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Abstract

Nowadays near field communication are largely used in so many different applications
for the convenience and ease of use they provide. They store and exchange many
personal data, some of them requires more security than others, due to the value they
poses, such as banking information and personal identification. And maintaining high

level of security is task of the utmost priority.

The main focus of this thesis is establishing a knowledge base for different NFC/RFID
devices. Evaluating the different encryption algorithms used currently, based on their
encryption/decryption time, their immunity to brute force attack, and the amount of

power needed to execute them.

The encryption algorithms will be implemented using Python programing language and
tested on a windows computer in order to test their immunity against brute force attack.
Encryption/decryption time and the power usage will be tested on a Raspberry Pi, for

the similarities it has with modern mobile devices.

Keywords: Encryption, Decryption, Brute Force Attack, NFC, Security.



1. Introduction

Ever since Marconi proved the radio waves capability to provide a continuous contact in
1897, the wireless telecommunication revolution started (Hioki 2000). The speed at
which it grows has never been faster. Nowadays telecommunication has different
applications such as broadcasting to several receivers (TV and Radio), point to point
systems (control unit to machine), a point to multi point systems (cellular systems),
wireless networks and many others varying from long to short distance. The main focus
of this thesis is on Near Field Communication (NFC), a form of a short range

communication, analyzing the security techniques used.

NFC technology was developed by Sony and Philips - based on radio frequency
identification technology (RFID) - in order to share information at a maximum data rate
of 424kbps by providing a wireless communication link between devices separated by

less than 4 centimeters. NFC technology is compliant with RFID standards and

protocols.
Data
rate
1Y B Wircless USB/
Ultrawideband

100Mb

10Mb

1Mb

100Kb | '8

0.01m 0.1m im 10m 100m 1km 10km Range

Figure 1. Distance and data rate difference of NFC with other existing wireless technologies (NFC Forum)



The communication between the two devices requires at least one of them to be active.
Due to the simplicity of establishing a connection, this technology has potentials in
various applications such as ticketing, e-commerce, electronics keys and identifications,

and also complimenting many other wireless technologies such as Bluetooth and Wi-Fi.

NFC is compatible with other existing contactless infrastructure and it enables users to
use one device with different systems (NFC Specifications). NFC is based on RFID
technology, the main characteristic that differentiates NFC from RFID is that the new
technology prepares bidirectional data transmission between NFC equipped devices. For
the communication between the two devices it is just enough to bring them close

together or make them touch physically (Hossein 2012).

The main objective of this thesis is to analyze and examine the different security
techniques used, to ensure the integrity and safety of the shared information between
RFID enabled devices. The main focus is on encryptions algorithms.

To achieve this goal, a base of knowledge regarding NFC systems must be established.
Therefore, at first, there will be an introduction to the RFID systems, followed by a

technical overview for NFC systems and different operation modes.



2. Literature Review

NFC topic is still relatively new in the literature sense, and the idea in its basic form
developed from the older RFID communication systems. The advancement in mobile
computational power has facilitated the emergence of new application. Due to this
reason, most of the literature deals with application development and how it utilizes
NFC systems in different areas. Literature regarding NFC security is somewhat sparse
and about one fifth of all the literature regarding NFC is related to security. This is
mainly due to the nature of NFC systems, the close proximity provides a natural
immunity against several attacks, and partially due to the fact that NFC systems is still

new and not widely used in different areas communication and commerce.

Naser Hossein Motlagh details the NFC systems and the background from which it was
derived in his Master level thesis from the University of Vaasa. NFC stands for Near
Field Communication, and in definition it refers to short range wireless communication
technique operating on 13.6 MHz with 14 KHz bandwidth. Initially developed by Sony
and Philips and derived from RFID protocols, NFC devices are backward compatible
with other RFID enabled devices. The main advantage of NFC systems is the fast
detection and setup time. Hence it can be used to facilitate other forms of
communication such as Bluetooth or WLAN connection without any manual
configurations, by just simply bringing the two devices in close proximity to each other
and the connection is set. Other applications include Peer-to-Peer mode to transfer data
over the NFC connection, Reader/Writer mode in which an NFC enabled device can
manipulate the content stored in passive RFID tags or smart cards, and Card Emulator
mode, that allows the NFC enabled device to “mimic” a smart card so it could be read

by an external smart card reader (i.e. debt card reader). (Hossein 2012)

The paper “NFC Devices: Security and Privacy” by Madlmayer, Langer, Kantner and
Scharinger examines the issue of privacy and security, after a short introduction of NFC
systems and its component. Several key Scenario Cases were introduced, based on
them, threat model assumptions and suggestions were given, regardless of the actual
feasibility of the threats. Also, they have defined the trust levels of the NFC systems
components and how to improve them, what are the risks related to each component

itself, and the connection to other components. The proposed counter measures include



dynamic ID with no ID based services, a manual control to switch on/off NFC, which
includes a special mode (NFC flight mode). Other recommendations are related to the
secure element in the NFC systems, which include authenticating the application index
in the Secure element, managing the in device security, and finally integrating a security
layer for the peer to peer communication link. The assumptions made in this paper are
more focused on the integrity of the NFC system components, and they briefly outline
the possible attacks that might occur during the communication between two devices.
However, the attacks listed in this paper are generic and not intended for all wireless
systems, since some of them are not a threat to NFC systems due to the connection
nature of NFC systems (i.e. close proximity). (Madlmayer 2008)

Ernst Haselsteiner and Klemens Breitfull from Philips Semiconductors published a
paper during Workshop on RFID Security RFIDSec (2006), under the name *“Security
in Near Field Communication (NFC) Strengths and Weaknesses”. In their paper, they
briefly discussed the applications and operation modes, they also discussed the most
common threats for any wireless communication system, and how feasible they were to
NFC systems. Based on their research results they suggested solutions to mitigate them.
In their paper they stated that the nature of NFC was highly secure but not complete.
Also, they showed that the man in the middle attack was practically impossible, other
attacks like eavesdropping, and data corruption/data modification/insertion were
possible. These could be mitigated by using a secure channel. Using standard key
agreement protocols or a specific key agreement that is designed especially for NFC
systems would provide an improved level of security. However, their solutions require
both ends of the communication system to be always listening which in turn results in
more power consumption. Also, the asymmetrical keys agreements like Elliptic Curve
Cryptography or RSA require a higher processing power, which might not be available

in certain low cost NFC enabled devices. (Haselsteiner & Breitfull 2006)

Gauthier Van Damme and Karel Wouters took a different approach with their paper
“Practical Experiences with NFC Security on mobile Phones” by designing a Secure
NFC Offline Payment Application, based on their analysis of different possible threats
and attacks. Also, they demonstrated the complexity and the byproducts of designing

an application where the security level and privacy integrity require the highest priority.



In their paper, they used two Nokia phones (6131 and 6212) running on Symbian S40.
They analyze the Secure Element available in the device, and how it affects the
transaction characteristics. Finally, they demonstrate the practical problems in the
implementation. Most of the problems they encountered are related to the programming
language used in the secure element, which increased the time of executing the
cryptographic protocols, and limited the programmers from optimizing the application.
(Van Damme & Wouters 2009)

Collin Mulliner presented a method of testing and analyzing the vulnerabilities and
possible attacks on NFC-enabled mobile phones through the application of Fuzzing
using NFC Tags. The NFC system itself was analyzed, along with the other
components which can be controlled via NFC, including Telephony subsystem and the
web browser. During the testing several attacks were possible, and a survey was made
among several service providers to check the feasibility and the impact of these attacks.
The testing device was again the Nokia 6313 running the Symbian S40 operating
system. As discussed previously, the OS has several limitations that brings to the
forefront vulnerabilities in the security and allows different exploits to occur. (Mulliner
2009)

There are several factors that affect the amount of publications regarding the security
analysis of NFC systems. First, the lack of standardization makes testing, and
developing solutions for security and privacy measures more complicated and less
efficient. For example, Mulliner used the Nokia 6313 device running Symiban S40 and
Van Damme & Wouters used the same device. Even though both papers were
completed in the same year, the testing methods were different, and the focus/purpose
of the research examined different points of view within the security aspect of NFC.
The second factor refers to the variety of operating systems, the different processing
power and the different programming languages. This factor hinders the researchers
from reaching a general solution for a certain application mode. (Mulliner 2009), (Van
Damme & Wouters 2009)



Most publications are focused on applications within the reader/writer
communication mode (Proximity Coupling Device, PCD), mainly reading and
writing on passive tags. However, the main focus of this research is to examine
the different encryption algorithms used in NFC enabled devices regardless of
the operation mode to assess the encryption/decryption time and power
consumption in NFC enabled devices, as well as their immunity to brute force

attacks.



3. Technical Overview
3.1. RFID Overview

RFID systems use Radio Frequencies for communication in order to identify the tagged
objects. When a tagged object enters the read vicinity of the interrogator, the reader
initializes the communication by sending a signal. The tag receives this signal and uses
it as an energy source to send back the stored data. Tags can hold different types of data
about the tagged object; these data can include the serial number, time stamps, and

configurations and so on.

Based on the frequency used in the RFID systems (tags and interrogator design), the
range of communication may vary in range. Low frequencies (LF) and high frequencies
(HF) have short identification ranges, but low cost. Ultra High Frequencies (UHF) and
microwave frequency band are used in long ranges and high data handling rate (Balanis
2005).

3.1.1. RFID components

A RFID system consists of three main components. A transponder (tag), a reader
(interrogator) and a controller, as shown in Figure 2

{—Data=—)

» RFID reader ﬂ —Clock=} % RFID tag
—Energy =
RF coupling

Application

> device

Figure 2. The Three Main Components of an RFID system.

The reader (interrogator) is a read/write device. It contains an RF module for
transmitting and receiving signals, attached to the RF module is the control electronic

module and an antenna. The Tag (Transponder) is a semiconductor chip attached to an



antenna. Each tag contains a unique serial identification number which facilitate the

communication with the reader.

The RFID reader is connected to the workstation where a specific control application is
running (e.g. computer), where software commands and database are stored. The RFID
reader sends the data information alongside the Clock and energy (in case of passive

tag) to be received by the tag.

3.1.2. Classification of RFID systems

The RFID systems are classified according to two parameters, one is energy source, and
the other is the used frequency band.

Passive mode of communication is when the received signal is used to energize the
transponder. That means that the tag does not include any independent energy source.
Active mode is when the tag circuit includes an independent energy source. These two
types can be divided by the frequencies used for communication, as it is seen in Figure
3.

RFID Systems
|

Passive

i o=

15014443 |8 15015693

Figure 3. RFID System classifications (Atmel 2010: p45)

Passive tags are physically smaller and less expensive than active tags, due to the lack
of a power source. Each mode of communication has its own pros and cons, and it is up
to the system designer to choose which tag type is more suitable. Table 1 illustrates the

difference between active and passive mode.
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Table 1. Active and Passive RFID tags Comparison.

Features Passive RFID Active RFID
Power ]
External (Reader Provided) Internal (Battery)
Source
Tag Only within the area covered by the | Can provide signal over an extended
Readability | reader typically up to 3 meters range, typically up to 100 meters
A passive tag is energized only when ) ) )
Energy ) An active tag is always energized
there is a reader present
Magnetic High, since the tag draws power from ) S
] o ) Low, since the tag emits signals
Field the electromagnetic field provided by o
using internal battery source
Strength the reader
) Very high, in ideal case does not expire | Limited to about 5 years (The life of
Shelf Life o
over the life time a battery)
Data o ]
Limited data storage, typically 128 bytes | Can store larger amount of data
Storage
Size Small Depends on the battery size
Cost Cheap Expensive

3.1.3. RFID coupling mechanism

Based on the application and the distance separating the reader and tag, several coupling

types and mechanism exists, to each method its own different features. The three main

mechanism of coupling which allows the reader and the tag to communicate are

backscatter coupling, capacitive coupling and inductive coupling.

RFID Backscatter coupling: The reader propagates radio signals outside the near field

region. The tag receives the signal and uses it to energize the embedded chip and

reflects the rest of the signal as data. This type of coupling is used for medium distance

between the reader and the tag. Figure 4 demonstrates backscatter coupling (Cisco Wi-
Fi Location-Based Services 4.1 Design 2008:158).
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G
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Tag Reflects
electromagnetic Reader detects changes
waves in reflected power

Figure 4. Backscatter Coupling.

RFID capacitive coupling: as the name implies, the coupling is done by utilizing the
capacitive effect, this technique is most suitable for short range communication. The
capacitance between the reader and tag provides a conducting capacitor, through which
a signal can be transmitted, although an earth return is required. The AC signal
generated by the reader is receive and rectified within the RFID tag and used to power
the circuits within the tag. Again the data is returned to the RFID reader by modulating
the load. Figure 5 is an illustration of capacitive coupling (Gorferay Card Service Co.
Ltd)

coupling surface
of the terminal

elactrical
field

coupling surface
of the card

chip

Figure 5. Capacitive Coupling.
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RFID inductive coupling: this technique achieves coupling by utilizing mutual
inductance between the reader and the tag circuits. Inductive coupling is also suitable
for short range coupling. It can be used for a slightly longer range than capacitive tags.
RFID inductive coupling requires that both the tag and the reader to have induction or
"antenna” coils. When the tag is placed close enough to the reader, the field from the
reader’s coil will couple to the field from the tag’s coil. A voltage will be induced in the
tag that will be rectified and used to power the tag circuitry. Inductive Coupling is
illustrated in Figure 6 (Glover 2006).

= |

&

Tag

Reader

Figure 6. Inductive Coupling.

3.1.4. RFID frequency bands

As stated earlier, the frequency bands at which the RFID system operates defines its
range and classification. RFID systems operate in the unlicensed radio frequency bands
known as ISM (Industrial, Scientific and Medical) but the precise frequencies which are
defined for RFID may vary depending on the regulations in different countries. These
frequency bands are listed in Table 2.
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Table 2. Common RFID Operating Frequencies and Features

LF (Low HF (High UHF (Ultra High ]

Band Microwave

Frequency) Frequency) Frequency)
Frequency 30 — 300kHz 3 - 30MHz 300MHz - 3GHz 2-30GHz
Typical RFID 433MHz/865-956

125-134-KHz 135.6MHz 2.45Ghz
Frequency MHz
Up to 100

Approximate

Less than 0.5

Up to 1.5 meter

meter/0.5-5 meter

Up to 10 meters

Read Range meter ]
respectively
Data Transfer Less than
Around 25kbps 30kbps Up to 100kbps
Rate 1kbps

Characteristic

Short range
low data
transfer rate,
penetrates
water but not

metals

Higher ranges,
reasonable data rate
(similar to GSM
phone), penetrates

water but not metals

Long range, high
data transfer rate,
concurrent read of
<100 items,
cannot penetrate

water or metals

Long range, high
data transfer
rate, cannot

penetrate water

or metals

Applications

Animal ID, car

immobilisers

Smart labels,
contactless travel
cards, access &

security

Specialist animal

tracking, logistics

Moving vehicle

tolls

LF and HF RFID systems are used for near field communication and the inductive

coupling mechanism. UHF and higher frequencies RFID systems are used for far field

communication with the backscattering coupling.
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3.1.5. RFID standards

None of the applied standards in RFID systems is universal. These standards may be
categorized into four levels of international, national, industry and association level.

These standards cover four key areas of RFID application:

e Airinterface standards which are used for basic tag to reader communication
e Data content and encoding i.e. the format of the codes used in tags
e Conformance which means testing the RFID system

e Interoperability between applications and RFID system

There are several standards that define the development of RFID technologies such as:

e International Organization of Standardization (ISO)
e Electronic Product Code (EPC)
e European Telecommunication Standards Institute (ETSI)

e Federal Communication Commission (FCC)

Each of the standardization organization mentioned above defines a set of standards for
different RFID applications while 1SO supports the required standard for RFID
frequencies under series of ISO 18000 which are known as Air Interface Family.

3.2. NFC overview

Sony and Philips were the first to develop and initiate the NFC technology. Derived
from RFID and with new added interface and protocols, NFC devices are still

compatible with RFID technology.

Several differences separate NFC devices from RFID devices, bidirectional data transfer
is one of them, also peer to peer communication, where in passive mode only one
device produces the required radio frequency for the communication and the other
device utilizes the load modulation for data transmission (Hossein 2012). The device

that starts the communication is called “initiator” and the receiver is called “Target”.
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3.2.1. NFC coding and bit representation

NFC utilizes Manchester coding and modified miller coding schemes to encode the
commands, responses and data transaction. Manchester coding is one of the most
common coding techniques applied nowadays, due to its many characteristics. An
important characteristic is called “self-clocking”, that allows it to be used in inductive
and capacitive coupling. Also, the clock signal can be recovered from the encoded data.
Another property is bandwidth efficiency. Less bandwidth is needed to achieve a certain
data rate, although it may be wvulnerable to frequency errors and jitter in the

sender/receiver reference clock.

