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Abstract

Today’s Internet is becoming increasingly complex and fragile. Current per-
formance centric techniques on network analysis and runtime verificationhave
became inadequate in the development of robust networks. To cope withthese
challenges there is a growing interest in the use of formal analysis techniques to
reason about network protocol correctness throughout the networkdevelopment
cycle.

This talk surveys recent work on the use of formal analysis techniquesto aid
in design, implementation, and analysis of network protocols. We first present a
general framework that covers a majority of existing formal analysis techniques
on both the control and routing planes of networks, and present a classification
and taxonomy of techniques according to the proposed framework. Using four
representative case studies (Metarouting, rcc, axiomatic formulation, and Alloy
based analysis), we discuss various aspects of formal network analysis, including
formal specification, formal verification, and system validation. Their strengths
and limitations are evaluated and compared in detail.
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1 Introduction

Today’s Internet is increasingly complicated and fragile.Internet forwarding protocols
are complicated by middleboxes [27] such asNAT (network address translator), and
firewalls which are introduced to address fast growing functionality demands unavail-
able in the current network hierarchy. As a result, it has became difficult to under-
stand even the elementary concepts such as naming, addressing, and end-to-end con-
nection. On the other hand, in the control plane, the single de-facto Internet protocol
BGP (Boarder Gateway Protocol) utilizes routing policies to express the diverse traffic
interests of the constituent heterogeneous sub-networks.However, this indispensable
policy configuration is error-prone, and misconfiguration at one single network node
can cause serious persistent network-wide failures.

Regarding these difficulties, the traditional performancecentric bottom-up ap-
proach and runtime verification techniques have became inadequate in network pro-
tocols development. To cope with the staggering complexity, inherent network het-
erogeneity, and network scale, there has been growing interests in the use of formal
methods to aid in the design, implementation, and verification. With the help of ex-
isting formal analysis tools and emerging network models, researchers are beginning
to examine network functionality and logical properties tofacilitate network protocol
development.

In design phase, specialized meta-theory [25, 9, 11] and general logic based for-
malism [15] are introduced to formally specify fundamentalaspects of network func-
tionality such as routing and forwarding. These network-specific formalisms, when
combined with external verification tools such as theorem provers [2, 23, 1], model
checkers [4], and SMT/SAT solvers [28, 29] enable the formalverification of network
standard and design. The resulting sound design can be further used to guide network
system development. In addition, lightweight practical validation tools based on logical
constraints checking [6], states exploration [22, 16] havebeen applied to unmodified
real-world network implementations to explore network-wide faults.

The rest of the paper is organized as follows. We start with problem statement in
Section 2 by reviewing the challenges to today’s network. Wealso present a general
formal network analysis framework that accommodates most present-day formal anal-
ysis practice throughout network development cycle. Section 3 provides a taxonomy
of formal network analysis techniques and existing systemsaccording to the proposed
network analysis framework. We then present four representative systems that cover
different aspects of formal network analysis: we discuss metarouting in Section 4, rout-
ing configuration checkerrcc in Section 5, axiomatic network formulation in Section
6, andAlloy based analysis in Section 7. Finally, Section 8 reviews all the mechanisms
and discusses challenges.

2 Problem Statement

To scope our survey paper, we begin with a problem statement by reviewing the chal-
lenges and complexity in today’s Internet. We then introduce the use of formal net-
working analysis to aid in network protocol development. Wealso identify networking
properties that are best treated with formal analysis.
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Figure 1: Internet Architecture and Packet Forwarding

2.1 Challenges to Today’s Internet

Today’s Internet has evolved from the original TCP/IP protocol suite to a global het-
erogeneous inter-network that provides ever growing network services. The main func-
tionalities involved in any network service include: (1)addressingmechanisms that
identify network nodes; (2)routing protocols that efficient discovers loop-free path
discovery through the network; and (3) the actual packetforwarding process, imple-
mented at end-nodes (intermediary nodes) with a multi-layer hourglass protocol stack
to accommodate network heterogeneity. To review the Internet service architecture,
consider a typical packet (message) delivery, shown in figure 1: The message traver-
sal from the creation node A to consumption node B can be broken into the following
steps. First, node A needs to identify itself and the destination node by some unique
communication addresses; Next, on node A, the message data is passed down the pro-
tocol stack where encapsulation at each layer is repeatedlyperformed by pre-pending
new prefix head to carry the corresponding protocol head; Then, based on IP protocol
header, the message is forwarded to node B via a number of intermediary forward-
ing nodes. The actual path along which the message traversedis decided by routing
protocols; Finally, node B, upon receiving the message, performs de-encapsulation (re-
moving protocol head at each layer) and passes it up to the application process for
interpretation.

