by introducing two
operators to depict the separation of traces, so that the traces could be either
separately connected or temporally connected; and introducing four frame
rules, so that frames could be added in four ways: adding in environmental
or local trace, or adding ahead or behind of the current trace. These make
our system flexible and powerful.

Rely-Guarantee Based Reasoning. Rely-Guarantee (RG) reasoning
was developed in 1980th [8]. In RG, a pair of Rely and Guarantee conditions
are used to regulate the behaviors of the portions of the verified programs.
The rely condition specifies the agents’ local assumption on the environmental
interferences, and guarantee condition is agents’ interference upon other
agents which form its environment. There are some limitations of the regular
RG reasoning. In the first, the RG conditions are global and permanent,
this requires a detailed understanding of the program to be proved prior any
deduction. Second, the stability requirement of pre/post-conditions will also
inhibit its accessibility.

RG reasoning has been extended with Separation Logic for verifying
concurrent systems towards better modularity. The notable works in this
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direction include Vafeiadis et al. [20] and Wehrman et al. [22]. Many inter-
esting concurrent programs have been verified that show the power of the
marriage of the RG reasoning with the Separation Logic. However, these
works all target the shared memory model.

Our system gets clearly some ideas from RG. However, comparing with
the regular RG reasoning (that applies also to the most recent works in this
direction), ours has some innovations: (1) The rely condition of RG should
be pre-defined and fixed, here we can dynamically determine, calculate and
alter the environmental assumption. (2) Our environmental assumption is
hidden once it is satisfied by other agents, rather than remained permanently
as RG reasoning. This makes better modularity in the reasoning. (3)
In RG reasoning, pre- and post-conditions are required to be stable, i.e.,
the assertions should remain valid no matter how environment interferes.
Stability is a rather strong requirement that requires thoughtful assertion
definitions. In our system, this requirement is also eliminated, that makes
the reasoning process easier.

Other Works. W. de Roever et al. [4] published a book which made
an excellent summarization with good coverage of previous works on the
state-based verification of concurrent programs. The leading theme of the
book is compositional techniques for concurrency verification. The book
makes a comprehensive discussion about verification of both shared memory
and message-passing models, and clearly, our work can be viewed as a new
development on the same theme. However, there are some fundamental
differences and contributions that distinguish our logic from W. de Roever
et al.’s and many others: (1) by our limited knowledge, although Lamport’s
trace semantics has been proposed for decades, there is no state-based
reasoning system defined based on this semantics; (2) the two-dimensional
(temporal and spatial) modularity of our work, which is a benefit extracted
from Lamport’s semantics, has not been clearly touched by others; (3) our
logic directly reason about imperative programming language, rather than
some high level mathematical descriptions.

There are also many other works aiming at specifying and reasoning
message-passing programs based on trace semantics. For instance, Bickford
et al. [1] formally defined the event trace structures, and gave a minimal set
of axioms for trace reasoning. Comparing with other trace-based reasoning,
including Bickford’, ours supports better modularity, and allows directly
reasoning over existing code modules and conjoining separated proofs based
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on several explicit conditions.

Villard et al. [21] proposed a separation-based logic for copyless message-
passing models. One feature of their work is the support of ownership transfer.
It is possible to extend our logic for ownership transfer, e.g., by adding the
notion of “resource” for each agent and specifying those transmitted resource
inside environmental assumptions. However, this solution is similar with
Concurrent Separation Logic [2], and will not be able to provide much
theoretical innovation. In another aspect, Villard’s method is still defined
based on the shared memory model, while ours is for pure message-passing
systems.

Conclusion and future work.

We propose a compositional reasoning system for verifying distributed pro-
grams with asynchronous message passing. The work inherits and integrates
some ideas from Separation Logic, Rely-Guarantee reasoning, and others, and
archives very good modularity in both specification and verification. This
reasoning framework exhibits two major contributions: First, we embody
the concept of event graphs for distributed systems, and supports modular
specification at both temporal and spatial dimensions. Second, we propose
an innovative Hoare triple, which syntactically separates environmental and
local assertions, to better specify and reason interactions between agents
and the environment. We have applied this method to reason about some
non-deterministic message-passing programs. The formal specification and
verification of a filter network and a leader election algorithms are presented
this paper. In the future, we will further test its applicability with more
applications. It is also interesting to explore the possibility of building tools
to automate the verification process.
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