
Open Research Online
The Open University’s repository of research publications
and other research outputs

Supporting the creation of semantic RESTful service
descriptions
Conference or Workshop Item
How to cite:

Maleshkova, Maria; Pedrinaci, Carlos and Domingue, John (2009). Supporting the creation of semantic RESTful
service descriptions. In: 8th International Semantic Web Conference (ISWC 2009), 25-29 Oct 2009, Washington D.C.,
USA.

For guidance on citations see FAQs.

c© 2009 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82921271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Supporting the Creation of Semantic RESTful
Service Descriptions

Maria Maleshkova, Carlos Pedrinaci, John Domingue

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.maleshkova, c.pedrinaci, j.b.domingue}@open.ac.uk

Abstract. Research on semantic Web services (SWS) has been devoted
to reduce the extensive manual effort required for manipulating Web
services by enhancing them with semantic information. Recently, the
world around services on the Web, thus far limited to “classical” Web
services based on SOAP and WSDL, has significantly evolved with the
proliferation of Web applications and APIs, often referred to as RESTful
Web services. However, despite their success, RESTful services are cur-
rently facing similar limitations to those identified for traditional Web
service technologies and present even further difficulties, such as the lack
of machine-processable service descriptions. In order to address these
challenges and to enable the wider adoption of RESTful service tech-
nologies, we advocate an integrated lightweight approach for formally
describing semantic RESTful services. The approach is based on the
use of the hRESTS (HTML for RESTful Services) and MicroWSMO
microformats, which enable the creation of machine-readable service de-
scriptions and the addition of semantic annotations, correspondingly.
Finally, we present SWEET–Semantic Web sErvices Editing Tool–which
effectively supports users in creating semantic descriptions of RESTful
services based on the aforementioned technologies.

1 Introduction

Since the advent of Web service technologies, research on semantic Web services
(SWS) has been devoted to reduce the extensive manual effort required for ma-
nipulating Web services. The main idea behind this research is that tasks such
as the discovery, negotiation, composition and invocation of Web services can
have a higher level of automation, when services are enhanced with semantic
descriptions of their properties. Recently, the world around services on the Web,
thus far limited to “classical” Web services based on SOAP and WSDL, has
significantly evolved with the proliferation of Web applications and APIs, also
referred to as RESTful Web services [1]. RESTful services conform to the REST
architectural style [2] and are characterized by their relative simplicity and their
natural suitability for the Web, which is indeed closely related to the growing
popularity and use of Web 2.0 technologies.

Currently, more and more Web applications and APIs expose functionali-
ties in the form of RESTful services. In addition, popular Web 2.0 applications

like Facebook, Google, Flickr and Twitter offer easy-to-use, resource-oriented
APIs, which not only provide simple access to different resources but also en-
able combining heterogeneous data coming from diverse services, in order to
create data-oriented service compositions called mashups. Despite their success,
RESTful services are currently facing the same limitations that were identified
for traditional Web service technologies and present even further difficulties. In
particular, as opposed to WSDL services, there is no widely accepted structured
language for describing RESTful ones, even though there are some initial ap-
proaches in this area [8], [9]. As a consequence, in order to use RESTful services,
developers are obliged to manually locate, retrieve, read and interpret heteroge-
neous documentations of RESTful services in HTML, and subsequently develop
custom tailored software that is able to invoke and manipulate them.

Therefore, the lack of machine-readable descriptions and the fact that the
majority of existing RESTful service descriptions have no semantic annotations
are the two main challenges, which need to be addressed in order to provide a
certain level of automation of common service tasks. In this paper we present
an integrated lightweight approach for formally describing semantic RESTful
services, by using the hRESTS (HTML for RESTful Services) microformat [3]
for the creation of machine-readable service descriptions. Microformats [4] offer
means for annotating human-oriented Web pages in order to make key infor-
mation machine-readable, while hRESTS, in particular, enables the creation of
machine-processable Web API descriptions based on available HTML documen-
tation.

hRESTS is complemented by the MicroWSMO [5] microformat, which sup-
ports the semantic annotation of service properties in a SAWSDL-like [6] manner.
MicroWSMO introduces additional HTML classes, in order to enable the link-
ing of ontological elements and the provisioning of machinery for transforming
data exchanged between two services used in a service composition. Moreover,
concrete semantics can be added by applying WSMO-Lite [7] service semantics,
which enable the integration of RESTful services with WSDL-based ones. As
a result, when semantic descriptions of WSDL-based services and of RESTful
services are both based on WSMO-Lite, the unified query over both “classical”
Web services and RESTful services is provided.

