532 research outputs found

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    Energy Efficient Protocols for Active RFID

    Get PDF
    Radio frequency identification (RFID) systems come in different flavours; passive, active, semi-passive, or semi-active. Those different types of RFID are supported by different, internationally accepted protocol standards as well as by several accepted proprietary protocols. Even though the diversity is large between the flavours and between the standards, the RFID technology has evolved to be a mature technology, which is ready to be used in a large variety of applications. This thesis explores active RFID technology and how to develop and apply data communication protocols that are energy efficient and which comply with the different application constraints. The use of RFID technology is growing rapidly, and today mostly “passive” RFID systems are used because no onboard energy source is needed on the transponder (tag). However, the use of “active” RFID-tags with onboard power sources adds a range of opportunities not possible with passive tags. Besides that Active RFID offers increased working distance between the interrogator (RFID-reader) and tags, the onboard power source also enables the tags to do sensor measurements, calculations and storage even when no RFID-reader is in the vicinity of the tags. To obtain energy efficiency in an Active RFID system the communication protocol to be used should be carefully designed. This thesis describes how energy consumption can be calculated, to be used in protocol definition, and how evaluation of protocols in this respect can be made. The performance of such a new protocol, in terms of energy efficiency, aggregated throughput, delay, and number of collisions in the radio channel is evaluated and compared to an existing, commercially available protocol for Active RFID, as well as to the IEEE standard 802.15.4 (used, e.g., in the Zigbee medium-access layer). Simulations show that, by acknowledging the payload and using deep sleep mode on the tag, the lifetime of a tag is increased. For all types of protocols using a radio channel, when arbitrating information, it is obvious that the utilization of that channel is maximized when no collisions occur. To avoid and minimize collisions in the media it is possible to intercept channel interference by using carrier sense technology. The knowledge that the channel is occupied should result in a back-off and a later retry, instead of persistently listening to the channel which would require constant energy consumption. We study the effect on tag energy cost and packet delay incurred by some typical back-off algorithms (constant, linear, and exponential) used in a contention based CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance) protocol for Active RFID communication. The study shows that, by selecting the proper back-off algorithm coefficients (based on the number of tags and the application constraints), i.e., the initial contention window size and back-off interval coefficient, the tag energy consumption and read-out delays can be significantly lowered. The initial communication between reader and tag, on a control channel, establishes those important protocol parameters in the tag so that it tries to deliver its information according to the current application scenario in an energy efficient way. The decision making involved in calculating the protocol parameters is conducted in the local RFID-reader for highest efficiency. This can be done by using local statistics or based on knowledge provided by the logistic backbone databases. As the CMOS circuit technology evolves, new possibilities arise for mass production of low price and long life active tags. The use of wake-up radio technology makes it possible for active tags to react on an RFID-reader at any time, in contrast to tags with cyclic wake-up behaviour. The two main drawbacks with an additional wake-up circuit in a tag are the added die area and the added energy consumption. Within this project the solution is a complete wake-up radio transceiver consisting of only one hi-frequency very low power, and small area oscillator. To support this tag topology we propose and investigate a novel reader-tag communication protocol, the frequency binary tree protocol

    Design and application of radio frequency identification systems

    Get PDF
    The recent world, development of effective technologies for linking the object wireless information is being prompted in various fields. Radio frequency identification (RFID) is the latest technology for automatic identification which allows the transmission of a unique serial number wirelessly. The purpose of this paper is to review RFID systems and its various components infrastructure. The components and features are still under research and being integrated in existing systems to create a marketable and potential new system. To achieve higher performance; low cost, low power RFID tag with efficient anticollision technique which provides a large throughput and flexible security mechanism is required. The review has shown different types of readers, antennas and tags which would becomes a bottleneck to reduce the RFID cost. The paper has shown details the entire components where RFID researchers will get benefit for the development of future technology. The challenges of RFID system design with the entire components (Reader, Tag and Antenna) and its advantages, disadvantages are briefly explained

    Definition, Characteristics and Determining Parameters of Antennas in Terms of Synthesizing the Interrogation Zone in RFID Systems