Manchester code ensures frequent line voltage transitions (in the middle of each bit
duration), directly proportional to the clock rate; this helps clock recovery. Also, it
means that this coding method has two possible transitions at the middle of a symbol

period. Manchester coding is shown in both Table 3 and Figure 7.

Table 3. Machester coding.

Original Data Clock Manchester Value
0 0 0
0 1 1
1 0 1
1 1 0
CLOCK
DATA 1 0 1 0 0 1 0
MANCHESTER
ENCODED
DATA — s

Figure 7. Manchester Coding.
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Modified Miller Coding is another coding method used in NFC enabled devices. Ones
and zeros are defined by the position of the pulse during one bit duration.

For logic one, the transition from HIGH to LOW happens in the middle of the bit
duration, the pulse occurs in the second half of the bit period. For logic zero, a pulse
shall occur at the beginning of the bit period. But when the ZERO bit is preceded by the
ONE bit, no pulse shall occur during this ZERO, as it is shown in Figure 8 (Standard
ECMA-373 2012).

1 bit - - 1i2blt 12 bit - =12kt 1Z bR 1 bit
3 ; - g
HIGH -
LOW - _ :
ZERD : . OMNE : : OMNE (EFERD alter OME |

Figure 8. Modified Miller Coding.

3.2.2. NFC characteristics (frequency and data rates)

NFC is designed for short range communications - maximum theoretical range of 20 cm
but practically around 4 cm - operating in the globally available unlicensed band of
13.56 MHz with a bandwidth of 14 KHz. It supports data rates of 106 kbps, 212 kbps,
and 424kbps. Higher bit rates are possible depending on future development. NFC uses
half duplex channel (same frequency is used for sending and receiving data). To prevent
collision, NFC devices utilize Carrier Sense Multiple Access (CSMA) protocol. NFC

characteristics are presented in Table 4.



Table 4. NFC Characteristic
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Rate Speed | Active Device | Passive Device | Description
fck/128 | 106 Mod. Miller, Man, 10% The sent signal is the product of an AND
100% ASK ASK operation between the coded data using
modified miller bit and the clock signal.
The length of the modified miller bit
coded pulse varies between 7 and 45
cycles long.
fok/64 | 212 Man, 10% Man, 10% The sent signal is the product of an XOR
ASK ASK operation between the data coded using
Manchester Bit-Coding and the Clock
Signal.
fok/32 | 424 Man, 10% Man, 10% The same as 212 Kbps Data Rate.
ASK ASK

3.2.3. Communication modes

As in RFID devices, NFC has two modes of communication, depending on the device
itself. If the device can generate its own radio frequency field, then it is called active,
otherwise it is passive. Active communication mode occurs when two active devices

communicate with each other, passive mode requires one active device.

The International Standard specifies requirements for modulation, bit rates and bit
coding. In addition, it specifies requirements for the start of communication, the end of
communication, the bit and byte representation, the framing and error detection, the
single device detection, the protocol and parameter selection, and the data exchange and
de-selection of Near Field Communication Interface and Protocol (NFCIP-1) devices
(ISO/IEC 18092 2013(E)). The transaction of commands, responses, and data starts with
the devices initialisation and end with the device de-selection, in alternating or half

duplex channel.

The devices are capable of establishing the transaction using 106/kbps, 212/kbps, or
424/kbps. The initiator selects one of those bit rates, the bit rate may be changed during
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the transaction using certain commands and protocols. However, the mode of the

communication (active or passive) cannot be changed.

In the Active communication mode, both the initiator and the target use their own RF
field to communicate. The initiator starts the NFC protocol (NFCIP-1) transaction. The
target responds to an initiator command in the active communication mode by
modulating its own RF field. (ISO/IEC 18092 2013(E))

e 106 Kbps data transmission (low rate)
The initial speed of any transaction is always the lowest rate possible of 106
Kbps. At this rate the initiator apply 100% ASK modulation to generate the
required pulse (Hossein 2012). The coding technique used for this rate is the
modified miller coding. The serial data transmission systems send the least
significant byte first (LSB) followed by the rest of the data.

e 212/424 Kbps data transmission (high rate)

The modulation scheme used for these rates is still ASK. However, the index is
different, for these rates the modulation indexes are 8% and 30% of the
operating field. The serial data transmission systems send the most significant
byte first (MSB) followed by the rest of the data, also the reserve polarity in the
amplitude of the Manchester symbols is allowed. The target shall respond with
the same load modulation scheme but the bit duration must be altered to the
actual bit rate (Ecma 2004).

In the passive communication mode, the initiator generates the RF field and starts the
transaction. The target responds to the initiator command in the passive communication
mode by modulating the initiators’ RF field, which is referred to as load modulation
(ISO/IEC 18092 2013(E)).

The communication between the initiator and the target follows the same procedures as
in the active mode (since the initiator generates its own RF field). The response from the
target to the initiator; however, it follows different procedures.

The target responds by load modulation which generates a sub carrier with frequency of

(fs=fcLk/16). The load modulated signal’s amplitude has to be greater than the existing
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magnetic field strength threshold. The signal is coded using Manchester coding, and the
bytes are encoded with LSB first for the lower data rate (106 kbps) and MSB first for
the high bit rates (212 and 424 kbps).

3.2.4. NFC protocols

All NFC enabled devices are in target state by default, to preserve power and not to
disturb any on-going communication in the vicinity. All NFC devices will not generate
an RF field. The device changes its state upon a request from the control unit (program
on the mobile device or computer) to be an initiator, the program determines the
communication mode and the data rate. The initiator use collision avoidance protocol to
detect any existing radio field before initiating communication with the target, the target

device waits for the initiator field to respond.

In collision avoidance procedure, the initiator “listens” and tries to detect if there is any
other RF field. After a certain amount of time known as the guard time, the device can
initiate communication if no RF field is detected in order to prevent disturbing other
NFC devices. If two or more targets answer the initiator’s field simultaneously then a
collision will be detected and simply the frames will be discarded. Collision avoidance
is defined to avoid similar issues and to minimize disturbance with other on-going
communications at the same frequency, the initiator should not generate any RF field
until the time of the existing field is terminated (ETSI 2003). Figure 9 describes the
general initialization and single device detection (SDD) for the active and passive

communication mode at different transfer speeds.
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Start
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Avoidance
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Detected

!

Application switches to
initiator mode for
Passive communication
mode and chooses the
transfer speed and
performs the initialization
and the SDD

Activation in passive
communication mode by

!

Application switches to
initiator mode for Active
communication mode
and chooses transfer
speed

NFCID3 (ATR)

-1

Activation in Active
Communication mode by
NFCID3 (ATR)

J -

R

Data
exchange
protocol (DEP)

i
Data
exchange
protocol (DEP)

/

De-Activation
(DSL, RLS)

y

Terminate

Initialization

Transport

Figure 9. Initialization and single device detection (Near Field Communication -Interface and Protocol (NFCIP-1))
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3.2.5. Frame formatting

The data exchanged in NFC vary from one to another depending on the source (initiator
or target) and on the mode of communication (active or passive). For each type, the data
is grouped in what is called frames. The basic frame format for the initiator and target is

shown in the Figure 10.

Start of communication (START) Information End of communication (END)

Figure 10. Initiator and target general frame format.

3.2.6. Passive communication mode

In initialization and single device detection for 106 kbps in passive mode, two frame
formats are used at the 106kbps data rate. The short format which consists of 7 bits is

used in the initialization step. The initialization short frame is presented in Figure 11.

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6

START | Commands END

Figure 11. Initialization step Short frame format at 106kbps.

After the initialization step, standard frame format is used for data transfer at 106 kbps,

the standard frame format is shown in the Figure 12.

Transport Data Field

SB LEN CMDO | CMD1 | ByteO | Bytel | Byte2 | ...... Byten | E1

Figure 12. Standard frame format at 106kbps.

SB byte stands for “Start Byte” in the data exchange protocol at fc/128 and is set to
OxFO. LEN defines the length of the transport data field plus 1, and E1 declares the end

of transmission.

Initialization and single device detection for 212 & 424 kbps in passive communication

mode starts once the carrier frequency field is detected. The communication starts with
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the minimum preamble sequence of 48 bits Manchester encoded ZERO. The end of the
communication is declared in the length field of the frame.

The frame format consists of Preamble, SYNC, Length, Payload, and CRC fields. They
are defined in Figure 13 (Near Field Communication -Interface and Protocol (NFCIP-

1)).

Preamble SYNC Length Payload CRC

Figure 13. Standard frame format.

Preamble: 48 bits minimum all logical ZEROs. Its function is to signal the beginning of

communication.

SYNC: bytes. The 1st byte of the SYNC is ‘B2’ and the 2nd byte is ‘4D’. This frame is
to synchronize the field frequency with target clock frequency.

Length: an 8-bit field and it is set equal to the number of bytes to be transmitted in
Payload plus 1. The range of the Length is between 2 and 255. Other settings are

reserved for future use “RFU”.
Payload: consists of N number of bytes of data.
CRC: Are the cyclic redundancy check bits.

Basic method of single device detection (SDD) at 212 and 424 kbps is the Time Slot
method. The initiator sends polling requests, the target responds at random in each time
slot. The target’s identification number for passive communication mode (NFCID2) will
be read by the initiator. Once the NFCID2 data from the target is obtained, in the
operating field, the initiator can communicate with multiple targets.

In order to find a target, the initiator sends a Polling Request frame, which is a standard
frame format with predefined parameters and values such as the synchronization bits

and the payload.

Similar to the polling request, the polling request response is also a standard frame with

some predefined parameters. Instead of the regular values in the payload, the polling
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request response payload consists of one byte set to ‘01’, the NFCID2 data, and the Pad
information which shall be ignored for data interchange. Other differences in the length
segment and CRC bits. Synchronization bits and preamble are the same in the polling

request and the polling request response.

3.2.7. Passive communication mode activation flow

The initiator performs the initial RF collision avoidance sequence. After that, it
performs the initialization and single device detection for passive communication mode
at a chosen transfer speed. The target checks the protocol at different transfer speed
according to the attribute request. If the attribute request is not supported by the target,
the target may fall back to the initialization and single device detection. The attribute
response is sent by the target as an answer to the attribute request sent by the initiator.
The target shall only answer if the request is received directly after the selection. If the
target supports any changeable parameter in the attribute request, a parameter selection
request may be used by the initiator as the next command after receiving the attribute
request to change parameters. The target response to the initiator request, but if it does
not support the change of parameters, then the target does not need to compliment on
the request of the initiator. The data exchange transport protocol will be active now and

the transparent data will be sent.

The Initiator activation sequence for a target in the passive communication mode is seen
in Figure 14 (ISO/IEC 18092 2013)



Start

24

3

Initial RFCA

RN S

Switch to
passive mode

Initialization
and SSD Loop

Request
Attribute

Yis

Send Attribute
Request

E—

9

Receive
Attribute
Response

3

Parameter
Change

Y
Data Exchange

Property

Protocol

Receive
Release
Response

Receive
De-Select
Response

—

Send
De-Select
Request

Send Parameter
Selection Request

/

Receive Parameter
Selection Response

[

Change Parameter

!

Send
Release
Reguest

Protocol

Figure 14 Activation protocol in Passive communication mode




25

2.2.8. Active communication mode

In the initialization stage, the application controls the device and switches to initiator for
active communication mode, choosing one of the three data rates. The active
communication mode RF with collision avoidance works in the following way. First the
initiator performs an initial RF collision avoidance, by first sending the “attribute
request” command in the active communication mode at the selected transfer speed.
Second, the initiator switches off the RF field in order to allow the target to perform the
response RF collision avoidance, the target sends “attribute response” command in the
same speed chosen by the initiator and switches off the RF field. Then the initiator
performs the response RF collision avoidance. After that, the initiator sends “the
parameter selection request” in order to change parameter or sends the “data exchange

protocol” to start the data exchange protocol.

In case of two targets or more in the field, the initiator chooses only one target and
ignores the others. And if the two targets answer in the exact same time period, the
initiator will discard targets as it will detect a collision and will resend the “attribute
request” as described earlier.

The transport protocol is handled in three stages: first is the Activation of the protocol,
which includes the Request for Attributes and the Parameter Selection. The second
stage is the data exchange protocol, and finally the deactivation of the protocol

including the Deselect and the Release.

The position of the data field varies depending on the data transfer rate, for each data
rate the frame format is different. The transport data rate field contains the mandatory
command bytes and the data bytes.



26

3.2.9. Active communication mode Activation flow

In active communication mode, the initiator at first performs an initial RF Collision
avoidance sequence, and then it will switch to active communication mode and select
the transfer speed. After that, the initiator sends an attribute request. The target in the
operating field will send a response to the initiator request, in case more than one target
responded, the initiator will detect a collision and the attribute request will be re-sent.
Once one target responds successfully, the device is selected and the initiator may send
a parameter selection request depending on the attribute response sent by the target,
otherwise if the target does not support any changeable parameter, it does not need to
complement on the initiator request. The Initiator activation sequence for a target in the
active communication mode is shown in Figure 15 (ISO/IEC 18092 2013).
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3.2.10. NFC communication modes

NFC Interface and Protocol (NFCIP-1) is defined by ECMA-340 and ISO/IEC-18092,
which presents the operation modes of NFC devices — passive or active — and the
transfer speed rates. This protocol alongside the 1SO14443 (Contactless card standard)
and 1SO 15693 (Vicinity cards) have been expanded to the Near Field Communication
Interface and Protocol-2 (NFCIP-2) to form The EMCA-352 (ISO/IEC-21481) standard.
In this way any NFCIP-2 compliant device is compatible with all devices
communicating on 13.4MHz. These standards led to three basics communication
modes, Peer-to-peer, Read/Write, and Card Emulation mode. (Van Damme and Wouters
2009)

Peer to Peer (Near Field Communication, NFC) is the classic mode of communication.
By holding to active devices in each other’s operating range, a connection is established
on the link level, allowing data to transfer at rate up to 424Kbps. This mode follows the

Master/Slave principle of communication.

In Read/Write Reader/Writer Mode (Proximity Coupling Device, PCD), when passive
NFC compatible tag or a passive smart card is in the range of an active NFC capable
device, the active device switches to be an initiator. The tag is energized, the initiator is
able to read data from the tag, and write data as well. Depending on the running
application, data transfer rate depends on the tags properties; 106Kbps is supported in

this mode.

Card Emulator (Proximity Inductive Coupling Card, PICC) mode is at which the NFC
enabled device acts as smart card following 1SO 14443 Protocols. An external NFC
reader will *“see” the device as a smart card, and the reader is able to read information

from device.

Figure 16 illustrates the differences in the communication modes.
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3.3. Smart Cards

The vast variety of applications served by smart cards makes categorizing them a hard
task. However, there are two properties that help separating the smart cards into major

categories; these are processing power, and connection type.

Memory cards are the first type of smart cards and they were used for telephone
applications, as prepaid cards. The value was stored electronically in the chip, and it
was decreased every time the card is used. Security measures were added to the cards in
this application to eliminate manipulation and any other exploits. These pre-paid cards
were used as a one-time use only, once the balance stored in the cards is depleted, the

cards cannot be recharged and are no longer useful.

The main advantage of this type of cards is the simplicity of its implementation, which
makes the cost to manufacture them very low. However, since they cannot be reused
again once empty, they must be discarded. Memory cards have limited functionality due
to their simplicity, protecting the stored data is possible, but they are mainly used in

application where low cost is the primary concern.

The other type is processor cards. As the name implies, these cards contain embedded
processors. The embedded processor and memory in the cards make them flexible to
serve more applications due to their ability to store secret keys securely and execute
modern cryptographic algorithms. The only restriction on the functionality of the card is
the available resources — memory and computing power — otherwise, the developer can
program the card as needed. The most wide spread application of processor cards is
their use as access medium for the European Digital Mobile Telephone system (GSM),
partially because of the high security level that they can achieve while accessing the
mobile telephone network. The other main reason is that they have provided new
possibilities for both the network operators and service providers to sell their products
separately. Other applications of processor cards mainly demand a high level of
security, such as personal identification in some restricted areas or on some computers
or equipment, banking information for credit or debit cards are also another field where

processor cards are used.
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The ability to perform cryptographic algorithms and the ability to securely store
confidential data are the essential advantages of processor cards makes use processor
cards in new application is inevitable. The steady decline of production cost due to mass
production and ongoing technological progress helps further expands the use of smart

cards.