Our main contribution is practically enabling developers to create semantic
RESTful services by using SWEET. SWEET (Semantic Web sErvices Editing
Tool) is the first tool, which provides functionalities for both the creation of
machine-readable RESTful service descriptions and the addition of semantic an-
notations. SWEET uses the hRESTS and MicroWSMO microformats, however,
it hides formalism complexities from the user and assists him/her in making
semantic annotations. The result is a structured and semantically annotated
HTML description of the RESTful service, which can be saved and republished
on the Web. In addition, the resulting HTML can also be transformed into an
RDF MicroWSMO description, which can be used for manipulation or storage.
We provide a detailed explanation of how to use the tool and an example of
service annotation in Sections 3 and 4.

The remainder of this paper is structured as follows: Section 2, provides an
overview of the formal description of RESTful services, while Section 3 intro-
duces SWEET, including its components, functionalities and user support. An
example of creating semantic RESTful descriptions is given in Section 4. Section
5 presents an overview of related formalisms and approaches. Finally, Section 6
presents future work that will be carried out and concludes the paper.

2 Semantic Annotation of RESTful Services

Currently, when a user is searching for RESTful services for retrieving resource
information or for creating a custom mashup he/she is restricted to two main
alternatives. First, the user can rely on a set of Web applications and APIs that
is known from previous experience or he/she can browse for common Web 2.0
applications, guessing that they might expose some functionalities in the form of
RESTful services. Second, the user can search in existing RESTful service repos-
itories1 that maintain API descriptions manually collected over time. Although
useful, searching these repositories is unfortunately poorly supported as, most
often, repositories only support browsing through a predefined and rather high-
level classification, and keyword-based search. The semantics of the services are
not explicitly represented in a way that a machine could benefit from, in order to
provide more advanced functionalities such as search based on input and output
types, ordering based on certain non-functional properties, etc. As the number
of services and service repositories grow, the limitations of current technologies
will hamper to an important extent the adoption of RESTful services, much like
it previously happened for Web services.

Both the discovery and matching tasks can be significantly improved and au-
tomated by enriching RESTful service descriptions with semantic annotations.
Currently, there is no way of distinguishing between common HTML of Web-
sites and HTML describing RESTful services. This can be changed by extending
HTML RESTful descriptions with hRESTS microformat tags, marking service
properties. These tags can be automatically recognized by both crawlers and
search engines, facilitating the targeted search and collection of RESTful ser-
vices. In addition, similarly to SWS the semantic annotation of RESTful service
properties can reduce the manual effort required for service discovery and im-
prove the returned results.

Given that the vast majority of available RESTful services are merely de-
scribed in plain HTML within normal Web pages, we advocate using microfor-
mats for structuring service descriptions and for attaching semantic annotations
to them. In this paper we present a 3-steps approach visualized in Figure 1 for
providing semantic annotations for RESTful services, focussing in particular on
SWEET, a tool created explicitly for supporting users in this process. First,
the unstructured text description of the RESTful service, in the form of HTML

1 See for instance www.programmableweb.com, which contains up to 2000 API descrip-
tions

content, is extended with hRESTS tags marking all service properties. The re-
sulting service structure is enriched with semantic annotations by adding links
pointing to semantic content. Finally, the annotated HTML can be saved and
republished, or it can be used to extract RDF MicroWSMO descriptions. The
user is supported in completing each of these steps by SWEET, which guides
him/her in process of creating semantic RESTful service descriptions and hides
formalism complexities behind an easy-to use interface.

Fig. 1. Semantic Annotation of RESTful Services

2.1 RESTful Service Descriptions

The majority of the RESTful service descriptions are usually given in the form of
unstructured text in a Web page, which contains a list of the available operations,
their URIs and parameters, expected output, error messages and an example.
The description includes all details necessary for a developer to execute the
service or use it in a mashup. Based on analyzing a collection of RESTful services,
we have identified three common types of RESTful service descriptions. The first
type is a single Website containing only one or a number of operations2, with
their corresponding parameter and URIs. However, in contrast to such simpler
RESTful services, a lot of Web 2.0 applications contain a plenitude of operations.
This second type of descriptions, includes one main page for the service and a
number of linked pages, each of which describes one operation3.