Having presented intuitively the concepts of network routing, addressing and for-
warding, we now discuss the challenges respectively:

Routing Today’s Internet is partitioned into independently administrated autonomous
systems (AS). IP routing decides the sequences of intermediary forwarding nodes en-
route to the destination node through administrative domains. To express the con-
stituent AS’s diverse traffic interests (e.g. competing peers, paid customer-provider re-
lationship, backups service etc.), the interdomain IP routing protocol i.e. BGP (Boarder
Gateway Protocol) protocol utilizes rich policy control mechanism based on ranking
and filtering (i.e. BGP import and export policy). However, this indispensable routing
policy control ability makes BGP staggeringly complicated: BGP policy is essentially
configured at and kept private to each AS and the low-level policy configuration process
is error prone. The locally distributed policy misconfiguration can cause serious end-to-
end connection failures across administrative boundaries; Even worse, though standard
IGP (Inter-Gateway Protocols, running within an AS) such aspath vector protocol nor-
mally comes with convergence guarantee, the static analysis of BGP convergence is
NP-hard [10]. As a result, network-wide properties such as network connectivity in
today’s Internet is hard to understand.
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Addressing and Forwarding IPv4 addressing schema associates with each network
node a globally unique two-level hierarchical address: Thenetwork part of the address
identifies the physical sub-network the node belongs to, whereas the host part uniquely
identifies the host. This addressing schema has became inadequate with regard to in-
creasing address demands and new functionality. Middleboxes [27] such as NATs are
a common solution to alleviate IPv4 address exhaustion. However, middleboxes com-
plicates the current network architecture: The addresses assigned by NAT is no longer
globally unique and static. At the same time, middleboxes also complicates protocol
layering, the only means for functionality abstraction andmodularization in imple-
menting forwarding functionality. In addition, network addressing and forwarding are
also obscured by emerging mobile networks, overlay networks etc. Even basic network
properties such as end-to-end connectivity are difficult todefine and reasoning about.

2.2 Formal Methods in Network Protocol Development

In today’s fast growing and increasingly complicated Internet, traditional performance
centered bottom-up network engineering is facing unprecedented challenges. The
“stimulus-response” style system testing and runtime verification have became inad-
equate in network development where a single corner case error at one network node
can cause serious network-wide failures. With the help of emerging formal network
models and established formal analysis tools, researchersare beginning to look at the
global logical network properties to facilitate protocol development.

Formal methods are a particular kind of mathematical-basedtechniques that im-
prove network software qualities with correctness guarantee by rigorous reasoning.
Formal methods have been applied throughout the network development cycle. As
shown in Figure 2, in design phase, formal specification and verification help de-
riving sound design , which can be further used to guide the real implementation in
formal protocol development. Based on formal specificationobtained from network
requirement, design, or standard, a full formal verification process can be invoked to
establish sound and complete correctness proof. An alternative lightweight analysis-
first-prove-last style model-based analysis can be used to find good design instance or
counterexamples to facilitate rapid network development.Finally, after system imple-
mentation/coding, practical formal validation tools are available to check unmodified
system implementation to detect potential system faults against certain properties such
as safety, liveness, and other logic invariants.