The previous two types of smart cards are based on the processing power abilities of the
card. Another property which can be used to categorize smart cards is the connection
type. This includes contact and contactless cards

Contact Cards need to have a physical connection with the terminal. This connection is
done via the connection plate in the card. Through this connection the card is energized
and can transfer data from and to the terminal. Contact cards can be memory cards or

processor cards, depending on the application and where the card is used.

Contactless cards do not need a physical connection with the terminal. The connection

between contactless cards and the terminal is established though an RF link.

Inexpensive, mature, and mass produced contactless cards are available nowadays in
both memory cards and processor cards forms. This is the result of the rapid progress in
integrated circuit technology and the dramatic decrease in power consumption, allowing
the energy and data to be transferred to and from the card without any electrical contact.
Contactless cards range of operation is limited to few centimeters for power
conservation reasons, it is possible to extend this range up to a meter away from the
terminal, however the close range of operation increases the contactless cards security
level. An attacker can read the content of the card and might even manipulate it without

the knowledge of the card owner, if the range was relatively longer.

Dual interface cards are considered to be a possible solution to this particular problem.
However, operation over a long distance should be prevented due to the high risk of
security breach. Contactless smart cards are suitable for applications that demand quick
identification, such as access control, public transportations, airline tickets and luggage
identification and many others. (Rankl & Effing 2010: p9)
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3.3.1. Physical Properties

The smart cards physical properties determines the cards format, material, placement of
different components such as magnetic strips, chip module and its connections and

many others. The card can also include embossing, holograms and other features.

The application where the smart card is used dictates many of its physical attributes. For
example, if the operation environment is subject to high ambient temperatures, then
both the smart card's body as well as the embedded microcontroller, must meet all the

relevant requirements, individually and collectively.

The most notable property of the smart card is its format. This format is standardized by
1ISO7810 also known as “ID-1 Format”, as shown in the Figure 17. (1SO 7810)

/Top reference edge
- 7

_ —~ ~

— —d

Front of card

b
ID-000 size only
31£0,1x45°+2°
(0.118 £ 0.004 x 45° + 2°)
\ \ ) ‘

Left edge

Figure 17. The ID-1 format as specified in SO 7810.

However, this standard was issued in 1985, and at that time the idea of adding an
integrated circuit to a card was not available. With the large variety of cards, each card
has distinct dimensions to suit a particular application, it is not easy to determine
whether a card is an ID-1 smart card or not. Besides having an integrated chip, an easy

way to identify a smart card is to measure the card’s thickness - contactless smart cards
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may not have a visible circuit on their surface - if its 0.76 mm then the card is a smart
card (in reference to ISO 7810 Standards).

Other factors related to the card body, construction and material are determined by the
designated function of that particular card. The mechanical attributes are also
considered when manufacturing a card, depending on the environment at which the card
is expected to operate. In order to protect the card from getting damaged, several
properties must be inspected to ensure a high level of quality. These tests include
mechanical robustness of the card, temperature resistance, electrostatic discharge,

electromagnetic susceptibility, and many others.

3.3.2. Smart Card Micro Controllers

The key component of any smart card is the embedded microcontroller. It controls,
initiates, and monitors all of the card's electrical activities. The smart cards
microcontrollers have the setup of a full computer, they have a processor, memory
(RAM, ROM EEPROM), and input and output interface to external devices. This
hardware configuration must be governed by a suitably adapted and configured
operating system which is tailored to fit different applications such as payments or

telecommunication. Figure 18 illustrates the basic building blocks of a microcontroller.

bonding pads

/0| CPU |NPU RAM

buses

EEPROM ROM

charge pump

bonding pads

Figure 18. possible arrangement for essential functional components of a simple smart card microcontroller on the
silicon die
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The microcontrollers used in smart cards are not standard, widely available units, they
are specially designed to serve a particular purpose. Some of the components from
which the microcontrollers are made of however are already developed items for other
ends, for example, the processors used in smart cards are not special designs, but instead
proven components that have been used in other areas for a long time. Reasons behind
this approach beside the high expense needed, is the complexity of developing a brand
new processor with no suitable libraries and no available operating systems. Also, the
processor in the microcontroller is not a special design, in addition to the stated reasons,
the processor is the most important part of the microcontroller, and that’s why it must be
very reliable. Older processors which have been tested and proven reliable are used.
(Rankl & Effing 2010: p73)

Several factors must be taken into consideration in the development of microcontrollers,

to name a few:

Manufacturing costs, the structure width and the area of the microcontroller chip on the
silicon wafer are the most critical factors regarding the manufacturing cost. Constant
efforts are made to minimize the cost by reducing the chip area, also omitting any
unnecessary additional components that occupy space without any useful functionality.

Functionality, this reason is closely related to the previous one. The area of the chip is
very limited, and therefore only the components that provide the needed functionalities

are included along the essential blocks of the microcontroller, anything else is omitted.

Security, smart cards provide tamper-proof storage of user and account
identity. Smart cards also provide vital components of system security for the
exchange of data throughout various types of networks. They protect against a
full range of security threats, from careless storage of user passwords to
sophisticated system hacks. Multifunction cards can also serve as network
system access and store values and other data. (Smart card security basics,
Cardlogix publication 2009)

Chip area is not only important from the cost point of view, but also from quality
reasons, larger chips are more prone to be mechanically damaged. Smart cards are
meant to be used in various situation hence, it is important that the card can handle
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mechanical stress, most importantly the chip must handle a certain degree of mechanical
stress, the finest hairline crack in the chip is sufficient to render the smart card useless.

In order to analyze the microcontrollers used in smart cards, it is necessary to analyze
the components from which it is made. This include the processor, memory types,

input/output interface and any other additional items used for a particular functionality

A typical microcontroller used in smart card application is an 8-bit processor with
complex instruction set computer architecture (CISC). It has a memory capacity of 50-
100 KB. And it is used without any significant limitations, which means it needs several
clock cycles to execute each machine instruction and usually has a very large instruction

set.

However 8-bit processors are not the only type of processors used in smart cards
microcontrollers. To handle more complex tasks, 16-bit processors are used. They are
based on architecture similar to RSIC architecture (‘RISC’ stands for ‘reduced-

instruction-set computer’).

More recently, the highest performance possible can be attained from using 32-bit
processors in smart cards microcontrollers. The direction of the development is heading
towards 32-bits processors, due to the need for improved performance and for managing
larger memories. The key selection criteria for processors include code density, power

consumption, and resistance to attacks.

8-bits processors provide a solid basis for inexpensive microcontrollers at the lower end
of the performance scale. Their power consumption and the area they occupy on the die
are smaller compared to the 32-bits processor. However, 32-bits processors are needed
for the more demanding application, for the processing power they can provide, with
their broad bus structures and more elaborate internal components. (Rankl & Effing
2010: p82)

The other major component that affects the performance of the microcontroller is the
memory. Different memory types are used in the microcontroller for various tasks, some
of which are not essentials but to provide certain functionality. Different types of

memory are illustrated in Figure 19.
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memory types

volatile memory RAM

nonvolatile memory ROM
EEPROM
flash

Figure 19. Memory types used in smart card microcontrollers. PROM and EPROM are normally not used in modern
microcontrollers. FRAM is presently used relatively rarely in smart cards

The main two types of memory are separated by the way they maintain the data stored
on them. Volatile memory requires power to maintain the stored information. It retains
its contents while powered, but when power is interrupted stored data is immediately
lost. Non-Volatile Memory on the other hand maintains its content even when

unpowered.

RAM is an abbreviation for (Random-Access Memory) and it is a volatile memory. The
number of accesses to the memory content is unlimited, the content can be modified by
the running program as much as needed, as long the supply voltage is uninterrupted, the

content of the memory will be intact.

ROM stands for Read-Only Memory. This type of memory can only be read and cannot
be written, supply voltage is not needed to retain the data. A smart card’s ROM contains
most of the operating system routines, as well as various test and diagnostic functions.

These programs are built into the chip by its manufacturer when it is fabricated.

EEPROM (Electrically Erasable Read-Only Memory) is technically more complex than
ROM or RAM, it is used to store all the programs and data that need to be modified or
deleted at some time. Its function resembles the hard drive function in a computer, since

it retains data in the absence of power and the data can be altered as necessary.

The main goal is to minimize the required RAM and EEPROM in order to save space
on the chip, since the RAM and EEPROM requires more space. As a rule of thumb, a

RAM cell occupies about four times as much space as an EEPROM cell, which in turn
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occupies four times as much space as a ROM cell. Other types of memory might be
used to provide a certain function, such as flash EEPROM *“Flash memory” or FRAM
“Ferroelectric Random-Access Memory”. (Rankl & Effing 2010: p83)

Supplementary hardware are added in order to meet some requirements which the
standard components cannot meet using only software. These requirements might not be
fundamental tasks that are not possible to be done using software, but enhancement to
improve the execution time and the power consumption. Some of these additional
features include communication with a USB interface, Communication with MMC
“MultiMedia Card”, the USB hardware enables the higher-level software layer to select
a large number of configuration settings for the driver software. Like USB, MMC

entails a large amount of additional hardware in the smart card microcontroller.

Communication with Single Wire Protocol (SWP). This is used for communication
between a SIM and an NFC controller in a mobile telephone.

Additional components include a Timer, CRC “Cyclic Redundancy Check” Calculation
Unit, a Random Number Generator, for security reasons all modern smart card

microcontrollers have hardware random number generators.

In performance demanding application, clock generator and clock multiplier are used.
The processing power is proportional to the clock frequency, doubling the clock
frequency will roughly double the performance of the processor. However due to
current consumption and other compatibility issues, it is not always possible to
maximize the clock frequency. Other components for improving the performance
include DMA (Direct Memory Access), MMU (Memory Management Unit), Java
Accelerator, Coprocessors for symmetric and/or asymmetric cryptographic algorithms,
and many others. Figure 20 illustrates a block diagram of high performance smart card

microcontroller.
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Figure 20. the usual functional units of a high-performance smart card microcontroller

3.3.3. Contactless Smart Cards

Contactless Smart cards refers to cards that do not require an electrical connection with

the terminal to exchange data, power, and clock signal. All transmissions are done

wirelessly over a short distance. Contactless smart cards must follow the smart cards

standard - ID-1 format. The lack of electrical connection alongside the infeasibility of

adding batteries to the card means the only way to transfer power to the card is via using

the passive technique, in which the terminal provides the power signal through

electromagnetic waves and the smart cards harness this power. This could be done in

several ways, the most commonly used methods are radio waves or microwaves, optical

transmission, capacitive coupling, and inductive coupling.
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The main interests lies within the capacitive and inductive coupling since they are the
most suitable for the flat shapes of the smart cards, also they are similar to the coupling

techniques used in NFC devices. As seen in Figure 21.

\ /

Figure 21. An inlay foil for a contactless smart card with inductive coupling using an etched coil

All cards that employ inductive coupling share the same principle. Coils enclose a large
area of the cards are incorporated in the cards body, they serve as the antenna for
receiving the power signal and also for sending and receiving data signals from and to
the card. The coils are connected to one or more chip depending on the design of the
smart card. (Rankl & Effing 2010: p285)

Capacitive coupling utilizes a different technique to achieve coupling. Conductive
surfaces are incorporated in the cards body and in the terminal as well. These surfaces
act as the two sides of a capacitor when the card is in close proximity to the terminal.
The capacitance that can be obtained depends on the sizes of the coupling surfaces and
the distance of the separation, but since the size of the card is limited by the ID-1
Format standards, considering the manufacturing costs, several picofarads can be
obtained from a card manufactured at an acceptable level of cost and effort. This is not
enough to power the microcontroller inside the smart card, hence this method is used
only for data transmission, while the operating power is obtained by an inductive
coupling. This mixed method is standardized in ISO/IEC 10536 for close-coupling

cards, and as the name suggests, this method is limited to short coupling distances.

For collision avoidance two standards have been defined in ISO/IEC 14443-3, both

based on time division multiple access (TDMA), they ensure that individual cards have
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different timing behaviors, so they can be distinguished from one another at the

terminal.

Due to the large number of applications in which contactless smart cards can be used,
also the different optimization and customization each application requires. 1SO and

IEC began a standardization process for contactless smart cards in 1988.

Contactless smart cards can operate in range of one centimeter to one meter, this range
has a significant effect on the transmission of power and data. Consequently, it is not
possible to cover all contactless cards by one standard which offers technical solution to
all of the requirements needed from the various applications. Presently, there are three
different standards describing the contactless cards, each one is defined for a specific

distance range, as mentioned in Table 5

Table 5. Completed ISO/IEC standards for contactless smart cards. Each standard consists of several parts

Standard Type of contactless smart card | Range Category

ISO/IEC 10536 | Close coupling (CICC) ~1cm | Close Coupling Cards
ISO/IEC 14443 | Proximity coupling (PICC) ~ 10 cm | Remote Coupling Cards
ISO/IEC 15693 | Vicinity coupling (VICC) ~1m Remote Coupling Cards

Close integrated circuit cards (ISO/IEC 14443)

Close coupling utilizes capacitive coupling for data transmission and inductive coupling
for powering the integrated circuit in the cards body. The ISO/IEC 10536 standard is
designated for “Slot or surface operation”. Indicating the card must be inserted in a slot

or laid on a marked area of the terminal, due to its short range (maximum of 1 cm).

The term “remote Coupling” encompasses smart cards that can transmit data over a
range extending from few centimeters to approximately one meter from the terminal.
Inserting the card or laying it on the marked surface on the terminal is not required,
offering more flexibility and various applications. Examples of such applications are
access control, vehicle identification, electronic tickets, local public transport, ski
passes, airline tickets, electronic purses, and baggage identification. (Rankl & Effing

2010: p296). The diversity of these applications requires many different technical
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implementations. The ISO/IEC 14443 and ISO/IEC 15633 standards address coupling
ranges up to 10 cm and 1 m, respectively.

Proximity integrated circuit cards (ISO/IEC 14443)

The ISO/IEC 14443 standard, which is titled ‘ldentification cards — Contactless
integrated circuits cards — Proximity cards’, describes the properties and operating
principles of contactless smart cards with a range of approximately 10 cm. The amount
of power that can be transmitted over this range is sufficient to operate a
microprocessor. A large number of contactless cards have also contacts in addition to
coupling components, in order to make them compatible with an existing infrastructure
for contact cards. This type of cards is called “dual-interface cards”. The ISO/IEC
14443 standard is formulated such that it is compatible with ISO/IEC 7816 (the standard
for contact smart cards) at the application level, to ensure the formats for exchanging
data between the card and the terminal are the same. Hence commands and data can be
exchanged between the card and the reader using the contact or the contactless interface.
(Rankl & Effing 2010: p297)

The maximum operational range is 10 cm might not be suitable for all applications, but
it has other advantages which make these Proximity cards useful. The short range of
operation provides a certain amount of protection against undesired access to the card.
Large antennas in the immediate vicinity of a terminal are necessary for eavesdropping
on data transmissions, this could hardly be installed in an unobtrusive manner. In

addition to encryption and authentication, the immunity against attacks is very robust.

Several amendments were introduced to the standard in order to increase the data rate
among other requirements. The clarity of the standard is reduced by the large number of
amendments. Therefore, the responsible ISO/IEC group is working on a revised version
of the standard.
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Vicinity integrated circuit cards (ISO/IEC 15693)

ISO/IEC 15693, ‘Identification cards — Contactless integrated circuits cards —Vicinity
cards’, describes the properties and operating modes of contactless smart cards with a
range up to 1 meter. Complying with ISO/IEC 14443, the minimum activation field
strength needed for vicinity cards is reduced, due to the restriction on the maximum
allowable magnetic field strength. The reduced field strength leads to inefficient power
to operate the microcontrollers in the cards. For that reason, only simple memory ICs
with relatively simple security logic (a state machine) can be used. There is also a
security issue associated with the larger working range. Thus it is possible for a terminal
to establish a connection to a card without the desire or knowledge of the cardholder.
Whether such undesired and unnoticed card accesses pose security risks depends on the
application. (Rankl & Effing 2010: p344)

NEAR FIELD COMMUNICATION (NFC)

Proximity Coupling Cards and Near Field Communication (NFC) share the same
standards (ISO/IEC 14443). Although NFC has some other standards on its own, the
overlapping of these two technologies in several applications is the main reason to study
them in parallel. Just as in Proximity coupling cards, the short range of operation in
NFC devices prevents unintentional data transfer between equipment and terminal and
is thus suitable for use in many applications with relatively simple security mechanisms.