Listing 1.1. Resource-Oriented Description
activity blogs auth
− flickr . activity .userComments − flickr . blogs . getList − flickr .auth.checkToken
− flickr . activity .userPhotos − flickr . blogs .postPhoto − flickr .auth.getFrob

Finally, the last type of RESTful service descriptions are the resource-oriented
ones4. Listing 1.1 shows parts of the Flickr5 API documentation, where oper-
ations are not simply listed but they are rather grouped, based on the resources
2 http://open.3scale.net/happenr/happenr, http://delicious.com/help/api
3 http://www.geonames.org/export/ws-overview.html, http://apidoc.digg.com/
4 http://apiwiki.twitter.com/Twitter-API-Documentation, http://www.last.

fm/api
5 www.flickr.com/services/api/

which they manipulate. In the example, there are three resources (activity, blogs
and auth), each of which has a set of operations. All these types of RESTful ser-
vice descriptions, can be syntactically structured by marking service properties
with the hRESTS microformat.

2.2 hREST

All possible interactions with RESTful services, and services in general, are spec-
ified in the service description, which gives information about requirements and
invocation methods. While Web applications and Web APIs contain HTML doc-
umentation, which is understandable for humans, it needs to be extended in or-
der to become machine-processable as well. Some existing formalism for RESTful
service descriptions include WSDL and WADL. WSDL [8] is an established stan-
dard for Web service descriptions, however, it has not found wide adoption for
RESTful services and only a few such services have WSDL descriptions. Simi-
larly, WADL [9] does not seem to be gaining acceptance among API provides
and instead Web applications and APIs are usually described in textual docu-
mentation. However, in order to support the automation of RESTful services,
certain key aspects of the descriptions have to be made machine-readable.

Since currently most Web applications and Web APIs rely only on HTML
documentation, we use the hREST [3] microformat [4], which enables the cre-
ation of machine-processable descriptions on top of existing HTML descriptions.
It contains only a few elements, is very lightweight and easy to use. Microformats,
in general, facilitate the translation of the HTML tag structure into objects and
properties, while hREST in particular, uses class and rel XHTML attributes
to mark key service properties, leaving the visualization of the HTML descrip-
tion unchanged. hRESTS introduces tags for marking the service description as
a whole, the used HTTP method, the operation with corresponding input and
output, and the service or operation names in the form of labels. It also enables
the linking of separate pages to one main page, in the case of complex RESTful
service descriptions, by including rel="section" tags pointing to the operation
Web pages and rel="start" tags pointing to the main service description.

2.3 MicroWSMO

hRESTS marks the key properties of the RESTful service and provides a machine-
readable description based on the available HTML documentation. The result
can be used as the basis for adding complimentary information and annotations,
which will contribute to a higher level of automation of the discovery, compo-
sition, ranking, invocation and mediation service tasks. As a result Semantic
RESTful Services (SRS) can be developed following and adapting approaches
from Semantic Web Services (SWS) research.

We use MicroWSMO [5] for the semantic annotation of RESTful services,
which enables the creation of SAWSDL-like [6] annotations. It has three main
elements, which represent links to URIs of semantic concepts and data transfor-
mations. The model tag indicates that the URI is a link to an ontology entity,

while lifting and lowering point to links for lifting and lowering transforma-
tions between the level of technical descriptions (for example XML, used as a
data exchange format) and the level of semantic knowledge (for example RDF,
used for semantic-based manipulation such as reasoning). The MicroWSMO mi-
croformat is relatively simple but it provides all the elements necessary for at-
taching semantic information to RESTful service descriptions.

MicroWSMO is complemented by the WSMO-Lite service ontology [7], which
specifies the content of the semantic annotations. WSMO-Lite defines four as-
pects of service semantics including information model, functional semantics, be-
havioral semantics and nonfunctional descriptions, instances of which are linked
to the MicroWSMO annotations. In addition to that, it is also used in the same
way for describing the content of SAWSDL annotations in WSDL. As a result,
both MicroWSMO and SAWSDL can apply WSMO-Lite service semantics and
RESTful services can be integrated with WSDL-based ones. Therefore, WSMO-
Lite enables unified search over both WSDL-based and RESTful services and
tasks such as discovery, composition and mediation can be performed based on
WSMO-Lite, completely independently from the underlying Web service tech-
nology (WSDL/ SOAP or REST/HTTP).