Before presenting the taxonomy and classification of formaltechniques according
to the above formal network analysis process, it is informative to first identify some
logical correctness propertiesthat are particularly suited for formal analysis. Though
equally crucial to network correctness, performance related properties and network dy-
namics are not considered in this survey. In general, the successful delivery of any
network service relies on the correctness of networkaddressing, routing, and for-
warding. Network correctness properties can then be naturally divided as follows: (1)
For addressing, the analysis task is to prove that the targetaddressing schemes con-
tinues to provide valid network node address adequate for communication in face of
middleboxes and network mobility; (2) For routing, the key problem is to verify that
BGP can efficiently discover loop-free routing paths; (3) For the actual packet for-
warding within current Internet architecture, the correctness properties address various
architectural invariants and forwarding operations.
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Figure 3: Taxonomy of Formal Network Analysis

3 Taxonomy of Formal Network Analysis

Having presented the major challenges to today’s Internet and the proposed formal
analysis process throughout network development (Figure 2), we present a classifica-
tion and taxonomy of formal network analysis. As shown in figure 3, on the top level,
based on the application point in network development, formal analysis can be divided
into three categories: formal specification, formal verification, and system validation.
For each category, we further identify a list of enabling techniques, and representative
systems.

3.1 Formal Specification

Taking conceptual network requirement or standard as input, formal network specifi-
cation can significantly improve the understanding of network requirement/standards,
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and help detecting problems early at design phase before investment in implementation.
Formal specification often outputs aformal design that either meets specified network
behaviors and constraints (in a correctness-by-construction) or is of a more check-
able/verifiable form for formal verification. Existing formal specification takes one
of the following forms: (1) an axiomatic semantics framework with network-specific
reasoning support; (2) rigorously defined meta models with added network properties;
and (3) programming frameworks that leverage some high-level declarative executable
specification language.

The major benefits of formal network specification are as follows: First, the cho-
sen specification formalism not only forces the human user toexpress the target net-
work problem in a rigorous way (e.g. trivial mistakes can be caught by type-checking),
but also supplies/suggests useful conceptual modeling andspecification building con-
structs. Moreover, formal specification, when adapted to a form recognizable by exist-
ing verifier/analyzer, enables mechanized correctness checking in formal verification.

Unlike verification and validation, formal specification often operates at a high-
level with a focus on pure network functionality and logicalcorrectness, while the
low-level implementation complexity (performance, reliability, complication of pro-
gramming language semantics etc.) is abstracted away. Manyformal network analysis
efforts are found in formal specification.

Now, we describe representative techniques for the networkaspects : routing, for-
warding and addressing respectively.

• Routing: The correctness property of Internet (IP) routingas fast convergence
and global network connectivity has been intensively studied [25, 5, 3]. Early
formal specification of routing utilizes the default logic of existing theorem provers
HOL [3], Nuprl [7], PVS etc. More recently, network-specific axiomatic se-
mantics frameworks and meta-theories are developed. For example, metarout-
ing [9, 25] etc. introduces the use of algebraic specification model with added
convergence guarantee.

• Forwarding and addressing: In contrast to specialized routing model, general-
purpose axiomatic framework [15, 13] extended with networkforwarding and
control primitives are used to specify forwarding and addressing mechanisms.
The key challenge is to handle the layered protocol and packet forwarding pro-
cess implemented at end-nodes as a set of forwarding and control operations.
The semantics of the enabling network primitive operationsare rigorously given
in Hoare-style logic.

Formal Development In addition to formal verification, formal specification often
enables formal development by producing a sound guiding design. The problem of
preserving the correct design functionality and properties in system implementation
is a difficult and open one. Nevertheless, many formal network specification frame-
works are integrated with a meta-compiler (interpreter) that helps generate (a large
portion of) executable system implementation. An additional key enabling technique
is the existence of extensible networking platform (environment) such as Xorp [12]
and Click [18], which are originally designed for rapid networking prototyping by
providing primitive implementation elements. By utilizessuch platforms, the system
code synthesize task implemented by the meta-compiler (interpreter) is now reduced to
a mapping between formal objects in sound design and the corresponding implemen-
tation elements. Finally, moderate inputs onglue codeare often required to synthesize
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the executable system.
The third class of specification technique based on emergingdeclarative program-

ming frameworks [26, 21, 20, 19] offers an alternative approach by utilizing a high-
level logical (or functional) programming language that serves as both the formal spec-
ification language and the executable system implementation.