NFC Protocols has been covered in the previous titles.

The use of NFC devices on contactless terminals is possible, because contactless
terminals are not dependent on the ID-1 Card Format. Instead NFC device must be
located within range of the terminal. NFC devices, contactless cards and contactless
terminals support the ISO/IEC 14443 standards. (Rankl & Effing 2010: p348)

One of the main target applications for NFC technology is contactless payment using
mobile devices. To achieve that goal, security component in the NFC-capable mobile
device is a prerequisite for mobile payment. Three options for integrating a security

component in a mobile device are currently under discussion.
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The first two options share the same concept of integrating a security component in the
mobile device (Secure Element). The first option this element could be an already
approved smart card microcontroller to host the payment application. The
microcontroller is permanently integrated in the mobile device. To achieve the same
security level as with a corresponding smart card. One problem with this solution is
maintaining the interchangeability of the mobile equipment, since the application is
permanently tied to the equipment. In the second option the secure element is an
external secure memory card (such as a secure microSD card). In this case, the security
chip is stored in the memory card next to the flash memory. The user can transfer the
payment application to a different mobile device by changing the memory card.

In the third option, the secure element is not a part of the mobile device, the SIM or
USIM card contains the payment application. The application can be stored directly in
the SIM microcontroller or in a supplementary security chip in the SIM or USIM
module. A supplementary security chip has the advantage that only this chip needs to be

certified.

In any case, it is necessary to devise a solution for secure loading and personalization of
the payment application in the security component. This process must be performed by
a trustworthy entity that is certified for payment systems. (Rankl & Effing 2010: p351).

Several examples are displayed in Figure 22.



mobile phone
processor

If_

mobile phone
processor

(U)SIM

If_

maebile phone
processor

(U)SIM

i

mobile phone
processor

security
controller

(U)SIM

If_

secure
memory card

L

NFC
controller

L

laggao

Figure 22. Several options for integrating a security component for NFC in a mobile device
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The expanding spread of NFC and RFID systems in different applications necessitate
the use of security measures to protect against attempted attacks. Modern encryption
and authentication protocols employ suitable algorithms to prevent unauthorized access
or use of the RFID systems. High-security RFID systems must have a defense against

the following individual attacks:
 Skimming of a data carrier in order to clone and/or modify data.

 Placing a foreign data carrier within the interrogation zone of a reader with the
intention of gaining unauthorized access to a building or receiving services without

payment.

» Eavesdropping on radio communications and replaying the data, in order to imitate a

genuine data carrier ‘replay and fraud’.

Consideration should be given to cryptographic functions when selecting a suitable
RFID system. Applications that do not require a security function (e.g. industrial
automation, tool recognition) would be made unnecessarily expensive by the
incorporation of cryptographic procedures. On the other hand, in high-security
applications (e.g. ticketing, payment systems) the omission of cryptographic procedures
can be a very expensive oversight if manipulated transponders are used to gain access to

services without authorization. (Finkenzeller 2010: p226)

Within the scope of this work, several algorithms will be analyzed from different point
of view. In order to establish a basic understanding of the cryptographic abilities of
RFID tags, NFC tags and smart cards. Tests will include brute force attack, encryption
and decryption times, power consumed during encryption and decryption, and an

overall performance analysis.
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4. Practical Part
4.1. Encryption Algorithms

The wide variety of Cryptographic algorithms can be split into two major categories,
symmetric and asymmetric. Symmetric algorithms use the same key for encryption and
decryption, while asymmetric algorithms (which were first postulated in 1976 by
Whitfield Diffie and Martin E. Hellman) use different keys for encryption and
decryption.

The algorithms chosen to be tested are Caesar, DES/3DES, AES, and Blowfish.

4.1.1. Caesar

Also known as Shift cipher, Caesar cipher is one of the oldest and most known
encryption techniques. In which each letter is “shifted” by a fixed number of
letters, so a shift of 3 will make the letter “a” become “d”. The method is
named after Julius Caesar, who used it in his private correspondence. In the
original form the range of letter which can be shifted was limited to the number
of letters in the alphabet. Nowadays although the Caesar cipher is considered
the weakest form of encryption, in the computer world the shift range is wider
than the original, at a range of (32-126), it includes letters, numbers, and
special symbols such as “#” and “space”. the minimum effort needed to break
the code is the main reason why the Caesar cipher is not used. Applying brute
force attack on the ciphered text can resolve in finding the key. Even without
the use of a computer, a brute force attack on a Caesar ciphered text is carried
out by either shifting the ciphered text one letter at a time until the right key is
found, or by using frequency analysis which will even shorten the time needed
for breaking the code. In each language there are several letters which are used
more than others, in the English language for example the letter “e” is the most
reoccurring letter in the alphabet and by graphing the most occurring letter in a

ciphered text to the most occurring letter in a certain language, and the code is
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broken. Figure 23 display the frequency of letters in the English language.
(http://en.wikipedia.org/wiki/Caesar_cipher)
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Figure 23. The distribution of letters in a typical sample of English language text.
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4.1.2. DES/3DES

Developed by IBM in collaboration with the US National Bureau of Standards (NBS)
and published in 1977 as the FIPS 46 standard. DES was fashioned in accordance with
Kerckhoff’s principle, which meant it could be published without impairing its security.
DES is a symmetric block encryption algorithm that does not expand the ciphertext,
which means that the plaintext and ciphertext blocks have the same size. The block size
is 64 bits (8 bytes), which is also the key size, although only 56 of these bits are used as
the actual key. Coding is done in 19 phases of substitution and permutation operations.
The Figure 24 illustrate the general phases in the DES encryption.
(http://dc242.4shared.com/doc/ZDomPSx_/preview.html)
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62-Bit Cipher Text

Figure 24. General description of DES encryption algorithm.
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Before the encryption starts, the key is extended from 56 bits to 64 bits, and then
rotating the key generates a new keys K; for each phase (i=1, ..., 16).

The text is permutated in the first phase of the encryption, after that the rounds of
permutations, begins, using the corresponding K; generated from the originally extended
key. After 16 round of permutation, the two halves of the block (two 32 bits blocks) are

interchanged, and in the final phase, the first permutation is revered.

The security of DES can be increased by triple DES coding “3DES”. In 3DES, two keys
K; and K; are needed. The way to change DES to 3DES is firstly the Plaintext block is
coded by K1. Secondly, Result is decoded by K2. (Note as K2 is the wrong key, the
result is not the original text but even more mixed.). And finally the previous result is
coded again by K1. This is the result of 3DES. Decoding is done in reverse order using

the same keys. (Penttonen 2011)
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4.1.3. AES

AES is a symmetric block encryption algorithm with a block length of 128 bits (16
bytes) that can be used with three different key sizes, thus called AES-128, AES-192 or
AES-256, depending on the key size (the number denote the key size). AES is suitable
for hardware implementation, and can also be implemented in software running on low-

performance 8-bit processors or high-performance 16-bit and 32-bit processors.

The size of the key space of AES with a 128-bit key is 2128 (= 3.4x1038), which is a
factor of 4.7x1021 larger than the key space of DES with a 56-bit key. The larger key

space of the AES grants higher security level against known attacks.

The basic structure of AES is substitution-permutation network. The cipher takes the
plaintext block size of 128 bits. The key sizes can be 128, 192 or 256 bits. (Wikipedia
AES 2012a.)

Figure 25 illustrates the general steps of encrypting plain text using AES with different
key sizes.
(http://developer.amd.com/resources/documentation-articles/articles- whitepapers/bulk-

encryption-on-gpus.)
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Figure 25. General description of DES encryption algorithm.
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Key expansion means that the provided key as input is expanded into an array of forty-
four 32-bit words. Four distinct words (128 bits) serve as a round key for each round.

There are 10-14 rounds in AES depending on the key size, each round has several steps:

* Substitute bytes: Uses a Substitution box to perform a byte-by-byte substitution of the
block.

* ShiftRows: is the row forward shift process. The first row remains the same. For the
second row, shift to left 1-byte circular. For the third row, shift to left 2-byte circular.
Then the fourth row, shift to left 3-byte circular.

* MixColumns: is a forward mix column transformation. A substitution that makes use

of arithmetic over Galois Field (2°)

» AddRoundKey: A bitwise XOR of the current block with a portion of the expanded
key.

The final round is different because it omits the “mix columns” step.

The round key is used only in the “AddRoundKey” step, which is why the cipher begins
and ends with an “AddRoundKey” step. Any other step applied at the beginning or end,
is reversible without knowledge of the key and so would add no security.

As with most block ciphers, the decryption algorithm makes use of the expanded key in
reverse order. However, the decryption algorithm is not identical to the encryption

algorithm. This is a consequence of the particular structure of AES. (Stalling 2010)

4.1.4. Blowfish

Blowfish is a substitute for the DES and IDEA encryption algorithm. It is a symmetrical
block cipher (secret or private key), use that a variable key length from 32 to 448 bits.
(The U.S. government prohibits the encryption output software to use the key which

key-length is more than 40, unless special-purpose software).
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Blowfish algorithm is an alternative encryption method, proposed in 1993 by Bruce
Schneier. After the birth of the 32-bit processor, the speed of blowfish algorithm in the
encryption beyond the DES attracted the attention of the people. Blowfish is a not

registered patent, it can be used free.
There are some features of blowfish:

e Blowfish is fast, can be executed in 18 clock cycle in a 32-bit processor.

e Blowfish needs only 5 KB of memory to implement

e Blowfish is considered secure due to the key’s adjustable length (32-448)

e Encryption consist 16+1 phases, each phase consists of @, + and S-box
operation

e Decryption is identical to encryption; keys are used in inverse order. (Penttonen
2009: p35.)

(Qian 2013)
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Figure 26 and 27 shows the round function (Feistel function) of Blowfish encryption.

(http://www.embedded.com/design/configurable-systems/4024599/Encrypting-data-

with-the-Blowfish-algorithm)
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4.1.5 Elliptic Curve Cryptography

Although elliptic curves cryptography will not be tested within the scope of this work,
basic concepts will be illustrated for future references and work. Unlike the previous
encryption algorithms, Elliptic Curves Cryptography (ECC) is an asymmetrical

encryption algorithm.

Proposed in 1985 by Victor Miller and Neal Koblitz independently, ECC is considered
more efficient than other asymmetrical encryption algorithms such as RSA, for the same
level of encryption strength, ECC requires a smaller key size than RSA, which yields to

faster encryption, lower power consumption and lower processing power.

Table 6 illustrates the keys sizes of ECC and RSA encryption algorithms, corresponding

to similar encryption strength.

Table 6. Comparing ECC keys with RSA keys (Qian 2013)

ECC Key Length RSA Key Length Crack Time /MIPS ECC/RSA key length
(bits) (bits) (years) rate
106 512 10° 5:1
160 1024 10" 7:1
210 2048 107 10:1
600 21000 10" 35:1

This cryptographic strength and the relatively small size of the keys are the
reasons why ECC systems are used in the smart card environment. Table 7

shows different generation and verification time on different platforms.
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Table 7. ECC algorithms on different Platforms (Rankl and Effing 2010)

Generate a 160- | Verify a 160-
Implementation bit signature bit signature
Smart card with 3.5-MHz clock and 8-bit processor 1s 4s
Smart card with 3.5-MHz clock and numeric coprocessor 150 ms 450 ms
PC (Pentium I11, 500 MHz) 10 ms 20 ms

Elliptic curves are continuous planar curves that satisfy the equation y* = x> + ax + b in
a finite three-dimensional space. No point on the curve is allowed to be a singularity,
which for example means that 4a® + 27b® # 0. The finite bodies GF(p), GF(2") and
GF(p") are used in cryptography, where p is a prime number and n is a positive integer

greater than 1.
In order to describe the ECC algorithm, Weierstrass equation is commonly used.
y2+axy+by=x>+cx*+dx+e @))

a, b, c, d are real numbers and x, y take the values of real numbers, for simplicity, the

equation is reduced to

y2=x3+ax+b )
To plot this equation, y is computed as

y=vVx3+ax+b (3)

For given values of and, the plot consists of positive and negative values of for each
value of y. Thus, each curve is symmetric about y=0. This yields for any specific value
of a and b, there is a set of points (E) which satisfy the equation number (X3), this set
(E) also include a point called O, which is called the “zero point” or “point at infinity”

which serves as the identity element of the group.

There are several implementations which use ECC as a foundation such as Elgamal
ECC and Deffie-Hellman which is described in the following steps
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A large integer Q is chosen, Q must a prime or an integer in the form of 2™. The aand b
parameters of the equation (X3) must be applied in order to generate a group of points
Eq(a,b). In the next step a base point G= (X1 , y1) in Eq (a,b)is selected, whose order is

larger than value n. A key exchange between user Person A and B is described as follow
Person A Key Generation

Select private n, where n, < n

Calculate publicP, P, =n, X G

Person B Key Generation

Select private n,, where n, < n

Calculate public P, P, =n, X G

User A Calculate the secret key

K=n,XP, (4)
User B Calculate the secret key

K=n,XP, (5)
ECC Diffie-Hellman Key Exchange (Stallings 2011: 343).

ECC Encryption and Decryption

An Elliptic curve is chose over a certain Galois Field (e.g. GF(2™)), the preparation

assignments are:
o Select GF(p)
e Select elliptic curve (e)
e Select base point G(x,y)

e Applied algorithm for transforming plaintext into the points of elliptic curve,

called encryption process
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e Generating the private and public keys between sender A and receiver B. Select
one private key n, calculate the public key P = nG = n(x, y). For A, the private
key is n,, and the public key is P, = n,G = n,(x,y). For B, the private key is B
n and the public key is P, = n,G = ny(x,y)

Encryption: A sends encrypted message to B
e Choose randomnumberk 1 <k<p-1
e Get the corresponding points (Xm , Ym) by encoding the plaintext;

e Calculate the cipher text C,, = {k(x,y), (X, Vm) + kPp}, and the cipher text here

turns into two points on the elliptic curve.
Decryption: B decrypts the received message from A:

e Calculation

o ((xm' ym) + kpm) —Np (kG) (6)
0 = (Gom ym) + k(np(x,3))) = (k(x, ) (7)
0 = (V) + kny (x,¥) — mpk(x,y) (8)

o = (xmr Ym)
e Get the corresponding plaintext by decoding the points (Xm,Ym).

The study and implementation of elliptic curve cryptography is now becoming a focus
in public-key cryptosystems. Its relies on the difficulty to solve the discrete logarithm of
the elliptic curve Abelian group.

They way RFID systems (tags, smart cards, NFC devices) utilize these encryption
algorithms is by employing them in “Mutual Authentication” procedure. Mutual
authentication means that both the reader and the target authenticate one another. The
reader authenticates the target in order to protect the application from “manipulation”
using falsified data. Likewise, the target must protect the data stored in it from

skimming or overwriting by unauthorized readers.
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Based on the application at which the RFID system is deployed, the mutual
authentication can be either symmetrical or asymmetrical (symmetrical or asymmetrical
encryption). Mutual symmetrical authentication is used in applications where the
number or transponders (targets) are limited, and all the transponders and readers that
form part of an application possess a single identical cryptographical key K, once the
transponder is detected by the reader, the reader sends a (GET_CHALLANGE)
command to the transponder. The transponder responds to the command, by generating
a random number Ra and sends it to the reader in a (response — Challenge-response)
procedure. The reader now generates a random number Rg. Using the common secret
key K and a common key algorithm ey, the reader calculates an encrypted data block
(token 1), which contains both random numbers and additional control data, and sends

this data block to the transponder.
Token 1 = e, (|Rg||R4I|1ID4|Text1) 9

The transponder decrypts the received token, and checks if the random number
contained in the plaintext K, correspond to the original random number R,. If they are
equal, the transponder confirms that the two common keys are the same (the

transponder’s key and the reader’s key).

Another random number Ra; is generated in the transponder and this is used to calculate
an encrypted data block (token 2), which also contains Rg and control data. Token 2 is

sent from the transponder to the reader.
Token 2 = e, (|Ry4;||Rg|Text2) (10)

The reader decrypts the received token (token 2) and checks if the received random
number within the token Ry is equal to the random number generated at the reader Rg.
If the two figures correspond, then the reader is satisfied that the common key has been
proven. Transponder and reader have thus ascertained that they belong to the same
system and further communication between the two parties is thus is authenticated and
valid. (Finkenzeller 2010)
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The mutual authentication has several advantages:

e The secret key is never transmitted, only the numbers encrypted using the secret

key are exchanged.

e The random numbers are always encrypted at the same time. To minimize the
possibility of calculating the secret key from invers transformation using Ra to
obtain Token 1.

e The authentication process is not limited to a specific encryption algorithm
(mutual symmetrical authentication process must use symmetrical encryption

algorithm).

e The use of two different random numbers from two different sources ensures
safety against “replay attacks”, eliminating the possibility of recording the

authentication sequence.