In summary, the use of MicroWSMO and hRESTS, together with the WSMO-
Lite ontology for service semantics, supports the automation of RESTful service
tasks. The here presented approach is very lightweight because it relies on the
use of microformats, which only enhance existing HTML descriptions with a
few simple tags, without modifying the existing visualization. In addition, the
annotation process does not require extensive user training or ontology knowl-
edge, and is very intuitive. Currently, there is only little research done in the
area of semantic RESTful services and there are no widely accepted alternative
methods or approaches. Moreover, there are no available tools, which support
users in creating semantic annotations tool support. In order to enable users to
practically apply the here presented approach, we introduce SWEET.

3 SWEET

SWEET is a Web application developed using JavaScript and ExtGWT6, which
is started in a Web browser by calling the host URL. It is part of a fully-
fledged framework supporting the lifecycle of services, particularly targeted at
supporting the creation of semantic RESTful descriptions. SWEET takes as
input an HTML Web page describing a Web API and offers functionalities,
which enable users to annotate the service properties and to associate semantic
information to them.

As it can be seen in Figure 2, the architecture of SWEET consists of three
main components, including the visualization component, the data preprocessing
component and the annotations recommender. The annotations recommender
assists the user in annotating a service by suggesting suitable annotations for

6 http://extjs.com/products/gxt/

the service as a whole (domain ontology recommendation) and for its individ-
ual properties. This component is based on a hybrid recommendation approach
combining content based recommendation, implemented by computing similar-
ity measures, between the description of the new service to be annotated and
previously annotated services, and ontology-based recommendation. The data
preprocessing component implements functionalities for data preparation for the
visualization component, caching mechanisms and simple rule-based analysis.

Fig. 2. SWEET Architecture

The GUI of the visualization component is shown in Figure 3 and it has three
main panels. The the HTML of the RESTful services is loaded in the Navigator
panel, which implements a reverse proxy [10] that enables the communication
between the annotation functions and the HTML by rerouting all sources and
connections from the original HTML through the Web application. Based on
this, the HTML DOM of the RESTful service can freely be manipulated by
using functionalities of the Annotation Editor panel. The current status of the
annotation is visualized in the form of a tree structure in the Semantic Descrip-
tion panel. It is implemented using the Model-View-Control architecture pattern
[10], automatically synchronizing the visualization of the service annotation with
an internal model representation, every time the user manipulates it.

In addition to these three main panels, SWEET offers a number of supple-
mentary useful functionalities. It guides the user thorough the process of marking
service properties with hRESTS tags, by limiting the available tags depending
on the current state of the annotation. This implements measures for reducing
possible mistakes during the creation of annotations. In addition, based on the
hRESTS tagged HTML, which provides the structure of the RESTful service,
the user can link service properties to semantic content. This is done by se-
lecting service properties, searching for suitable domain ontologies by accessing
Watson [11] in an integrated way, and by browsing ontology information. Based
on this details the user can decide to associate a service property with particular
semantic information by inserting a MicroWSMO model reference tag.

While all the main components of SWEET’s architecture have complete spec-
ifications, including design models and computational methodologies, the an-
notations recommender is not fully implemented yet. Still, SWEET effectively
supports users in creating semantic RESTful descriptions by marking service
properties, in searching for suitable ontologies, and in attaching semantic in-

formation. The complete implementation of the annotations recommender will
add automation to these tasks, however, the here presented formal approach is
fully supported by the current version of SWEET. When the user completes
the semantic annotation of the HTML description, the annotated HTML can
be saved and republished on the Web, representing an instance of a semantic
RESTful service. Moreover, the resulting HTML can also be transformed into a
RDF MicroWSMO description, which can be used for manipulation or storage.