For example, a universal forwarding engine has been synthesized in Click from
verified design constructed in axiomatic framework [15]. Similarly, sound design con-
structed from routing algebra meta model calledmetaroutinghas also been used to de-
rive routing implementation in Xorp with the help of existing metarouting interpreter.

Obviously, the correctness of the derived system implementation relies on both the
design and the translation process implemented by the meta-compiler (meta-interpreter).
Though the correctness of meta-compiler (interpreter) is often left un-verified, the for-
mal development process still helps improve the quality of the resulting protocol with
added benefits. For example, it enables programmers to focuson high-level system
composition in a formal specification language that better relates to desired high-level
functionality. Such high-level design decision and structure are often reflected in the
derived low-level system implementation.

3.2 Formal Verification

Based on the types of chosen formal specification framework,the following formal ver-
ifications are enabled: (1) for logical-based specificationframework (e.g. axiomatic se-
mantics) and declarative programming frameworks, the correctness can be established
through deductive reasoning in external formal verifier/proof assistant such as theorem
prover, model checker or SMT/SAT solvers; (2) for specialized network model, spe-
cific correctness properties are automatically derivable in the chosen model. This is
also an example ofcorrectness-by-constructionapproach. A major limitation of the
above full formal software verification is that it requires high initial investment, ex-
pertise in heavy formal methods tools as well as deep understanding of the network
problems. Even when the verification succeeds, the verified formal results and argu-
ments are decoupled from real system implementation and canbe hardly reused. In
general, the extremely expensive non-incremental formal verification is restricted to
well-understood network standard and does not scale well toreal-world network de-
velopment.

To mitigate these difficulties, an alternative lightweightapproach is emerging in
software verification. The idea is to reduce verification efforts to the minimal by de-
veloping tools that incorporate specialized moderate metamodels and fully-automatic
analysis procedures that deal with a subset of verification properties in an analysis-
first-prove-last manner. Example tools such asZ andAlloy [14] have been applied in
formal network verification [30] recently.

3.3 System Validation

In contrast to formal specification and verification, staticsystem validation is per-
formed at implementation level, and usually before deployment in real network.

In the first type of static validation based on constraints checking, system faults
are explored by checking implementation against correctness properties as invariants
or constraints. Validating arbitrary system implementation is hard, formal validation
technique often imposes either pre-processing or implementation constraints: (1) to
check wider range of unmodified implementation, a pre-processing step is desirable

8



Network problems/properties Techniques/systems

Routing

Specification of routing policies

Nettle [26], Metarout-
ing [25, 9], Theorem
proving [3, 7], Model
checking [3], Declarative
networking [21, 20, 19]

Static BGP convergence analysis
Metarouting, Declara-
tive networking, Theorem
proving

BGP policy configuration faults
detection

rcc

Invariants checking ofChord MaceMC [16, 17]
Forwarding Message deliverability Axiomatic formulation [15]
Addressing Reachability & returnability Alloy [30]

Table 1: Taxonomy of Networking Problems

to transform the real system into an intermediary and more checkable form; or (2)
programming templates or guidelines that constrain the waynetwork system is imple-
mented. The purpose is to help mask irrelevant implementation complexity and extract
implementation structures that reflect high-level functionalities of interests. Next, cor-
rectness or invariants capturing the correctness properties are evaluated on implemen-
tation. In general, the invariants (constraints) are either supplied by network operator
or hard-wired in the validation tool, and are usually expressed in some form of logic.

A second static validation approach utilizes exhaustive proof space searching algo-
rithm such as model checking to verify temporal invariants.Note that, though we have
included dynamic system validation technique such as runtime verification and test-
ing in Figure 3 for completeness, strictly speaking, they are not considered as formal
network analysis.

Routing configuration checkerrcc [6] is an example of constraints checking based
validation tool.rcc detects routing policy faults in real-world BGP configurations.rcc
automatically identifies constraints violation that catches a large set of BGP path and
route anomalies. On the other hand,MaceMC, cmc[24, 17, 22] are examples of model
checking based validation tools. MaceMC, by enforcing the use of its programming
templates/guidelines, performs bounded model checking ofliveness and safety proper-
ties on unmodified network implementations.