Mutual symmetrical authentication process is not suitable in applications where the
number of transponders (targets) is vast, which will increase the probability of the secret
key being discovered, because such transponders are accessible to an uncontrolled

numbers.

Authentication using a derived key can provide a significant improvement on mutual
symmetrical authentication, by securing each transponder with a different cryptological
key. To achieve this, the serial number of each transponder is read out during its
production. A key Kx is calculated (— derived) using a cryptological algorithm and a
master key Ky, and the transponder is thus initialized. Each transponder thus receives a

key linked to its own ID number and the master key KM.

The mutual authentication begins by the reader requesting the ID number of the
transponder. In a special security module in the reader - the Security Authentication
Module (S.A.M) - the transponder’s specific key is calculated using the master key Ky,
so that this can be used to initiate the authentication procedure. The S.A.M normally
takes the form of a smart card with contacts incorporating a cryptoprocessor, which

means that the stored master key can never be read. (Finkenzeller 2010)
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4.2. Experimental Procedures

The aforementioned cryptographic algorithms will be tested in order to determine
encryption and decryption times for different key lengths and different text sizes. As
well as robustness against brute force attacks. Also the amount of power required for

each operation.

4.2.1. System Description

The system consists of model B Raspberry Pi with Broadcom BCM2835 SoC, 700 MHz
low power ARM1176JZE-F processor, and 512 MB SDRAM, running Raspbian
operating system. SainSmart Mifare RC522 Card Read Antenna RF RFID Reader IC
Card Proximity Module, 13.56MHz is connected to the system as the RFID reader.
The other device is a computer with a 64-bit Intel Core i7-4700MQ CPU clocked at 2.4
GHz, and 8 Gb of Ram, the operating system is 64-bit windows 8.1. the computer is
used to mainly test the immunity of the encryption algorithms against brute force

attacks, as well as to give context to the results obtained from the Raspberry Pi.

The software implementation of the encryption algorithms is done using python script, a
separate program is written for each different encryption algorithms. The source codes
can be found in the appendix. Figure 28 illustrates the general flowchart of the

program.

The chosen algorithms are Caesar, DES, 3DES, AES, and Blowfish. Caesar is chosen
for the sole purpose of illustrating the basic concept of encryption and decryption. DES,
3DES and AES are used currently in different applications where RFID systems are
implemented, note that DES was used before it was replaced by 3DES and AES. And
Blowfish is chosen for the flexible range of key sizes that can be used.
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Each algorithm will be run multiple times, with different key lengths and different text
sizes. For each combination the test will be done five times, an average will be used to
determine the final value. The same texts will be used and all tests are done under

similar conditions.

The testing experiments are divided into two phases; phase one which is done using the
windows machine. The results obtained are used as a reference to the one obtained from
the Raspberry Pi. These tests are designed to take time measurement only, using the
timer function provided by the Python libraries.

Phase two is redoing the same tests on the Raspberry Pi, the only difference is instead of
entering the plain/cipher text manually, it will be read/written directly from/to the tags,

the rest of the process is identical to the ones done on the windows machine.

Phase one tests are

1- Caesar 5 shifts 8- AES 24 byte key length

2- Caesar 10 shifts 9- AES 32 byte key length

3- Caesar 15 shits 10- Blowfish 8 byte key length
4- Des 8 bytes key length 11- Blowfish 16 byte key length
5- 3DES 16 bytes key length 12- Blowfish 24 byte key length
6- 3DES 24 byte Key length 13- Blowfish 32 byte key length

7- AES 16 byte key length

These tests are done over two different text sizes (16 bytes and 1024 bytes) and they
include encryption time, decryption time, and brute force attack.

The text samples are
16 bytes : hello world!!

1024 bytes: The Snapdragon 810 replaces the 805 as the top of the line chipset. It
features four Cortex-A57 and four Cortex-A53 processor cores. Those are the Cortex-
A15 and A7 replacements respectively, but the A57 should offer a 25-55% increase in

performance at the cost of just 20% increase in power consumption. And the power
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consumption will probably actually be even as the 20% difference will be offset by the

use of a 20nm manufacturing process.

The way the two new chipsets work is that the CPU cores are divided into two groups.
All cores can work at the same time, but cores in a group must use the same frequency.
This differs from the Krait designs where the clock speed of each core can be set

individually.

In terms of GPU, the Snapdragon 810 has a brand new Adreno 430, which is advertised
as 30% faster than the Adreno 420, which in turn is 40% faster than the Adreno 330
found in current Snapdragon 800/801 chipsets.The end result is something like an 80%

performance increase over the current generation. filler

(http://www.gsmarena.com/qualcomm_unveils_snapdragon_810_and_808_64bit_chips

ets-news-8241.php)

The results will be divided according to their respective algorithms in the results

chapter.

Phase two is oriented towards the Raspberry Pi, since the Raspberry Pi platform share
similar CPU architecture with modern mobile phones (ARM CPU Architecture), it can
be used to represent a mobile device, the encryption and decryption tests will be
conducted on the Raspberry Pi in order to obtain time measurements and power

consumption measurements.

The key space used in the encryption algorithms is limited to decimal numbers, also the
all brute force attacks on all algorithms will succeed in deciphering the encrypted text
after one billion attempts. The reasons for this design choice are to compare different
algorithms with different key lengths equally, since a larger key length by one byte
multiplies the key space by ten times. Also, to check if different key lengths for the

same algorithm, has any effect on encryption and decryption times.
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5. Results

5.1. Phase one results

Phase one results are results obtained from running the algorithms on the computer

machine.

5.1.1. Caesar

The cipher texts for the 16 bytes plain text are
5 shifts: mjqqt%|twqi&&

10 shifts: rovvy*"y|vn++

15 shifts: wt{{~/'"~"{s00

Table 8 displays encryption, decryption and brute force attack results. While Figures 29,

30, 31 show these times in relationship to each other’s.

Table 8. Encryption, decryption and brute force time for different shift on 16 bytes text

16 Key . . . . .
. Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
Bytes Size
5 2.3093E-5 | 1.3257E-5 | 3.5495E-5 | 1.2402E-5 | 1.2402E-5 1.9330E-5 1.0104E-5

Encrypt | 10 1.5396E-5 | 1.3685E-5 | 1.3685E-5 | 1.2402E-5 | 1.2402E-5 1.3514E-5 1.2321E-6

15 1.3685E-5 | 3.1646E-5 | 1.3685E-5 | 1.5396E-5 | 2.3093E-5 1.9501E-5 7.8250E-6

5 3.0791E-5 | 2.7370E-5 | 4.2338E-5 | 1.2830E-5 | 1.2830E-5 2.5232E-5 1.2607E-5

Decrypt | 10 2.5659E-5 | 3.6778E-5 | 1.7534E-5 | 3.1646E-5 | 3.7206E-5 2.9765E-5 8.2848E-6

15 4.0199E-5 | 1.3685E-5 | 1.3257E-5 | 1.3257E-5 | 1.4968E-5 1.9073E-5 1.1831E-5

5 6.7710E-3 | 9.3836E-3 | 1.0559E-2 | 1.1595E-2 | 1.4095E-2 1.0481E-2 2.7052E-3
Brute

Force 10 2.4662E-2 | 2.2888E-2 | 2.2311E-2 | 2.2778E-2 | 2.3723E-2 2.3272E-2 9.2901E-4
Attack

15 2.2498E-2 | 2.2599E-2 | 2.2942E-2 | 2.3755E-2 | 2.2604E-2 2.2880E-2 5.1726E-4
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Figure 29. Encryption time over 5 trials.
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Figure 31. Brute force attack time over 5 trials.
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The cipher texts for the 1024 bytes plain text are
5 shifts:

Y mj%Xsfuiwflts%=65%wjuqgfhjx%ym;j%=5:%fx%ymj%ytu%tk%ym;j%qnsj%hmnuxjy
3%Ny%Kkjfyzwjx%ktzwo%Htwy|}2F:<%fsi%ktzw%Htwyj}2F:8%uwthjxxtw%htwjx3%
Y mtxj%fwj%ymj%Htwyj}2F6:%fsi%F<%wjuqgfhjrjsyx%wjxujhyn{jg~1%gzy%ym;j%
F:<%xmtzqi%tkkjw%f%7:2::*%nshwjfxj%ns%ujwktwrfshj%fy%ymj%htxy%tk%ozxy
%75*%nshwjfxj%ns%ut|jw%htsxzruynts3%Fsi%ymj%ut|jw%htsxzruynts%|ngq%uwtg
fgg~%fthyzfqg~%gj%j{js%fx%ym;j%75*%inkkjwjshj%|ngqq%gj%tkkxjy%g~%ymj%zx
J%tk%f%75sr%rfszkfhyzwnsl%uwthjxx3

10 shifts:

Aro*Ixkzn|kqyx*B;:*|ozvkmo}*~ro*B:?*k}*~ro*~yz*yp*~ro*vsxo*mrsz }o~8*S~*pok

~ lo}*py [*My|~0#7K2?A*kxn*py
[*My|~0#7K?=*z|ymo}}y|*my|0}8* ry}o*k|o*~ro*My|~0#7K;?*kxn*KA*|ozvkmowo
Xx~}*|o}zom~s!ov$6*I ~*~r0*K?A*}ry

vn*yppo|*k*<?7??/*sxm|ok}o*sx*zo|py|wkxmo*k~*~ro*my}~*yp*t
}*</*sxm|ok}o*sx*zy"o|*myx} Wz~Syx8*Kxn*~ro*zy"o[*myx}
wz~syx*"svw*z|ylklv$*km~
kvv$*lo*olox*k}*~ro*<:/*nsppoloxmo*"svv*lo*ypp}o~*1$*~ro* }o*yp*k*<:xw*wkx

pkm~ |sxq*z|ymo}}8

15 shifts:

cwit/b}p s"pv~}HG@?/"t {prt#/$wt/G?D/p#/$wt/$~ [~ul$wit/{x}t/rwx
#$=/X$/utp$%" t#/u~%"/R~"$t(<PDF/p}s/u~%"/R~"$t(<PDB/
"~rttt~"r~"tH=/cw~#t/p"t/SW/R~"$t(<P@D/p}s/PF/"t {prt|t}$#/"t#

trox&t{);/q%$/Swt/PDF/#w~%{s/~uut"/p/ AD<DD4/x}r"tp#t/x}/
t"'u~"|p}rt/pS/SWt/r~#$/~ulyY%e#SI A4/ X" tp#t/x} ~'t"/r~}%| $x~}=/P}s/Swt/
~'t"Ir~}H%| Sx~H'x{{/
"~qpa{)/pr$Yep{{)/qt/t&t}p#/Swt/A?4/sxuut"t}rt/ x{{/qt/~uu#t$/q)/Swt/%#t/~u/p/ A?}H/|
P}%upr$%"x}v/ "~rti=
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Table 9 displays encryption, decryption and brute force attack results. While Figures 32,
33, 34 show these times in relationship to each other’s.

Table 9. Encryption, decryption and brute force time for different shift on 1024 bytes text

1024 Key . . . . .
) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
Bytes Size
5 2.4676E-4 | 2.3564E-4 | 2.7284E-4 | 2.4462E-4 | 1.9244E-4 | 2.3846E-4 2.9216E-5

Encrypt | 10 2.2965E-4 | 2.1939E-4 | 2.6472E-4 | 3.0834E-4 | 1.9287E-4 | 2.4299E-4 4.4692E-5

15 2.3264E-4 | 2.4034E-4 | 2.4248E-4 | 2.4633E-4 | 2.5103E-4 | 2.4256E-4 6.8784E-6

5 2.3222E-4 | 2.7199E-4 | 2.4889E-4 | 2.2837E-4 | 1.9073E-4 | 2.3444E-4 2.9878E-5

Decrypt | 10 2.5060E-4 | 2.7755E-4 | 1.9458E-4 | 2.7755E-4 | 1.9031E-4 | 2.3812E-4 4.3147E-5

15 2.3222E-4 | 2.3778E-4 | 2.4291E-4 | 2.2751E-4 | 2.3179E-4 | 2.3444E-4 5.9749E-6

5 1.9052E-2 | 1.9383E-2 | 2.0368E-2 | 1.9394E-2 | 1.9366E-2 | 1.9513E-2 4.9916E-4
Brute

Force 10 3.2252E-2 | 3.0454E-2 | 2.8768E-2 | 2.9402E-2 | 2.9597E-2 | 3.0095E-2 1.3484E-3
Attack

15 1.9719E-2 | 1.9395E-2 | 1.9985E-2 | 2.0172E-2 | 2.4259E-2 | 2.0706E-2 2.0078E-3
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Figure 33. Decryption time over 5 trials.
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Figure 34. Brute force attack time over 5 trials.
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Figures 35, 36, summarize the encryption and decryption times, while Figure 37 shows

the brute force attack times
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Figure 35. Encryption and decryption average time for 5, 10 and 15 Caesar shifts, text size 16 bytes
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Figure 36. Encryption and decryption average time for 5, 10 and 15 Caesar shifts, text size 1024 bytes

m5

m10
m15

0.0E+00 -

Brute Force Attack 16 Brute Force Attack 1024
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5.1.2. DES

DES has a fixed Key length of 8 bytes.
Used Key: 999999999

The cipher text for the 16 bytes plain text is
HNWuF7023BJTtYVDiF2Jgg==

Tables 10 and 11 displays encryption, decryption and brute force attack results. While
Figures 38 and 39 show these times in relationship to each other’s.

Table 10. Encryption, decryption and brute force time for DES on 16 bytes text

16

Key . . . . .
Bytes i Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev

ize
Text
Encrypt | 8B 1.2274E-4 | 5.0035E-5 | 5.2601E-5 | 5.1318E-5 | 5.1318E-5 | 6.5602E-5 | 3.1952E-5
Decrypt | 8B | 4.9608E-5 | 4.9180E-5 | 5.0891E-5 | 5.0035E-5 | 5.1318E-5 | 5.0206E-5 | 8.8680E-7
Brute

1.0190E+ 1.0201E+ 1.6206E+

Force 8B 1.0559E+3 . 1.0347E+3 | 1.0182E+3 g 1.0296E+3 i
Attack

The cipher text for the 1024 bytes plain text is

82NYhRrd7EYnjHLoHYfx9J5HDfIBO/0/9ygzB/KKWN/HGalkQeedKanDQSkulkTIR
08tbeQW00OQmMCcJUAMQz08TLikX+Ep1x7BKOUt3K7LAKQvpGD1UmkvTwuMdgeG
CMzaYuw4RYuJW020bVObj9jfQz3ShC/VjmytXvU71h63jec9ASIhjYb529XzdFnvw
VihZYhT+HrAo4LhEUJXbVmLEnvRPaxnyNzXUMQyfthdKBCCZVkouSwc4hkadIf7
DeBNLhZY XcF/MP++h2hp2tfRM6zy1t+8W5DNMN8UNCcMLXx2V9Q5yMrUon1gfQk
DuAOvR+jopUPsajAdIHA6P9spG707+uUePCQMk4DvecPuRsOWV9Q5yMrUon7jgXs
pZ2c7sJ00kbC3lpz87dmwuloHtSVnnu84YIEPRO0rOTNO5SUteMMv2n0sHVYkNyz2c
au2awOABPLYNs/WiyIfLx6Hr/WG7wB+TIlgwlobldfgdRV/QZ45AXx7pFaZLQx3gkmd
ctnHesNrypXfX4TCIHQNLANUTQ1bQgXi+lejpMeavcQQkMjtORuB9yBV/8xrakalL.3N
AXShrZOymPiUb22pt2EbfvBw==
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Table 11. Encryption, decryption and brute force time for DES on 1024 bytes text.

1024 K
e
Bytes si Y Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
ize
Text
Encrypt | 8B 1.7106E-4 | 1.7491E-4 1.5652E-4 1.5652E-4 6.6286E-5 | 1.4506E-4 | 4.4819E-5
Decrypt | 8B 1.4968E-4 | 1.5823E-4 6.3293E-5 1.3300E-4 1.3172E-4 | 1.2718E-4 | 3.7438E-5
Brute
1.7489E+ 1.7017E+ | 1.7101E+ | 2.2098E+
Force 8B . 1.7025E+3 | 1.7036E+3 | 1.6935E+3 . . 1
Attack
2.0E-04 —¢=—-encryption 16 bytes
2 1.58-04 1 5 € § h =fi—decryption 16 bytes
S 1.0E-04 .
9 encryption 1024
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Figure 38. Encryption and decryption trials for DES, text size 16 and 1024 bytes.
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Figure 39. Brute Force Attack average times for DES, text size 16 and 1024 bytes.
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Figures 40, summarizes the encryption and decryption times, while Figure 41 shows the

brute force attack times.
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Figure 40. Encryption and decryption average time for DES, text size 16 and 1024 bytes.

