451 research outputs found

    Supporting the creation of semantic RESTful service descriptions

    Get PDF
    Research on semantic Web services (SWS) has been devoted to reduce the extensive manual eort required for manipulating Web services by enhancing them with semantic information. Recently, the world around services on the Web, thus far limited to "classical" Web services based on SOAP and WSDL, has significantly evolved with the proliferation of Web applications and APIs, often referred to as RESTful Web services. However, despite their success, RESTful services are currently facing similar limitations to those identified for traditional Web service technologies and present even further difficulties, such as the lack of machine-processable service descriptions. In order to address these challenges and to enable the wider adoption of RESTful service technologies, we advocate an integrated lightweight approach for formally describing semantic RESTful services. The approach is based on the use of the hRESTS (HTML for RESTful Services) and MicroWSMO microformats, which enable the creation of machine-readable service descriptions and the addition of semantic annotations, correspondingly. Finally, we present SWEET - Semantic Web sErvices Editing Tool - which effectively supports users in creating semantic descriptions of RESTful services based on the aforementioned technologies

    Semantic web service automation with lightweight annotations

    Get PDF
    Web services, both RESTful and WSDL-based, are an increasingly important part of the Web. With the application of semantic technologies, we can achieve automation of the use of those services. In this paper, we present WSMO-Lite and MicroWSMO, two related lightweight approaches to semantic Web service description, evolved from the WSMO framework. WSMO-Lite uses SAWSDL to annotate WSDL-based services, whereas MicroWSMO uses the hRESTS microformat to annotate RESTful APIs and services. Both frameworks share an ontology for service semantics together with most of automation algorithms

    Semantic annotation of Web APIs with SWEET

    Get PDF
    Recently technology developments in the area of services on the Web are marked by the proliferation of Web applications and APIs. The development and evolution of applications based on Web APIs is, however, hampered by the lack of automation that can be achieved with current technologies. In this paper we present SWEET - Semantic Web sErvices Editing Tool - a lightweight Web application for creating semantic descriptions of Web APIs. SWEET directly supports the creation of mashups by enabling the semantic annotation of Web APIs, thus contributing to the automation of the discovery, composition and invocation service tasks. Furthermore, it enables the development of composite SWS based applications on top of Linked Data

    WSMO-Lite and hRESTS: lightweight semantic annotations for Web services and RESTful APIs

    Get PDF
    Service-oriented computing has brought special attention to service description, especially in connection with semantic technologies. The expected proliferation of publicly accessible services can benefit greatly from tool support and automation, both of which are the focus of Semantic Web Service (SWS) frameworks that especially address service discovery, composition and execution. As the first SWS standard, in 2007 the World Wide Web Consortium produced a lightweight bottom-up specification called SAWSDL for adding semantic annotations to WSDL service descriptions. Building on SAWSDL, this article presents WSMO-Lite, a lightweight ontology of Web service semantics that distinguishes four semantic aspects of services: function, behavior, information model, and nonfunctional properties, which together form a basis for semantic automation. With the WSMO-Lite ontology, SAWSDL descriptions enable semantic automation beyond simple input/output matchmaking that is supported by SAWSDL itself. Further, to broaden the reach of WSMO-Lite and SAWSDL tools to the increasingly common RESTful services, the article adds hRESTS and MicroWSMO, two HTML microformats that mirror WSDL and SAWSDL in the documentation of RESTful services, enabling combining RESTful services with WSDL-based ones in a single semantic framework. To demonstrate the feasibility and versatility of this approach, the article presents common algorithms for Web service discovery and composition adapted to WSMO-Lite

    hRESTS: An HTML microformat for describing RESTful web services

    Get PDF
    The Web 2.0 wave brings, among other aspects, the programmable Web: increasing numbers of Web sites provide machine-oriented APIs and Web services. However, most APIs are only described with text in HTML documents. The lack of machine-readable API descriptions affects the feasibility of tool support for developers who use these services. We propose a microformat called hRESTS (HTML for RESTful Services) for machine-readable descriptions of Web APIs, backed by a simple service model. The hRESTS microformat describes main aspects of services, such as operations, inputs and outputs. We also present two extensions of hRESTS: SA-REST, which captures the facets of public APIs important for mashup developers, and MicroWSMO, which provides support for semantic automation

    Seamless Integration of RESTful Services into the Web of Data

    Get PDF
    We live in an era of ever-increasing abundance of data. To cope with the information overload we suffer from every single day, more sophisticated methods are required to access, manipulate, and analyze these humongous amounts of data. By embracing the heterogeneity, which is unavoidable at such a scale, and accepting the fact that the data quality and meaning are fuzzy, more adaptable, flexible, and extensible systems can be built. RESTful services combined with Semantic Web technologies could prove to be a viable path to achieve that. Their combination a1lows data integration on an unprecedented sca1e and solves some of the problems Web developers are continuously struggling with. This paper introduces a novel approach to create machine-readable descriptions for RESTful services as a first step towards this ambitious goal. It also shows how these descriptions along with analgorithm to translate SPARQL queries to HTTP requests can be used to integrate RESTful services into a global read-write Web of Data
    corecore