Fig. 3. SWEET: Inserting hRESTS Tags

4 Annotation of RESTful Services with SWEET

This section exemplifies how SWEET supports each of the tasks along the pro-
cess of creating a semantic RESTful service description. SWEET takes as input
the HTML Website description of the RESTful service and returns a semanti-
cally annotated version of the HTML or a RDF MicroWSMO description. In
order to do this the user needs to complete the following four mains steps:

1. Identifying service properties by inserting hRESTS tags in the HTML service
description.

2. Searching for domain ontologies suitable for annotating the service proper-
ties.

3. Annotating service properties with semantic information.
4. Saving or exporting the annotated RESTful service.

The first step can easily be completed by simply selecting the part of the HTML,
which describes a particular service property, and clicking on the corresponding

tag in the inset hTags pane (Figure 3). In the beginning, only the Service node
of the hRESTS tree is enabled. After the user marks the body of the service,
additional tags, such as the Operation and Method, are enabled. In this way, the
user is guided though the process of structuring the RESTful service description
and is prevented from making annotation mistakes. The marking of HTML con-
tent with a particular hRESTS tag results in the insertion of a corresponding
class HTML attribute. This formalism complexity is hidden from the user, and
instead, he/she only sees the current status of the annotation reflected in the
Semantic Description panel. In addition, each inserted tag is highlighted by a
custom cascading style sheet (CSS), which visualizes the annotations the user
has made. An example of an HTML with identified service properties is given in
Listing 1.2.

Listing 1.2. Example hRESTS Service Description
1 <div class=”service” id=”s1”><h1>happenr API</h1>
2 Happenr has two main methods to call ”getEvents” and ...
3 <p>All operations should be directed at http://happenr.3scale .net/</p>
4 <h2>Example usage</h2>
5 http://happenr.3scale.ws/webservices/getEvents.php?user key=xxx
6 <p>where the userkey is the key issues with the signup you made.</p>
7 <div class=”operation” id=”op1”><h2>getEvents Method</h2>
8
9 <h3>username</h3>

10 <p>Your username that you received from Happenr in order to query this webservice.</p>
11 <h3>password</h3>
12 <p>Your password that you received from Happenr in order to query this webservice.</p>
13 <h3>eventid</h3>
14 <p>The id of the event.</p></div></div>

Fig. 4. SWEET: Searching for Suitable Ontologies

After the user structures the HTML description and identifies all service
properties, the adding of semantic information can begin. SWEET supports users

in searching for suitable domain ontologies by providing an integrated search
with Watson [11]. The search is done by selecting a service property and sending
it as a search request to Watson. The result is a set of ontology entities, matching
the service property search, which are displayed in the Service Properties panel
visualized in Figure 4. If the first set of ontology results is insufficient, the user
can search for more results by clicking on “view more”. In addition, the search
is session based and the user preserves his/her ontology search while annotating
different service descriptions.

The implementation of the Service Properties and Domain Ontologies panels
supports the user in choosing a suitable ontology for annotating the individual
service properties or the complete RESTful service. These supporting function-
alities are visualized in Figure 5. The user can view the URI of each of the
matching concepts, properties or instances and the corresponding ontology. Ad-
ditional information is available in the Domain Ontologies panel, which shows
all service properties that can be annotated with one particular ontology as well
as a list of all concepts. The entries of both panels can be expanded or collapsed
in order to ease the navigation.

Fig. 5. SWEET: Exploring Domain Ontologies

Once the user has decided, which ontology to use for the service property an-
notation, he/she can do an annotation by selecting a part of the service HTML
description and clicking on Semantic Annotation in the Service Properties con-
text menu. This results in inserting a model attribute and a reference pointing
to the URI, of the linked semantic concept. MicroWSMO also contains elements
for lifting and lowering, which point to links for lifting and lowering trans-
formations. Even though, the current version of SWEET does not support the
insertion of these elements, they can still be manually added by the user, if nec-
essary. The result is a semantically anntoated HTML description, with inserted
model and href tags marking the association of the particular HTML elements
with the semantic concepts. A summary of the already made annotations is
given in the Annotations panel. These annotations can be removed by choosing

”Delete” from the context menu. In this way, the user can remove incorrect an-
notations and substitute them with new ones without having to reload the tool
and start the annotation process from the very beginning.