Brute Force 8 Bytes Key

2.0
(7]
T 15
o
3

1.0 -
g H Brute Force 8 Bytes Key
3 05 -
=
=

00 T T

16 Bytes Text 1024 Bytes Text

Figure 41. Brute Force attack average time for DES, text size 16 and 1024 bytes.
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4.1.3. 3DES

Two keys were wused 16 Dbytes (0000000099999999) and 24 bytes
(000000000000000099999999)

The cipher texts for the 16 bytes plain text is
16 bytes key:
BhtbzOKjVIne2AXRXFMO3A==

24 bytes key:
HNWUF7023BJTtYVDiF2Jgg==

Tables 12 and 13 displays encryption, decryption and brute force attack results. While
Figures 42 to 47 show these times in relationship to each other’s.

Table 12. Encryption, decryption and brute force time for 3DES on 16 bytes text with different keys

16
Key . . . . .
Bytes i Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
ize
Text
16B | 6.4148E-5 | 6.4148E-5 | 1.0135E-4 | 6.4576E-5 | 8.6386E-5 | 7.6122E-5 1.7045E-5
Encrypt
24B | 6.6286E-5 | 1.2872E-4 | 6.3720E-5 | 6.5431E-5 | 6.2437E-5 | 7.7320E-5 2.8774E-5
16B | 6.1582E-5 | 1.3813E-4 | 1.3813E-4 | 6.4148E-5 | 6.2865E-5 | 9.2972E-5 4.1235E-5
Decrypt
24B | 6.3293E-5 | 1.1333E-4 | 8.5103E-5 | 6.5003E-5 | 6.1582E-5 | 7.7662E-5 2.2095E-5
1.7335E+ 1.7313E+ | 1.6750E+
16B 1.7348E+3 | 1.7464E+3 1.7242E+3 2.8131E+1
Brute 3 3 3
Force
Attack 1.7388E+ 1.7420E+ | 1.7333E+
24B . 1.7811E+3 | 1.7294E+3 9 5 1.7449E+3 2.0802E+1
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The cipher text for the 1024 bytes plain text is
16 bytes key:

QiOVrm9TY8Iu8/rTr545PoPy0olth+beJ9245U5R2SNrGIvWUIwIj5fgijdWUIRLtTh1h
2hyxCK+La+96bRshAmMnR0OGSzUsOaH5f/e6J100Z+xW3HcfOebjg5BiD84teDa7HsVx
xPvCohUEWZ1MFRkn50qR5byh2tTHucY QeONT7QUMKZ/MgXDjJP6vpsLCe2bB4
oJtCiDD6VVIOEZz/1YDPsRRg2LZHafzeY14Y CEUudL TomFXWwXDnKDsZLFX5hqx
RKJIBcIGwW+M2U2Kf27kBblwzV7RDVN3ULApVTIle02j96hxVtjGZINkpxeoRX/7Rw
ulMzIZc60Bv4oDXjYYuvwAVoWw4dmgWumdzRUQ9y+3T96hxVtjGZIMKkWzTCv3z
JYH+NF9xZUMUdR1uygrPuaZe8GgtL06dJsZuXb80KavKBTTDJyKbawInINUFGN
YHKkLcgrJHwaYdw/80JsreSWYI12VdRFAZOHGEK/7tKr65n+6hrjl1LXkA+PhJHSf62m
bbz7G2wfIMDygQv4hrofGnw7+Y s4cPFfeF6K1QqGjW2QHTfphGkZc5wnltcT8556yf
MCG3b0h83FbZowQONTce3Hkw==

24 bytes key:

82NYhRrd7EYnjHLoHYfx9J5HDfIBO/0/9ygzB/KKWN/HGalkQeedKanDQSKulkTIR
08tbeQWO0OQMCcJUAMQz08TLIkX+Ep1x7BKOUt3K7L4KQvpGD1UmkvTwuMdgeG
CMzaYuw4RYuJW020bVObj9jfQz3ShC/VjmytXvU71h63jec9ASIhjYb5Z9XzdFnvw
VihZYhT+HrAo4LhEUJXbVmLEnvRPaxnyNzXUMQyfthdKBCCZVkouSwc4hkodIf7
DeBNLhZY XcF/MP++h2hp2tfRM6zy1t+8W5DnNMN8UNCcMLx2V9Q5yMrUon1gfQk
DuAOvR+jopUPsajAdIHA6P9spG707+ulUePCQMk4DvccPuRsOWYV9Q5yMrUon7jgXs
pZ2c7sJ00OkbC3Ipz87dmwuloHtSVnnu84YIEPRI0rOTNOSUteMMv2n0sHVykNyz2c
au2aw0ABPLYNs/WiyIfLx6Hr/ WG7wB+TIgwlobldfgdRV/QZ45Ax7pFaZLQx3gkmd
ctnHesNrypXfX4TCIHQNLANUTQ1bQgXi+lejpMeavcQQKkM|jtORuB9yBV/8xrakal.3N
AXShrZOymPiUb22pt2EbfvBw==



Table 13. Encryption, decryption and brute force time for 3DES on 1024 bytes text with different keys
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1024
Bytes K-ey Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
Text Stz
16B | 1.9715E-4 | 1.8261E-4 | 1.3086E-4 | 2.0356E-04 | 9.1090E-5 | 1.6105E-4 | 4.8427E-5
Encrypt
24B | 2.3778E-4 | 2.2024E-4 | 1.9159E-4 | 2.0827E-04 | 1.2915E-4 | 1.9740E-4 | 4.1718E-5
16B | 1.7662E-4 | 1.9587E-4 | 1.9672E-4 | 9.0235E-05 | 1.9244E-4 | 1.7038E-4 | 4.5531E-5
Decrypt
24B | 1.7149E-4 | 1.7577E-4 | 1.1205E-4 | 9.2373E-05 | 9.1090E-5 | 1.2855E-4 | 4.2004E-5
3.5570E+ | 3.4344E+ | 3.3370E+ | 3.4656E+0 | 3.5697E+ 9.5458E+
16B 3.4727E+3
Brute 3 3 3 3 3 1
Force
Attack 3.4481E+ | 3.5587E+ | 3.4563E+ | 3.3912E+0 | 3.3853E+ 6.9799E+
24B . . . . . 3.4479E+3 1
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Figure 42. Encryption trials for 3DES, text size 16 with different key lengths.
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Figure 44. Brute Force attack trials for 3DES, text size 16 with different key lengths.
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Figures 48, summarizes the encryption and decryption times, while Figure 49 shows the

brute force attack times
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Figure 48. Encryption and decryption average time for 3DES, text size 16 and 1024 bytes with different key lengths.

4.0

3.5

3.0

2.5

2.0 M Brute Force 16 bytes Key

M Brute Force 24 bytes Key

Thousand Seconds
[SY
(0]

0.5 -

0.0 -

16 Bytes Text 1024 Bytes Text

Figure 49. Brute Force attack average time for 3DES, text size 16 and 1024 bytes with different key lengths.
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5.1.4. AES

Three keys were used, 16 bytes (0000000099999999), 24 bytes
(000000000000000099999999) and 32 bytes Key
(00000000000000000000000099999999)

The cipher texts for the 16 bytes plain text is

16 bytes key:
wDK4g4b/90bx2h3aiTd0yg==

24 bytes key:
SljuwU1LoTjXx2Imtsrugg==

32 bytes key:
cy6ikfCY3ITpKNT7s9mbdg==

Tables 14 and 15 displays encryption, decryption and brute force attack results. While

Figures 50 to 55 show these times in relationship to each other’s.
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Table 14. Encryption, decryption and brute force time for AES on 16 bytes text with different keys

16
Key . . ) . :
Bytes si Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
ize
Text
16B | 3.6350E-5 | 9.4084E-5 | 9.3441E-6 | 9.3441E-6 | 3.5923E-5 | 3.7009E-5 | 3.4604E-5
Encrypt | 24B | 3.7206E-5 | 1.0178E-4 | 3.5923E-5 | 3.5068E-5 | 3.6778E-5 | 4.9351E-5 | 2.9321E-5
32B | 3.6350E-5 | 7.4412E-5 | 7.4839E-5 | 3.9772E-5 | 3.6778E-5 | 5.2430E-5 | 2.0305E-5
16B | 3.5923E-5 | 8.6386E-5 | 4.3193E-5 | 3.6778E-5 | 3.5068E-5 | 4.7469E-5 | 2.1990E-5
Decrypt | 24B | 3.3785E-5 | 8.4248E-5 | 3.5495E-5 | 3.2929E-5 | 3.3785E-5 | 4.4048E-5 | 2.2491E-5
32B | 4.4904E-5 | 9.3228E-5 | 4.8752E-5 | 3.4640E-5 | 3.5923E-5 | 5.1489E-5 | 2.4079E-5
7.0100E+ | 7.0048E+ 6.9876E+ | 6.9894E+ | 9.8328E+
16B | 7.1090E+2 6.8354E+2
2 2 2 2 0
Brute
7.0812E+ | 7.1690E+ 7.2928E+ | 7.2761E+ | 2.0724E+
Force 24B | 7.2169E+2 7.6204E+2
2 2 2 2 1
Attack
7.0546E+ | 7.0697E+ 7.0933E+ | 7.1054E+ | 7.2545E+
32B | 7.0765E+2 ) ) 7.2328E+2 ) ) 0

The cipher text for the 1024 bytes plain text is

16 bytes key:

zZWC/iVNmmIiQ5H7Ps9OAXw/olWEUEP/azYRRLKWONTEDBRX61QIZOPUJj1t/yIB
BXsUjX0QaeeOMVCW?76i8zUcJaSHPgp8C007pFG/2GKMEuUIBBMDrKecAOmHKW
9nd0YraAKzSEKC3RUVIBonlVSwfihDHURBS769A7b5+YhbhrnCSioezZBMAQscXC
JbzhTPPPELCNszf7mtE6bKPewbZdZHKkFS2HagO4Ywm+C39pxATI0OfO690wel6Q12
GgvC3jWLIMBIMOFv87hujGnNwHO0zdS8g1gNFhylzZ5UnWHIOMfc3IMQB2UMCHG

kEbJRDS6amDgMG5xJLijtQKH4fXcal6URZv2CpE3Yvnz+IM7VRIWOVFZhamyHqB
fKzIMAruU8J+RUSIISCSfQTJIgFelaX LUNCNOINSX1YJZW+bgtvIFleY p55fzrétwl1fjG

VCVIIWtruYw97HHelsjK11GUIpXt+0+ziv4EfXN8ZBLeiojdPUXN31MmpJIX6skEX
b++xVfdudO0OS8BDArOdIGyoj5PLv7BX97hq823Xh6xrei7Do55r06wWNFxL+TigeN9N
DZhOkgc2PFmPyafXIStowR4sSw==
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24 bytes key:

YOKE9N/ubtssitgMWSOgN3VRkiWRy2ngqosdy6fUENdUA4ER3YEbVF1cRhECRbRV
bKh54/YtPOHEtgTLZZNsMexwwIgpATwu6KtWEB9BabZkC5AUGOW7fFOeOA1BI
spWzKL8rSeYRhuX3/xStURTAGY Fn/mFfuDSN+ghPuxdOAmgAtpxxmnWg5hsPwld
NONshDnHKF1VjabYMVdbL/gnyfecfNp919tF4+VIGrxUZT6sorF3YuFW4jAroCcGx
2F6nud8nup3kD+6zfrCDBbRjG50i7e0ru29G167tYEW94ZB/1LNgulSsw5Y XdO8/FHi
Wa3lIxsl4/JHIMTuKCJo4IQFYUVOVIv2vgNfvg76S6uUR8SI9e 0678 GDK1K491QSs+e5
RMSNnDxZI7zPcjtcLIkvR+6zJzklIsSDUAQ1KuzLVgmkIEZih90Yz7ex+XzvxOBmTINO
m/EtbtDRy1tzRKmo7gARPWS5tInSM74kzspJdeZ AgwQvwXpP9uOrQIfRVpOAS8IbgE
WbATfFBundXqzNGhfK8CVbz+8024KKzOxhls72kMWw04afk0eJIMAB3HAG7SEwo
gawqf/V08Y Qycn2J77pvQPRw==

32 bytes key:

KjOooKoHIxriun800geLDNnWLXrgLW6A9h1vHIV691gL35ulMDv0OOmvsQtF1lwcspu/
d8SbXmMScm/s5a/SgK3FgKhc5opf/fo9ZaAYthZTggwy3rsu+RA+wyUkfONeNVe7gH
3BalEiOUrkR4SJASWICAXDHMVIHKS5Yi18AbelFjc98EH20mTogBTJfR3CyWuoLo
EOWDte+4aZmsbgwk/kKSdXwHvV4RgSO0TH6D5qg4xZ7q0Af+ppF2Z50LHIgS2wfr9Z
ZUG6kKRYKpBqgQ9CH2JdTPVQTuOYtigwhfuVS24zDkrGrSxcJJVBhnnglS8fzJ6D6
TulQYoghDhajRwypEc6yBNU1wdtMGROoIli9X+HCK6KILHQPIcK/NtHURPDiMbaro
MLvsPuwhgRUEfProkx/iT2sGrkZVAUOLgcaDwWF41b2t6UZgGnUIR/AE9Z31qEV7Dp
T2t589Dk0aHLWU90Z4hqVDBU5S9MP8VX9IPILTcocLEthZ7xZPOPi4xT9LOTNGhOR
uPIBCSdH4aKQ+JO9nBzN2m/FstPOOPrMLXxCXpaS2WIJ7boAcFpvzcMICWT1vkUX
0an68eX0t4rlqgLRd6bK3IFw==



Table 15. Encryption, decryption and brute force time for AES on 1024 bytes text with different keys
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1024 K
e
Bytes S'y Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
ize
Text
16B | 3.7206E-5 | 9.9643E-5 | 3.5495E-5 | 3.6778E-5 | 3.6778E-5 | 4.9180E-5 | 2.8217E-5
Encrypt | 24B | 1.1932E-4 | 4.7897E-5 | 4.5759E-5 | 1.2958E-4 | 4.3193E-5 | 7.7149E-5 | 4.3362E-5
32B | 1.3300E-4 | 1.2659E-4 | 1.3172E-4 | 1.3599E-4 | 4.5331E-5 | 1.1453E-4 | 3.8830E-5
16B | 3.6778E-5 | 3.4212E-5 | 3.6350E-5 | 3.5923E-5 | 3.4640E-5 | 3.5581E-5 | 1.1070E-6
Decrypt | 24B | 1.1461E-4 | 1.1974E-4 | 4.2338E-5 | 1.1974E-4 | 4.1910E-5 | 8.7669E-5 | 4.1630E-5
32B | 1.5182E-4 | 9.9215E-5 | 4.6187E-5 | 1.1932E-4 | 4.0627E-5 | 9.1432E-5 | 4.7730E-5
1.1025E+ | 1.0945E+ | 1.0795E+ | 1.0860E+ | 1.0963E+
16B | 1.1192E+3 1.5426E+1
3 3 3 3 3
Brute
1.1715E+ | 1.1694E+ | 1.1702E+ | 1.1783E+ | 1.1734E+
Force 24B | 1.1774E+3 4.1944E+0
3 3 3 3 3
Attack
1.1621E+ | 1.1508E+ | 1.1453E+ | 1.1524E+ | 1.1523E+
32B | 1.1508E+3 . 3 . 3 3 6.1072E+0
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Figure 50. Encryption trials for AES, text size 16 bytes with different key lengths.
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Figure 52. Brute Force attack trials for AES, text size 16 bytes with different key lengths.
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Figure 53. Encryption trials for AES, text size 1024 bytes with different key lengths.
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Figure 54. Decryption trials for AES, text size 1024 bytes with different key lengths.
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Figure 55. Brute Force attack trials for AES, text size 1024 bytes with different key lengths.
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Figures 56, summarizes the encryption and decryption times, while Figure 57 shows the

brute force attack times
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Figure 56. Encryption and decryption average time for AES, text size 16 and 1024 bytes with different key lengths.
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Figure 57. Brute Force attack average time for AES, text size 16 and 1024 bytes with different key lengths.
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5.1.5. Blowfish