Unlike formal specification and validation, to deal with thestaggering complex-
ity found only in system implementations, formal validation is usually designed to be
fully automatic, and performs on a best-effort basis that isusually neither sound nor
complete. The types of checkable properties are also restricted, and real deductive rea-
soning requiring non-trivial user guidance is not adopted in most cases. Nevertheless,
formal validation is an invaluable technique that can be easily introduced to networking
developer without inuring extra effort and performance overhead.

3.4 Summary

In Table 1, we highlight the representative network problems and properties studied
in present-day formal network analysis for network routing, forwarding and address-
ing respectively. For each class of network problems and properties, representative
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techniques and systems are also listed.
As shown in the table, most formal analysis efforts are foundin network routing

problems whereas the formal treatment of network forwarding and addressing is only
starting to emerge. The table also tells us that for the relatively well-studied routing
problem, most formal attempts deal with specification of routing policies, followed
by formal analysis of particular properties such as routingconvergence, and that only
very few practice validation tools are found for specific routing properties. We argue
that this is consistent with the development and application of formal analysis in net-
working: Formal specification which also serves as the basisfor formal analysis is the
most widely used formal techniques. Based on formal specification that is particularly
amenable for analysis, fewer formal analysis tools are developed. Finally, due to the
staggering complexity and difficulty in validating real-world routing protocols, even
fewer practical validating tools that perform directly on systems implementations are
proposed and developed.

It is not feasible to cover all the related literature in thissurvey. We are going to
selectively focus on some representative ones (shown in bold), including: (1) Metarout-
ing, an algebraic framework for routing policy construction with convergence guaran-
tee; (2)rcc, a constraints checking based routing policy checker that detects real BGP
configuration faults; (3) Axiomatic formulation of networking forwarding functional-
ity; and (4) Addressing analysis in interoperation networks with Alloy.

4 Metarouting: Routing Policy Construction with Con-
vergence Guarantee

Metarouting is an algebraic meta-model for routing policy with added property of con-
vergence guarantee. Metarouting attempts to facilitate the design and configuration
of routing protocols by providing an algebraic metalanguage that encompasses a large
family of routing policies. The major benefit of using metarouting is that the difficult
(NP hard [10]) convergence property can be autoamtically derived. Targeted users in-
clude: (1) network designer who are interested in the designand development of new
routing protocols and modification to existing protocols; (2) network administrators
who are responsible for BGP policy configuration to realize the administrative traffic
goals and achieve global connectivity.

Metarouting makes the following two contributions:

• Metarouting offers an algebraic metalanguage that captures a large family of
routing policies. The metalanguage features two types of algebraic objects: (1)
base routing algebras that describe common optimal routingpolicy and global
policy guidelines over single path attribute; and (2) algebra composition operator
that generates compound routing policy over multiple path attributes.

• Metarouting metalanguage is shown to preserve routing convergence. First, a
specific algebra property called monotonicity is identifiedand proved to be the
sufficient condition for routing protocol convergence. Then monotonicity prop-
erty is shown to be held by base algebras and preserved by composition operator.

Metarouting algebras with the added convergence property are particularly useful
for the specification of BGP policies, the static convergence analysis of which have
been proved to be NP-hard. In this survey, we use BGP policiesas working examples
to illustrate metarouting and its application.
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4.1 Background on BGP

Before presenting metarouting specification of BGP policy,it is insightful to briefly
review BGP protocol and BGP policy control.

Conceptually, BGP protocol can be decomposed into two routing components:
policy andmechanism. Routing policy describes how routes are measured (i.e. what
attributes are attached to each routing path?) and compared(i.e. how route attributes
are ranked?). Whereas the routing mechanism (i.e. routing algorithm) maintains ad-
jacent network links, exchanges messages with neighbors, and selects most desirable
route upon receiving routing advertisements according to routing policy. In the set-
ting of BGP, routing mechanism part is simply standard path-vector protocol, whereas
BGP policy defined over a list of policy attributes is used to express the corresponding
AS’s traffic goal. Assuming correctness of BGP mechanism, metarouting focuses on
specification of BGP policy and convergence analysis.