Listing 1.3. Example MicroWSMO Service Description
1 <div class=”service” id=”s1”><h1>happenr API</h1>
2
3 Happenr has two main methods to call ”getEvents” and ...
4 <p>All operations should be directed at http://happenr.3scale .net/</p>
5 <h2>Example usage</h2>
6 http://happenr.3scale.ws/webservices/getEvents.php?user key=xxx
7 <p>where the userkey is the key issues with the signup you made.</p>
8 <div class=”operation” id=”op1”><h2>getEvents Method</h2>
9

10 <h3>username
11 (lowering)</h3>
12 <p>Your username that you received from Happenr in order to query this webservice.</p>
13 <h3>password<a>
14 (lowering)</h3>
15 <p>Your password that you received from Happenr in order to query this webservice.</p>

Listing 1.3 shows our example service description annotated with MicroWSMO
by using SWEET. Line 2 uses the model relation to indicate that the service
searches for events, while line 10 associates the input parameter username with
the class Username. The lowering schema for the recipient is also provided in
line 11.

SWEET also provides options for customizing the way service descriptions
are viewed. First, if the Navigator panel displays HTML service descriptions,
which already contain MicroWSMO elements, these elements will be recognized
and automatically highlighted so that the user can manipulate them and inte-
grate them in his/her own annotation of the service. Second, the way the service
properties and semantic information is highlighted can be modified by simply
substituting the current CSS file with a new one, which uses different text font
and colors.

In summary, SWEET effectively supports users in creating semantic RESTful
service descriptions by using the hRESTS and the MicroWSMO microformats. In
particular, it provides functionalities for marking service properties by inserting
tags, for searching for suitable domain ontologies, for linking service properties
with semantic concepts and for saving and exporting the resulting RESTful
description both as annotated HTML or directly as RDF. In this way, SWEET
contributes to a higher level of automation of common service tasks, such as
discovery, composition and invocation.

5 Retrieval of Annotated RESTful Services

The benefits for the retrieval of services by using MicroWSMO for RESTful ser-
vice annotation are threefold. First, the use of the microformats enables that
HTML RESTful service descriptions can be distinguished from simple HTML
websites and can be automatically collected. Second, the service search itself can
be improved and automated by using the attached semantic information. Finally,

since MicroWSMO provides SAWSDL-like annotations of RESTful services and
relies on the WSMO-Lite service ontology, both WSDL-based and RESTful ser-
vices can be retrieved by using the same queries. As a result, all type of services,
whether WSDL-based or RESTful can be retrieved in a unified way.

Listing 1.4 shows an example query for retrieving all services that use ”User-
name“. This will retrieve both WSDL services with SAWSDL annotations and
RESTful services with MicroWSMO annotations. As are results both types will
effectively be discovered only based on the semantic information and they can
be used interchangeably in common compositions.

Listing 1.4. Example Service Query
1 SELECT DISTINCT ?s
2 WHERE {
3 ?s rdf :type wsl : Service .
4 ?s sawsdl :modelReference <http://example.com/data/onto.owl#Username>
5 }

6 Related Work

Current research in the area of semantic RESTful services is mostly focused
around the definition of formalisms for creating semantic annotations. As al-
ready mentioned, MicroWSMO is one such formalism, which relies on hRESTS
for describing the main aspects of a service such as its operations, inputs and
outputs, and uses hooks for linking these to semantic information. SA-REST
[12], on the other hand, uses the grounding principles of SAWSDL [6] and RDFa
for marking service properties. Even though, there is some research done tar-
geted at supporting the use of SRS, for example in the form of mashups [12],
there are no existing tools or approaches supporting the creation of semantic
RESTful service descriptions, which therefore hinders the applicability.

hRESTS is not the only alternative that can be used for the creation of
machine-readable descriptions of RESTful services. WADL (Web Application
Description Language) [9] and even WSDL 2.0 [8] can be used as description
formats. They provide well-structured and detailed forms of descriptions. How-
ever, probably due to the user-centered context of Web 2.0 and of the resulting
API descriptions, WADL and WSDL seem to add complexity and still the major-
ity of the API descriptions are provided in unstructured text. We use hRESTS,
which is relatively simple, easy to use, can be applied directly on the existing
HTML descriptions, supports the extraction of RDF and can provide a basis,
for the future adoption of dedicated formats such as WADL.

Another description approach if offered by RDFa [13]. RDFa can be effectively
used for embedding RDF data in HTML. However, following the simplicity and
lightweight principles perused with hRESTS, it needs to be investigated to what
extent and in which use cases RDFa can be used for hRESTS. A parallel approach
to RDFa would be the use of GRDDL [14] on top of hRESTS. GRDDL is a
mechanism for extracting RDF information from Web pages and is particularly
suitable for processing microformats.