Four keys were used, 8 bytes (999999999), 16 bytes (0000000099999999), 24 bytes
(000000000000000099999999) and 32 bytes Key
(00000000000000000000000099999999)

The cipher texts for the 16 bytes plain text is
8 bytes key:

wyRRejFc9Yylz1IfDaRZJg==

16 bytes key:
DeYwqctCGMsQQIPGzRI6Ww==

24 bytes key:

Pswz+4rotXkJkwgiFxe70A==

32 bytes key:
zBt0406V+444fWI171B8UrQ==

Tables 16 and 17 displays encryption, decryption and brute force attack results. While

Figures 58 to 63 show these times in relationship to each other’s.
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Table 16. Encryption, decryption and brute force time for AES on 16 bytes text with

16 Key . . . . .
. Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
Bytes Size
8B 1.2659E-4 | 6.8852E-5 | 6.8424E-5 | 6.9280E-5 | 7.6978E-5 | 8.2024E-5 | 2.5160E-5
16B | 6.9707E-5 | 1.2872E-4 | 9.1945E-5 | 7.0135E-5 | 6.8852E-5 | 8.5873E-5 | 2.5845E-5
Encrypt
24B | 7.0990E-5 | 7.0135E-5 | 8.8524E-5 | 7.0563E-5 | 7.0990E-5 | 7.4241E-5 | 7.9926E-6
32B | 7.0135E-5 | 7.8260E-5 | 6.6714E-5 | 7.0990E-5 | 1.0349E-4 | 7.7918E-5 | 1.4902E-5
8B 6.8424E-5 | 1.3129E-4 | 6.7569E-5 | 6.9280E-5 | 6.5859E-5 | 8.0484E-5 | 2.8429E-5
16B | 6.5431E-5 | 1.1718E-4 | 6.7997E-5 | 6.7569E-5 | 6.8424E-5 | 7.7320E-5 | 2.2311E-5
Decrypt
24B 1.0306E-4 | 1.6123E-4 | 6.7997E-5 | 6.6714E-5 | 6.6714E-5 | 9.3143E-5 | 4.1119E-5
32B | 6.9280E-5 | 6.6286E-5 | 1.2017E-4 | 9.0662E-5 | 6.8424E-5 | 8.2965E-5 | 2.3024E-5
4.2154E+ | 4.0620E+ | 4.0671E+ | 4.0477E+ | 4.2266E+ | 4.1238E+
8B 8.9157E+1
3 3 3 3 3 3
4.1933E+ | 4.2197E+ | 4.2157E+ | 4.0569E+ | 4.0494E+ | 4.1470E+
16B 8.6298E+1
Brute 3 3 3 3 3 3
Force
Attack 4.0835E+ | 4.2635E+ | 4.2534E+ | 4.2655E+ | 4.2619E+ | 4.2256E+
24B 7.9562E+1
3 3 3 3 3 3
4.2441E+ | 4.2535E+ | 4.2335E+ | 4.2665E+ | 4.2759E+ | 4.2547E+
32B 1.6978E+1
3 3 3 3 3 3

The cipher texts for the 1024 bytes plain text is
8 bytes key:

33bhZbLL4sz+RtER2tmMV20rw4i5zICr20ILhw1lgmk1Y FxO4tcWpTuLr0T2QOEm(
ZZeLwOz7L5HNHMhjU4eQZ1UMH5+ypSqY BKDm8LWZ0xGhfOtNeoCqzLiHOWY
ePx7wsMI+c7IbayykY TpZ+AfhliaQnvwwhTw+XKv7c2ktY vWOow6rREp55sK5Y sbk
6fusSHNzdUBNrkTLgC91Vgbc9gp0Ttjarg8hvXyuTM6NJi6 YWAOAhs5KQiVhEXAvn4
EzFXk/xV0olkJhT8JF8iyLil+QFUdTZKOrkL7MMAAONG6gbE0XHIQf7PVF6sW57h5
hki+BYCYGQ6261X3bgsa/qdthleOt7IMDsPIkz/5EbrldaEoXHIQf7PVF/IY muoyRKky
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K2pRXVL2XdrioNufEJ92N-+tvP5pbvzx32XRFEsqm+Mwfyv709g0FjJW5Y TnG7CMI
LfoFuDAIin5IkhBOPTQNksIpMtAXGmZ5Cx5011JMO0thxbxb8 WRRnuM+TIkA52895
0100MFyOVN2ijhKVrXyjUTK041rfZw57Nn10wLBZNGxD90sZH86BMkb6Pp/swvr7
4h8+0ORPPdz6eQ750KbfpdTA==

16 bytes key:

GOBFgaym3wYkmzZU430AoyCuWSYihlODiUbxIZf88Ysb+FcHzWVOHjIFDSUf8sa
IW+16YdvGGZoPSbCdn4BI00BwWRrgPgLIXgN9sDBOjE+jngTyMKH77htMVIplVbjjo
QRHpsEISWIp4rruFU11+Qz+neUUXip80bekw/5fVWEIC/zxFEaL49e6JQKT6IGj2Y 8
YvgTAmzRHdAUz3IS14gbCOeC+60FeS3ZAE01boCzXmagtLA2k8d655PTNwchCvzP6
S3YLfNTIONSPWBYOTJY6LFDeBEXvVwWTp+iLPRU/pNcliYG/1T5qrgioT8d3vnp7
Z1IWuriwx9fGRweaOQfHGSXhAk20rO1f7RuipTUzOG00JiYG/1T5groZztUdbhOqg9Sj
t5GUjF18NY8dR88Bwhf5esFzDpR6U2MCcQMjAIhFPhvC3Bv5vIGS80dDVUMIKH
0610Kbd1VnDXK7cr+juBojaKmRvDwwfl2rwNcVyS3o+GmTxwv Tbhwj/TyawFpkxpq
H8wz7iu3t9nqW600jf5N+2NF1brSQvw3yCZ11eyBLKOOXKWXDvDkzT6ehxYMUCz
6bnGhN+Cig7srDxy53LUr8w==

24 bytes key:

Dw3vfDql8KImvut/+1'YnOzaYzEZChb12HQPe/ZAEWSrbulv2kJYUr80yQwtyLOEUGF
1IXAPNnIdMrrLDTeil6lkdM3SeutLGRLhvcKolKOVPWVQEL1vG52gHFwWTt7Ex340UF
NeHQCQ7GMaMs2LIutSY o2f4gsuW/nQrwlcjajwRo7LelL1z1Rso3bv6 TBCTz2qVN1
S5Rw2M52tdMs5z9a7/bJj3E2YIRu3s+/NpHJI4WJImp8BDQyxQqgHb7EYVIOVYEgRmMT
wnsOP5kYEZRzcGyLALhH3glbqdEpXEPzyZOo09vBtwmAlI+0ywYVJcre3L2CksUZ5
RerYwUusNWA4HKPXPn+jaxzUXef/irKL4cQI1p9AY KUmMAI+0ywYVJIYTWQ8UYKh
IXT/vdPd+6JoWI1z8K3Zvu4X63Q4BX1KMLUxnsafbAoaUiKeqQUIIIYkroRRVGZgp
v/0ZGiXW6XbalZ51WdpD7SPPT2WYWZzdxxOIKRvVMkhO+oVgpG+arrGxhl4koha
RD/o+Udrg4U4wNVOXa6gmytowqziO95Pe3p9C4BsOsuH/IbnMChbTr/6aYqgYtErSy
Rm44q9G+BIhAOHr/70bh20VehA==

32 bytes key:

3k8ZEILTIiFArEXX5aN9I5RvcGERSJ3KBcc51zDK08vF5yUNeRMXCSU2gPwybNSr
3rRStrj+Sb+14amOIJfCZYDwZTIXiO0tTrDm+gn65/g/Fde5APp+TLMaY IfCflznUelL
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3jSS6DpWcUILgyis43gq1K39FJaMS8U8+SAdojD/wyDFIhNBENMnNh8Gfobexk/tsvKTa
Pv83Y YyHTPhzuvjQtccsWkNja7S6jAtFi+WehHHmMmMxTAW2H3QbiDLDANfgMS1p
RrE6BO3bmRp6db9+BYj5DF1IHC8NKZtAILCYnAKmMTX20a2nUX3lwclLpJ16bd8dU
UceJOPINrJIFoSfV9GJIgS3Kj4/eAKS7xg3BRhHDIig7X20a2nUX3I5FX6HMwT/iQu8k
USE2LXIYm9fv/7MjWI+ZWED8c+IJKWiBpyXQuUm2QLVnvwD+nBLIHOSM36Tly
ACBO/h6sqM5sekAY19i8x5ZBvOe/E5SGgNglkp0CxhFz3bojs1GG300lS6WOyBw18L
1uTj+8/pp5CIql0ZctQztelqdQlyY 7++gqsifjY2s2Y XT1k3dPmqytDBGCv37tBHSOng+
n5NsnKazG3/7hntlw==

Table 17. Encryption, decryption and brute force time for AES on 1024 bytes text with

1024 Key . . . . .
) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg StdDev
Bytes Size
8B 1.5224E-4 | 1.5267E-4 | 1.4284E-4 | 1.5310E-4 | 1.3899E-4 | 1.4797E-4 | 6.5906E-6
16B 1.6465E-4 | 1.4412E-4 | 1.4626E-4 | 1.4711E-4 | 1.3899E-4 | 1.4822E-4 | 9.7078E-6
Encrypt
24B 1.7277E-4 | 1.3941E-4 | 9.8360E-5 | 1.6037E-4 | 7.8260E-5 | 1.2984E-4 | 4.0368E-5
32B 1.4284E-4 | 1.3642E-4 | 7.7833E-5 | 1.4326E-4 | 8.2109E-5 | 1.1649E-4 | 3.3484E-5
8B 1.5567E-4 | 1.3770E-4 | 7.5267E-5 | 7.4412E-5 | 7.5267E-5 | 1.0366E-4 | 3.9785E-5
16B 1.4626E-4 | 1.2830E-4 | 1.4540E-4 | 7.5267E-5 | 1.2231E-4 | 1.2351E-4 | 2.8933E-5
Decrypt
24B 1.4711E-4 | 1.5053E-4 | 8.1682E-5 | 7.3556E-5 | 7.4412E-5 | 1.0546E-4 | 3.9730E-5
32B 1.4497E-4 | 1.7405E-4 | 1.3257E-4 | 1.4925E-4 | 1.4540E-4 | 1.4925E-4 | 1.5219E-5
4.7120E+ | 4.7290E+ | 4.5738E+ | 4.6334E+ | 4.6419E+ | 4.6580E+
8B 6.3054E+1
3 3 3 3 3 3
4.7072E+ | 4.6979E+ | 4.7228E+ | 4.6187E+ | 4.6543E+ | 4.6802E+
16B 4.2764E+1
Brute 3 3 3 3 3 3
Force
Attack 4.8397E+ | 4.8007E+ | 4.6669E+ | 4.7148E+ | 4.6264E+ | 4.7297E+
24B 8.9419E+1
3 3 3 3 3 3
4.8605E+ | 4.8630E+ | 4.7852E+ | 4.6898E+ | 4.6704E+ | 4.7738E+
32B 3 3 3 3 3 g 9.1331E+1
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Figure 58. Encryption trials for Blowfish, text size 16 bytes with different key lengths.
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Figure 59. Decryption trials for Blowfish, text size 16 bytes with different key lengths.
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Figure 60. Brute Force attack trials for Blowfish, text size 16 bytes with different key lengths.



91

2.0E-04

1.8E-04

1.6E-04
1.4E-04 -

=—¢—8 Byte Key

== 16 Byte Key

1.2E-04
1.0E-04 ~‘/ /
8.0E-05 \W/ \

Seconds

==fr=24 Byte Key

6.0E-05

=>&=32 Byte Key

4.0E-05
2.0E-05

0.0E+00 T T T T T

1 Trials

Figure 61. Encryption trials for Blowfish, text size 1024 bytes with different key lengths.
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Figure 62. Decryption trials for Blowfish, text size 1024 bytes with different key lengths.
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Figure 63. Brute Force attack trials for Blowfish, text size 1024 bytes with different key lengths.




Figures 64, summarizes the encryption and decryption times, while Figure 65 shows the

brute force attack times
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Figure 64. Encryption and decryption average time for Blowfish, text size 16 and 1024 bytes with different key
lengths.
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Figure 65. Brute Force attack average time for Blowfish, text size 16 and 1024 bytes with different key lengths.



Figure 65, 66, and 67 shows a general view for the average time of encryption,
decryption and brute force attack times for all the algorithms with different key lengths

for texts sizes 16 and 1024 respectively.
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Figure 66. Average encryption time for all algorithms
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Figure 67. Average decryption time for all algorithms
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Figure 68. Average Brute force attack time for all algorithms
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5.2. Phase Two Results

Phase two results are obtained from running the algorithms on the Raspberry Pi

Due to the similar architecture of the Raspberry Pi and modern mobile phones, the
Raspberry Pi can be considered as an entry level smart phone. Hence, the brute force
attack trials will not be conducted, encryption and decryption times and power

consumption are more important in a mobile application.

The power consumption reading was taken using a multi-meter connected in series to
the general purpose input/output pins (GPIO pins). The readings were taken during the
idle state (running the graphical user interface, and from the command line) and while
running the algorithms, the difference between the two reading is the amount of currents
drawn by the device to execute the algorithms. The idle state gave an average reading of
355mA, and for all the algorithms the average current reading was 400mA, with
maximum current value of 419mA, the CPU usage reached 100% when executing the
algorithms, these readings was consistent for algorithms running in the terminal in the

graphical user interface and in the command line environment.

Time trials results of for encryption and decryption are displayed in Table 17.

Table 18. Average encryption and decryption time of 16 byte text on a Raspberry Pi

Algorithms | Key Size | Encryption Average (seconds) | Decryption Average (seconds)
5 shifts 0.0011 0.0012
Caesar 10 shifts 0.0013 0.0013
15 shifts 0.001 0.0008
DES 8 Bytes 0.00165 0.0017
16 Bytes 0.0016 0.0017
3DES
24 Bytes 0.0018 0.00185
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These results were recorded using an oscilloscope, since the Raspberry Pi does not has a
precise timer function. Figure 69 shows a snapshot of the oscilloscope recording the
encryption time for the DES algorithm

ETEE=1311ms

CurA=129.23ms

Figure 69. A snapshot form the oscilloscope showing the encryption time of DES on the Raspberry Pi.
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5.3. Discussion

The discussion will be separated into parts according to the encryption algorithms.

There are several points to be mentioned regarding the testing process and the obtained

results:

e Phase one tests were conducted on a general purpose laptop computer, with
preloaded operating system and different programs running in the background, it
was not possible to obtain identical testing conditions.

e The different programs running at the same time yields a more accurate results,
since some of the NFC devices has an operating system running on them, with
background processes running while the device is either encrypting or
decrypting data.

e The reduced key space is important for two reasons

o Itallows obtaining results with the given time
o Itsimplified the brute force attack algorithm.

e Due to time constrains, it was not possible to run the tests more than five times
per algorithm, the average time for running the brute force attack on the
windows computer was 271406.678170143 seconds which is equal roughly to

75 hours of consecutive non interrupted running time.

Caesar: Caesar encryption algorithms is significantly affected by the text size, for the
small text, Caesar had the fastest in encryption and decryption times, however with the
larger text size, it had the slowest encryption and decryption time. The brute force attack
times were consistently the shortest of all the encryption algorithms, by a significant

margin.

DES: DES key is 8 bytes long, with parity bits at the end of each byte, this reduces the
total possible key space, in the brute force attack test that was conducted. The used key
for encryption was (99999999). However, the key that was used to successfully decrypt
the cipher text was (88888888). This can be explained in Table 19.
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Table 19. comparison between encryption key and brute force attack key.

Cipher
Kp 0000108H1 | 0000108H | 0000108 | 0000108H | 0000108H | 0000108H | 0000108H | 0000108H
ey
Used
K 0000100%% | 0000108%K | 000010888 | 0000108 | 0000108K | 0000108%Y | 0000108H | 0000106N
ey
Brute
Force | 0000108¢ | 0000108 | 0000108y | 0000108 | 0000108y | 0000108 | 0000108E | 0000108
Key

This property of DES significantly reduces the available key space from 2% to 2°°. And
this not a specific case for the reduced key space, it is true for all possible key space
used for DES algorithm.