    Get PDF
    The radio frequency identification (RFID) systems are gaining in popularity in automated processes of object identification in various socioeconomic areas. However, despite the existing belief, there is no universal RFID system on the commercial market that could be used in all user applications. All components of a developed solution should be carefully selected or designed according to the specification of objects being recognized and characteristics of their environment. In order to determine parameters of propagation or inductively coupled system, especially when it is dedicated to uncommon applications, a multiaspect analysis has to be taken into consideration. Due to complexity, the problem is reduced to analytical or experimental determination of RFID system operation range and a “trial and error” method is mostly used in the industry practice. In order to cope with the barriers existing in the RFID technology, the authors give the review of latest achievements in this field. They focus on the definition, comprehensive characteristics and determination of the antenna parameters. They also pay attention to the 3D interrogation zone (IZ) that is the main parameter in which multitude technical aspects of the RFID systems are gathered simultaneously, as regards the theoretical synthesis as well as market needs

    Global traceability

    Get PDF
    The use of Ultra High Frequency (UHF) Radio Frequency Identification (RFID) in supply chain management (SCM) systems was a big source for optimism. However, the expected rapid industry adoption of RFID did not take place. This research explores some of the existing challenges and obstacles to RFID adoption, such as the lack of consistent UHF spectrum regulations for RFID or the absence of standards that promote integration with Automatic Identification and Data Capture (AIDC) media. As a conclusion, in this project we suggest some solutions to these challenges in the use of multi-frequency RFID tags that can be read at more that one frequency or novel migration strategies and standards that would help expand the industry.Outgoin

    Long-range monitoring system with PDMS material

    Get PDF
    This paper describes the development of a long range monitoring system that integrates Cottonwood: UHF Long Distance RFID reader module with Raspberry Pi 3. When a UHF RFID tag is within the UHF RFID reader antenna’s range, the unique ID of the tag will be transferred to the Raspberry Pi 3 to be processed. Then, the data will be sent over to the database wirelessly to be managed, stored, and displayed. The paper also describes the measurement done to determine the most suitable thickness of PDMS material so that it could be incorporated as a wearable transponder. After the result is calculated and tabulated, it can be concluded that the most suitable thickness of PDMS material for the transponder is 8 mm

    Caraoke: An E-Toll Transponder Network for Smart Cities

    Get PDF
    Electronic toll collection transponders, e.g., E-ZPass, are a widely-used wireless technology. About 70% to 89% of the cars in US have these devices, and some states plan to make them mandatory. As wireless devices however, they lack a basic function: a MAC protocol that prevents collisions. Hence, today, they can be queried only with directional antennas in isolated spots. However, if one could interact with e-toll transponders anywhere in the city despite collisions, it would enable many smart applications. For example, the city can query the transponders to estimate the vehicle flow at every intersection. It can also localize the cars using their wireless signals, and detect those that run a red-light. The same infrastructure can also deliver smart street-parking, where a user parks anywhere on the street, the city localizes his car, and automatically charges his account. This paper presents Caraoke, a networked system for delivering smart services using e-toll transponders. Our design operates with existing unmodified transponders, allowing for applications that communicate with, localize, and count transponders, despite wireless collisions. To do so, Caraoke exploits the structure of the transponders' signal and its properties in the frequency domain. We built Caraoke reader into a small PCB that harvests solar energy and can be easily deployed on street lamps. We also evaluated Caraoke on four streets on our campus and demonstrated its capabilities.National Science Foundation (U.S.

    PERFORMANCE ANALYSIS OF SECURITY MEASURES IN NEAR FIELD COMMUNICATION

    Get PDF
    Nowadays near field communication are largely used in so many different applications for the convenience and ease of use they provide. They store and exchange many personal data, some of them requires more security than others, due to the value they poses, such as banking information and personal identification. And maintaining high level of security is task of the utmost priority. The main focus of this thesis is establishing a knowledge base for different NFC/RFID devices. Evaluating the different encryption algorithms used currently, based on their encryption/decryption time, their immunity to brute force attack, and the amount of power needed to execute them. The encryption algorithms will be implemented using Python programing language and tested on a windows computer in order to test their immunity against brute force attack. Encryption/decryption time and the power usage will be tested on a Raspberry Pi, for the similarities it has with modern mobile devices.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore