441 research outputs found

    Context-based scene recognition from visual data in smart homes: an Information Fusion approach

    Get PDF
    Ambient Intelligence (AmI) aims at the development of computational systems that process data acquired by sensors embedded in the environment to support users in everyday tasks. Visual sensors, however, have been scarcely used in this kind of applications, even though they provide very valuable information about scene objects: position, speed, color, texture, etc. In this paper, we propose a cognitive framework for the implementation of AmI applications based on visual sensor networks. The framework, inspired by the Information Fusion paradigm, combines a priori context knowledge represented with ontologies with real time single camera data to support logic-based high-level local interpretation of the current situation. In addition, the system is able to automatically generate feedback recommendations to adjust data acquisition procedures. Information about recognized situations is eventually collected by a central node to obtain an overall description of the scene and consequently trigger AmI services. We show the extensible and adaptable nature of the approach with a prototype system in a smart home scenario.This research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008- 06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad

    Towards spatial reasoning on building information models

    Get PDF
    The paper presents a conceptual study on the application of spatial reasoning on building information models. In many cases, building regulations and client demands imply traints on the building design with inherent spatial semantics. If we are able to represent these spatial constraints in a computerinterpretable way, the building design can be checked for fulfilling them. In this context, spatial reasoning technology can be applied in two different ways. First, we can check the consistency of the spatial constraints in effect, i.e. find out whether there are contradictions between them. Second, we can check whether a concrete building design is compliant with these constraints. The paper gives a detailed overview on the currently available spatial calculi and introduces two possible implementation pproaches

    A Practical Approach to the Development of Ontology-Based Information Fusion Systems

    Get PDF
    Proceedings of: NATO Advanced Study Institute (ASI) on Prediction and Recognition of Piracy Efforts Using Collaborative Human-Centric Information Systems, Salamanca, 19-30 September, 2011Ontology-based representations are gaining momentum among other alternatives to implement the knowledge model of high-level fusion applications. In this paper, we provide an introduction to the theoretical foundations of ontology-based knowledge representation and reasoning, with a particular focus on the issues that appear in maritime security –where heterogeneous regulations, information sources, users, and systems are involved. We also present some current approaches and existing technologies for high-level fusion based on ontological representations. Unfortunately, current tools for the practical implementation of ontology-based systems are not fully standardized, or even prepared to work together in medium-scale systems. Accordingly, we discuss different alternatives to face problems such as spatial and temporal knowledge representation or uncertainty management. To illustrate the conclusions drawn from this research, an ontology-based semantic tracking system is briefly presented. Results and latent capabilities of this framework are shown at the end of the paper, where we also envision future opportunities for this kind of applications.This research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS 2008-07029-C02-02.Publicad

    THE IMPACT OF EXTENSIBLE BUSINESS REPORTING LANGUAGE EDUCATION AND ADOPTION OF STOCK EXCHANGE DEVELOPMENT: A FOCUS ON NIGERIA

    Get PDF
    The growing need for widely available and easily accessible financial information in the financial markets has prompted the necessity for the knowledge and adoption of Extensible Business Reporting Language (XBRL) as the standard format for presenting financial reports across the globe. The impact of an efficient information distribution system like the Extensible Business Reporting Language (XBRL) could help protect creditors, make cross border relations more secure and support the competitiveness of financial markets This study aims at investigating the impact of the possible learning and adoption of Extensible Business Reporting Language (XBRL) in the Nigerian Stock Exchange. The data used for this study were gathered through the instruments of a questionnaire and secondary sources. One hundred and Fifty (150) copies of a questionnaire were administered, out ofwhich one hundred and thirty-one (131) were collated for analysis. To achieve the objectives of this study, three hypotheses were formulated from the structure of research questions. Kruskal-Wallis and descriptive statistical tools were used in testing these hypotheses. Findings show that environmental factors and problems in the Nigerian Stock exchange will affect the learning and implementation of XBRL in the Stock Exchange as well as the fact that certain infrastructure must be put in place before the implementation of XBRL. Based on these findings, the study recommends that the Federal government should announce and compel the educational awareness and adoption of XBRL as a format for regulatory filing and financial reporting in the Nigerian Stock Exchange

    Qualitative Spatial Configuration Queries Towards Next Generation Access Methods for GIS

    Get PDF
    For a long time survey, management, and provision of geographic information in Geographic Information Systems (GIS) have mainly had an authoritative nature. Today the trend is changing and such an authoritative geographic information source is now accompanied by a public and freely available one which is usually referred to as Volunteered Geographic Information (VGI). Actually, the term VGI does not refer only to the mere geographic information, but, more generally, to the whole process which assumes the engagement of volunteers to collect and maintain such information in freely accessible GIS. The quick spread of VGI gives new relevance to a well-known challenge: developing new methods and techniques to ease down the interaction between users and GIS. Indeed, in spite of continuous improvements, GIS mainly provide interfaces tailored for experts, denying the casual user usually a non-expert the possibility to access VGI information. One main obstacle resides in the different ways GIS and humans deal with spatial information: GIS mainly encode spatial information in a quantitative format, whereas human beings typically prefer a qualitative and relational approach. For example, we use expressions like the lake is to the right-hand side of the wood or is there a supermarket close to the university? which qualitatively locate a spatial entity with respect to another. Nowadays, such a gap in representation has to be plugged by the user, who has to learn about the system structure and to encode his requests in a form suitable to the system. Contrarily, enabling gis to explicitly deal with qualitative spatial information allows for shifting the translation effort to the system side. Thus, to facilitate the interaction with human beings, GIS have to be enhanced with tools for efficiently handling qualitative spatial information. The work presented in this thesis addresses the problem of enabling Qualitative Spatial Configuration Queries (QSCQs) in GIS. A QSCQ is a spatial database query which allows for an automatic mapping of spatial descriptions produced by humans: A user naturally expresses his request of spatial information by drawing a sketch map or producing a verbal description. The qualitative information conveyed by such descriptions is automatically extracted and encoded into a QSCQ. The focus of this work is on two main challenges: First, the development of a framework that allows for managing in a spatial database the variety of spatial aspects that might be enclosed in a spatial description produced by a human. Second, the conception of Qualitative Spatial Access Methods (QSAMs): algorithms and data structures tailored for efficiently solving QSCQs. The main objective of a QSAM is that of countering the exponential explosion in terms of storage space occurring when switching from a quantitative to a qualitative spatial representation while keeping query response time acceptable

    Formal Analysis of Network Protocols

    Get PDF
    Today’s Internet is becoming increasingly complex and fragile. Current performance centric techniques on network analysis and runtime verification have became inadequate in the development of robust networks. To cope with these challenges there is a growing interest in the use of formal analysis techniques to reason about network protocol correctness throughout the network development cycle. This talk surveys recent work on the use of formal analysis techniques to aid in design, implementation, and analysis of network protocols. We first present a general framework that covers a majority of existing formal analysis techniques on both the control and routing planes of networks, and present a classification and taxonomy of techniques according to the proposed framework. Using four representative case studies (Metarouting, rcc, axiomatic formulation, and Alloy based analysis), we discuss various aspects of formal network analysis, including formal specification, formal verification, and system validation. Their strengths and limitations are evaluated and compared in detail

    Ontology-based context representation and reasoning for object tracking and scene interpretation in video

    Get PDF
    Computer vision research has been traditionally focused on the development of quantitative techniques to calculate the properties and relations of the entities appearing in a video sequence. Most object tracking methods are based on statistical methods, which often result inadequate to process complex scenarios. Recently, new techniques based on the exploitation of contextual information have been proposed to overcome the problems that these classical approaches do not solve. The present paper is a contribution in this direction: we propose a Computer Vision framework aimed at the construction of a symbolic model of the scene by integrating tracking data and contextual information. The scene model, represented with formal ontologies, supports the execution of reasoning procedures in order to: (i) obtain a high-level interpretation of the scenario; (ii) provide feedback to the low-level tracking procedure to improve its accuracy and performance. The paper describes the layered architecture of the framework and the structure of the knowledge model, which have been designed in compliance with the JDL model for Information Fusion. We also explain how deductive and abductive reasoning is performed within the model to accomplish scene interpretation and tracking improvement. To show the advantages of our approach, we develop an example of the use of the framework in a video-surveillance application.This work was supported in part by Projects CICYT TIN2008- 06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.Publicad
    • 

    corecore