In the area of tools supporting the semantic annotation of services, ASSAM
[15] enables the annotations of services with WSDL-based descriptions. It pro-
vides user interface tools as well as some automatic recommendation compo-
nents, however, it can only be used on WSDL-based descriptions and does not
support RESTful services.

7 Conclusion and Future Work

Currently, RESTful services are becoming more and more popular, however,
their general adoption is hindered by the fact that they cannot be found, inter-
preted and invoked without the extensive user involvement and a multitude of
manual tasks. This challenges can be addressed through the creation of machine-
readable descriptions, which server as the basis for automatically finding services,
through crawlers and search engines, and processing them. Moreover, extended
with semantic annotations, RESTful services can even be discovered, composed
and invoked automatically, following the principles of the SWS.

In this paper, we have presented an integrated lightweight approach for for-
mally describing semantic RESTful services. It is based on two microformats:
the hRESTS microformat that enables the tagging of key service properties and
therefore supports the creation of machine-readable service descriptions; and the
MicroWSMO microformat that enables the linking of semantic information to
service properties. The approach is facilitated by SWEET, a tool which effec-
tively supports users in creating semantic descriptions of RESTful services, by
providing functionalities for both the creation of machine-readable descriptions
and the addition of semantic annotations based on hRESTS and MicroWSMO.

Future work will focus on further developing SWEET’s annotations recom-
mender component, in order to reduce the number of manual tasks that the user
has to complete. This will result in the faster and more correct creation of seman-
tic RESTful service descriptions. Future work will also include the development
of supplementary functionalities of SWEET, which will provide additional user
support. Better visualization components, such as structure and properties high-
lighting are planned. In addition, some work will be devoted to the automatic
recognition of service properties such as operations and input parameters, so that
the user only has to verify the pre-marked service properties. The goal is that
future versions of SWEET will even better support users in creating semantic
RESTful service descriptions.

8 Acknowledgments

SWEET is based upon work partially supported by the EU funding under the
project SOA4All (FP7 - 215219). The authors would like to thank Simone Spac-
carotella for his contribution to the development of SWEET.

References

1. L. Richardson, S. Ruby: RESTful Web Services. O’Reilly Media, May 2007.
2. R. T. Fielding: Architectural styles and the design of network-based software ar-

chitectures. PhD thesis, University of California, 2000.
3. J. Kopecký , K. Gomadam, T.Vitvar: hRESTS: an HTML Microformat for De-

scribing RESTful Web Services. Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI-08), 2008.

4. R. Khare, T. Celik: Microformats: a pragmatic path to the semantic web (Poster).
Proceedings of the 15th international conference on World Wide Web, 2006.

5. J. Kopecký, T. Vitvar, D. Fensel, K. Gomadam: hRESTS & MicroWSMO. Tech-
nical report, available at http://cms-wg.sti2.org/TR/d12/, 2009.

6. J. Kopecký, T. Vitvar, C. Bournez, J. Farrel. SAWSDL: Semantic Annotations for
WSDL and XML Schema. IEEE Internet Computing, 11(6):60-67, 2007.

7. T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel. WSMO-Lite Annotations for
Web Services. In the Semantic Web: Research and Applications, ESWC 2008.

8. Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C,
June 2007. Available at http://www.w3.org/TR/wsdl20/.

9. M. J. Hadley: Web Application Description Language (WADL). Technical report,
Sun Microsystems, November 2006. Available at https://wadl.dev.java.net.

10. E. Gamma, R. Helm, R. Johnson, J. M. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, November 1994.

11. Watson - The Semantic Web Gateway: Ontology Editor Plugins. http://watson.
kmi.open.ac.uk. Online November 2008.

12. A. P. Sheth, K. Gomadam, J. Lathem: SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups. In IEEE Internet Computing, 11(6):9194,
2007.

13. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C,
September 2008. Available at http://www.w3.org/TR/rdfa-syntax/.

14. Clarke, F., Ekeland, I.: Gleaning Resource Descriptions from Dialects of Languages.
Recommendation, W3C, September 2007. http://www.w3.org/TR/grddl/.

15. A. Hess, E., Johnston, N., Kushmerick: ASSAM: A tool for semi-automatically
annotating semantic web services. In Proceedings of International Semantic Web
Conference, 2004.