3DES: this algorithm is an improvement over the standard DES, as seen in the results,
the brute force time is improved over the time needed to break DES given the same
amount of trials. There is an increase in encryption and decryption times over standard
DES. However, the increase in encryption and decryption times when compared to the
increase in the needed time to brute force an encrypted text is smaller. The key used for
the successful brute force attack was identical to the key used for encryption. 3DES
consists of three DES phases, for encrypting, it encrypts with the first key, decrypts with
the second key, and encrypts again with the third key. And the decryption process is the
executed in a reverse order. For a key length of 16 bytes, the first and third key are the
same, while in 24 bytes key length, each key is different, and that is why it is not
possible to expand the key to more than 24 bytes.

AES: except for Caesar, AES is the fastest algorithms for encryption and decryption
even when using the longest key length possible, however this speed is also reflected on
the brute force attack time. The AES encryption and decryption time is significantly
affected by the plain text size, for the 16 bytes text, the encryption and decryption time
differences were very small, these differences increased with the increase of the plain
text size. The text size had no noticeable effect one the brute force attack time with

different key sizes.

Blowfish: encryption times for the different key lengths had almost an inverse relation,

the smaller the key, the longer it takes to encrypt, this is true for both text sizes tested,
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the relation between decryption times and key lengths are different, with smaller texts,
the decryption times were close to each other, and with the larger text size, the largest
key length had the largest decryption time. The inconsistent results can be explained by
the status of the machine running the algorithms with different programs running in the
background, the difference between the longest and shortest decryption times for the
small text however is 15 micro seconds, and for the larger text the difference is 45

micro seconds

The encryption and decryption times obtained from the Raspberry Pi have a much
smaller difference between different algorithms (maximum difference for encryption
times was 0.0008 seconds and for decryption times 0.00105 seconds), compared to the

average encryption and decryption times.
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6. Conclusion

Choosing the suitable encryption algorithm for any application is subject to several
factors, the level of security needed, the amount of available memory, the available time

for encryption and decryption and many others.

Based on the conducted tests and obtained results, several conclusions can be made
about all the test encryption algorithms.

The Caesar encryption algorithm has the worst performance out of the tested
algorithms, it had the longest encryption and decryption time, and the least immunity
against the brute force attack, also it does not change the basic structure of the text, does
not hide the frequency of the symbols in the text, and since it is based on substitution, it
does not have a key. The Caesar algorithm is not suitable as a modern encryption
algorithm, no matter what application it is used for. It does however provide a
convenient way for cryptography and help familiarize some basic concepts for

educational purposes.

Based on the results DES is more secure against brute force attack than AES, given the
same number of trials, which is DES major weakness, the limited key space makes
calculating the key an easier task, which is helped by the reduction in the key space due

to the exclusion of the parity bits.

AES security is based on the significantly larger key space compared to DES. For the
same key used for both algorithms (setting the rest of the AES bytes in the key to zero)
AES encrypted text can deciphered faster than a text encrypted with DES, however, this
can be mitigated using a longer key, for each byte, the brute force attack time needed to
decipher an encrypted text is multiplied approximately by ten times.

The short encryption and decryption time of the AES is another important advantage,
from the current consumption readings, a shorter encryption and decryption time means
less energy used, which helps in a device that runs on limited power supply such as a

mobile phone powered by a battery.

3DES is an improvement over standard DES, by expanding the key space. And just as
in AES, the immunity against brute force attack can be improved by utilizing the rest of
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the available bytes in the key. However, due to the smaller key space (24 bytes against
32), AES can offer a better immunity. But comparing both algorithms using a similar

key, based on the results, 3DES is more secure than AES.

3DES is useful in applications where memory is a scars resource, and it is also suitable
for systems that are based on DES, which can be upgraded to 3DES with minimum

modifications.

Blowfish performed very well in all three tests with all different key lengths, it had the
largest brute force attack time even when the smallest key length was used. Encryption
and decryption times were less than the ones obtained from 3DES, and the brute force

attack times where similar for the same key when different text sizes were used.

The flexibility Blowfish offer from the key length size is a very important advantage.
Larger keys can be used according to the level of security needed, since based on the
results, the immunity against brute force attacks is increased by increasing the key size,
so increasing the key length and utilizing the all available bytes in the key can yield to a
very robust and secure encryption, without compromising the encryption and decryption

times.

Based on the results obtained from the tests on the computer and on the Raspberry Pi,
blowfish encryption algorithm is recommended for applications with high security
requirements, and the flexible key lengths makes it suitable for applications with limited

memory.
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Future work

The future work could involve observing the effect different encryption modes have on
the encryption and decryption times, such as Cipher-block chaining, and Cipher

feedback, as well as the effect they have on the immunity against brute force attacks.

Different encryptions should also be considered such as elliptic curve cryptography,

Twofish and Threefish, with larger key space if possible.

Designing a dedicated system for testing the encryption algorithms with different
programming language might also be considered, in order to minimize the background

application interference.

Different attacks can be considered beside the brute force attacks, focusing on one

encryption algorithm at a time.

Using an actual smartphone instead of the Raspberry Pi for testing different encryption
algorithms, can yield a more accurate reading on the encryption and decryption times,

as well as a precise reading for the power consumption.
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Appendices

Appendix 1: Caesar Source Code.

R R R R R R R

H i
## Caesar by Mohammed A. Mohammed ##
#Hit #H

e e

import time

import timeit

# this function is for deciding whether the user wants to encrypt or decrypt
det getMode():
while True:
print('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?")
mode = input()
iT mode in ‘e d b'.split():
return mode
else:
print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.")

#this funiction is for the user to input the plain/ciphered text
def text():

print('Enter text:")

return input()

#this funiction is for choosing the key
def getKey():
key =0
while True:
print('Enter the key number’)
key = int(input())
key = key%95 # the key is set in module 95 so it will cover the range of all ASCII values
without exceeding it
return key

#this funiction is for the encryption/decryption
def getTranslatedMessage(mode, text, key):
start = time.clock()
if mode[0] !="b":
iT mode[0] =="d":
key = -key # since the encryption and decryption is Caesar are the exact opposite, the if
statment only flips the sign of the key
translated ="

for symbol in text:
num = ord(symbol) # getting the numerical value for the symbols (between 32-126)
mnum = num-32 # tranfaring the value of the symbol before shifting it to the range of
(0-94)
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msnum = (mnum-+key)%95 # shifting the modified value of the key within the allowed
range (0-94)
snum = msnum+32 # returning the value to the ASCII range (32-126)
translated += chr(snum) # adding the new value to the new sring
end = time.clock()
print ("execution time is", end-start)
translated

mode = getMode()
text = text()
mode[0] I="b™
key = getKey()
print("Your translated text is:")
print(getTranslatedMessage(mode, text, key))

print(“enter a part of the plain text™)
text2 = input("")
key in range (0, 95, 1):
start = time.clock()
translated = (")
symbol in text:
num = ord(symbol)
mnum = num-32
msnum = (mnum-+key)%95
snum = msnum-+32
translated += chr(snum)

translated.find(text2) !=-1:

print ("\nthe key is =" key)

print ("\nand the palin text is:\n")
print (translated)

end = time.clock()

print ("execution time is", end-start)
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Appendix 2: DES Source Code.

e e e e

H H
## DES by Mohammed A. Mohammed ##
H#Ht #H

R e s e

time
timeit
Crypto.Cipher DES #encryption is used for disguising data
0s # os is for urandom, which is an accepted producer of randomness that is suitable for

cryptology.
base64

print ("key size is fixed at 8 Bytes including parities (56 bits effective)")
size=8

key ='99999999'
cipher = DES.new(key)
BS=8

ciphertext ="

testtext = "

# deciding to encrypt, decrypt, or brute force a text.
getMode():

mode = i.nput('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n')
mode in ‘e d b'.split():
mode

pﬁnt('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n")

# encryption function
encrypt(text):
start = time.clock()
length = len(plaintext)
pad = lambda s: s + (BS - len(s) % BS) * ('~)
paddedtext = pad(plaintext)
encrypted = DES.new(key, DES.MODE_ECB)
ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("'utf-8")
end = time.clock()
print ("execution time is", end-start)
ciphertext

# decryption function
decrypt(text):
start = time.clock()
decrypted = DES.new(key, DES.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("utf-8")
| = paddedtext.count ('~
end = time.clock()
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print ("execution time is", end-start)
paddedtext[:len(paddedtext)-1]

# brute force attack function
# first part, generating the test keys
testkeys ():
start = time.clock()
i in range (100000000):
temp ='{:08d}".format (i)
if (brute(temp)) == 1:
end = time.clock()
print (“execution time is", end-start)

# second part, checking the test keys to decrypt the cipher text
brute(testkey):

testkey = format (testkey)
decrypted = DES.new(testkey, DES.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

paddedtext.find(testtext) 1= -1:
print ("the key is " testkey)
| = paddedtext.count ('~

print (paddedtext[:len(paddedtext)-1])
1

0

# the begining of the program
mode = getMode()

print ("key is:", key)

mode[0] =="e"

plaintext = input(“Enter the plaintext: ")
encrypted = encrypt(plaintext)

print ("encrypted:", encrypted)

mode [0] =="d"
cipher = input("Enter the ciphertext: ")
decrypted = decrypt(cipher)
print ("decrypted:\n", decrypted)

cipher = input("Enter the ciphertext: )
testtext = input(“enter a part of the plain text: ")
testkeys ()
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Appendix 3: 3DES Source Code.

R R R R R R R

## i
## 3DES by Mohammed A. Mohammed ##
it ##

R R R R R R R

time
timeit
Crypto.Cipher DES3 #encryption is used for disguising data
0s # os is for urandom, which is an accepted producer of randomness that is suitable for

cryptology.
base64

print ("choose key size")
size = int(input())
(size in [16,24]):
print("wrong key size™)
print (choose a suitable key size™)
size = int(input())

key ='0000000099999999
cipher = DES3.new(key)
BS=38
ciphertext =
testtext = "

# deciding to encrypt, decrypt, or brute force a text.
getMode():

mode = input('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n’)
mode in ‘e d b'.split():
mode

print(Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n’)

# encryption function
encrypt(text):
start = time.clock()
length = len(plaintext)
pad = lambda s: s + (BS - len(s) % BS) * ('~)
paddedtext = pad(plaintext)
encrypted = DES3.new(key, DES3.MODE_ECB)
ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("'utf-8")
end = time.clock()
print ("execution time is", end-start)
ciphertext

# decryption function
decrypt(text):
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start = time.clock()
decrypted = DES3.new(key, DES3.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("'utf-8")
| = paddedtext.count ('~
end = time.clock()
print ("execution time is", end-start)
paddedtext[:len(paddedtext)-1]

# brute force attack function
# first part, generating the test keys
testkeys ():
start = time.clock()
i in range (10000000000000000):
temp = '{:016d}".format (i)
if (brute(temp)) == 1:
end = time.clock()
print ("execution time is", end-start)

# second part, checking the test keys to decrypt the cipher text
brute(testkey):
testkey = format (testkey)
decrypted = DES3.new(testkey, DES3.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("latin-1")

paddedtext.find(testtext) 1= -1:

print ("the key is " testkey)

| = paddedtext.count ('~

print (paddedtext[:len(paddedtext)-1])
1

0

# the begining of the program
mode = getMode()

print ("key is:", key)

mode[0] =="e"

plaintext = input("Enter the plaintext: ™)
encrypted = encrypt(plaintext)

print ("encrypted:", encrypted)

mode [0] == "d"
cipher = input("Enter the ciphertext: ")
decrypted = decrypt(cipher)
print ("decrypted:\n", decrypted)

cipher = input("Enter the ciphertext: ")
testtext = input(“enter a part of the plain text: ")
testkeys ()
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Appendix 4: AES Source Code.

e e e e

H HH
## AES by Mohammed A. Mohammed ##
H#Ht #Hi

S

time
timeit
Crypto.Cipher AES #encryption is used for disguising data
0s # os is for urandom, which is an accepted producer of randomness that is suitable for

cryptology.
base64

print ("choose key size™)
size = int(input())
(size in [16,24,32]):
print(“wrong key size™)
print ("choose a suitable key size™)
size = int(input())

key ='0000000099999999'
cipher = AES.new(key)
BS =16

ciphertext ="

testtext = "

# deciding to encrypt, decrypt, or brute force a text.
getMode():

mode = i-nput('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n’)
mode in ‘e d b'.split():
mode

print('Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n")

# encryption function
encrypt(text):
start = time.clock()
length = len(plaintext)
pad = lambda s: s + (BS - len(s) % BS) * ('~
paddedtext = pad(plaintext)
encrypted = AES.new(key, AES.MODE_ECB)
ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("'utf-8")
end = time.clock()
print ("execution time is", end-start)
ciphertext

# decryption function
decrypt(text):
start = time.clock()
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decrypted = AES.new(key, AES.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("'utf-8")
| = paddedtext.count ('~
end = time.clock()
print ("execution time is", end-start)
paddedtext[:len(paddedtext)-I]

# brute force attack function
# first part, generating the test keys
testkeys ():
start = time.clock()
i in range (10000000000000000):
temp ="'{:016d}".format (i)
if (brute(temp)) == 1:
end = time.clock()
print ("execution time is", end-start)

# second part, checking the test keys to decrypt the cipher text
brute(testkey):
testkey = format (testkey)
decrypted = AES.new(testkey, AES.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode(*"latin-1")

paddedtext.find(testtext) = -1:

print ("the key is " testkey)

| = paddedtext.count ('~

print (paddedtext[:len(paddedtext)-1])
1

0

# the begining of the program
mode = getMode()

print ("key is:", key)

mode[0] =="e"

plaintext = input("Enter the plaintext: ")
encrypted = encrypt(plaintext)

print ("encrypted:", encrypted)

mode [0] == 'd":
cipher = input("Enter the ciphertext: ')
decrypted = decrypt(cipher)
print ("decrypted:\n", decrypted)

cipher = input("Enter the ciphertext: ")
testtext = input(“enter a part of the plain text: ")
testkeys ()
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Appendix 5: Blowfish Source Code.

e e e e D e

H H
## Blowfish by Mohammed A. Mohammed ##
H#Ht i

R s s e

time
timeit
Crypto.Cipher #encryption is used for disguising data
0s # os is for urandom, which is an accepted producer of randomness that is suitable for

cryptology.
base64

print ("choose key size™)
size = int(input())
(size in range (4, 57)):
print("wrong key size")
print ("choose a suitable key size™)
size = int(input())

key ='99999999'

cipher = Blowfish.new(key)
BS=8
ciphertext =
testtext = "

# deciding to encrypt, decrypt, or brute force a text.
getMode():

mode = i.nput('Do you wish to Encrypt "e", Decrypt "d" or Brute force "b" a message?\n’)
mode in ‘e d b'.split():
mode

print(Enter either "e" for encrypt,"d" for decrypt, or "b" for brute force.\n")

# encryption function
encrypt(text):
start = time.clock()
length = len(plaintext)
pad = lambda s: s + (BS - len(s) % BS) * ('~
paddedtext = pad(plaintext)
encrypted = Blowfish.new(key, Blowfish. MODE_ECB)
ciphertext = base64.b64encode(encrypted.encrypt(paddedtext)).decode("'utf-8")
end = time.clock()
print (“execution time is", end-start)
ciphertext

# decryption function
decrypt(text):
start = time.clock()
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decrypted = Blowfish.new(key, Blowfish. MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode("'utf-8")
| = paddedtext.count ('~
end = time.clock()
print ("execution time is", end-start)
paddedtext[:len(paddedtext)-I]

# brute force attack function
# first part, generating the test keys
testkeys ():
start = time.clock()
i in range (10000000000000000):
temp ='{:08d}".format (i)
if (brute(temp)) == 1:
end = time.clock()
print ("execution time is", end-start)

# second part, checking the test keys to decrypt the cipher text
brute(testkey):
testkey = format (testkey)
decrypted = Blowfish.new(testkey, Blowfish.MODE_ECB)
paddedtext = decrypted.decrypt(base64.b64decode(cipher)).decode(*latin-1")

paddedtext.find(testtext) = -1:

print ("the key is " testkey)

| = paddedtext.count ('~")

print (paddedtext[:len(paddedtext)-11)
1

0

# the begining of the program
mode = getMode()

print ("key is:", key)

mode[0] =="e"

plaintext = input("Enter the plaintext: ")
encrypted = encrypt(plaintext)

print ("encrypted:", encrypted)

mode [0] =='d".
cipher = input("Enter the ciphertext: ')
decrypted = decrypt(cipher)
print ("decrypted:\n", decrypted)

cipher = input("Enter the ciphertext: ")
testtext = input(“enter a part of the plain text: ")
testkeys ()
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