The common policy control mechanisms BGP offers are: importpolicies that de-
termine which routes to accept; export policies that decidewhich routes to re-advertise
to neighbors; and the lexicographic routing comparison used in local route selection. In
local route selection, for a given destination, each routergoes through a list of attributes
to compare and select the best route: the router checks one attribute at one time, selects
the best route based on that attribute; the router goes down the list and compares the
next attribute only if the attributes seen in previous stepsare equally good.

4.2 Metarouting Algebras

Metarouting uses abstract routing algebra [25] as the mathematical model for routing
policy. An abstract routing algebraA is denoted by a many-sorted algebra tuple

A = 〈Σ,�,L,⊕,O, φ〉 (1)

HereΣ describes the set of paths in the network totally ordered by preference relation
�. Intuitively, the preference relation� is used by the routing protocol algorithm to
compare and select the most desirable route (path);L is a set oflabels describing links
between immediate neighbors. Note that the labels may denote complicated policies
associated with the corresponding link;⊕ is a mapping fromL × Σ to Σ, which is the
label application operationthat generates new paths by concatenating existing paths
and adjacent links;O is a subset ofΣ calledorigination that represents the initial routes
stored in the network; Finallyφ is a special element inΣ denoting prohibited path that
will not be propagated in the protocol.

Base Algebras Based on the notion of abstract routing algebra, metarouting offers
two metalanguage features to construct algebra instances (interpretations). The first
language feature is called base algebras that can be directly instantiated to model
single-attribute policies for various optimal path policies and guidelines.

As a first example, shortest path policy defined over routing path cost (path at-
tribute interpreted by an integer cost) selects routes withlower cost (preference relation
interpreted as the normal ordering≤ over integers). Formally, shortest path policy can
be represented by the following algebra instance:

11



Σ: describes routing paths path cost
�: preference relation overΣ ≤
L: link label link cost
⊕: function fromL × Σ toΣ +

O: origination routes path cost in initial routing table
φ: prohibited path 16 (discard longer paths)

Here, the prohibited path is instantiated to integer16, which implies that no path
with costs more than16 is considered in the protocol1. In metarouting, this algebra
instance can be obtained directly from a pre-defined base algebraADD(n,m) by instan-
tiatingn to 1, andm to 16.

We now look at a second example use of metarouting base algebras. Gao-Rexford
policy guideline is well-known for its convergence guarantee. It also reflects an ISP’s
incentive to reduce the use of provider routes and encouragethe use of customer routes
for economical reasons. Like shortest path, Gao-Rexford policy guideline can be ex-
pressed by an algebra instance as follows:

Σ: routing paths {C,R, P,Φ}
�: preference relation C � R, R � P, C � P
L: link label {c, r, p}
⊕: L × Σ 7→ Σ c/p/r ⊕ ∗ = C/R/P

O: origination routes
route path type(C/R/P ) in initial
routing table

φ: prohibited path Φ

Here routing paths (links) attributes are interpreted as anenumerated type
{C,R, P} ({c, r, p}) denoting a customer, peer, or provider path (link). And prefer-
ence relation is interpreted to reflect the ISP’s preferencefavoring customer and peer
routes over provider routes. Like shortest path, this algebra instance can be obtained
by instantiating metarouting base algebralp(3) 2.

Lexical Product Composition So far we have seen the use of metarouting base alge-
bras to construct simple policies defined over single route attribute. We now describe
the construction of compound BGP policies over multiple route attribute by using the
second metarouting metalanguage feature: composition operator called lexical product
⊗.

As its name suggests, lexical product operator models the lexicographical com-
parison used in BGP route selection described in 4.1. The intuition is that a lexical
product algebraAlex = A1 ⊗ A2 constructed from two sub-algebrasA1, A2 models
a BGP policy with two group of attributes, where the more important attributes are
handled by the first sub-algebraA1, and those less important used to break tie in route
selection are handled by the second sub-algebraA2. Formally, the preference relation
�Alex

of Alex is defined by the constituent sub-algebras preferences�A1
and�A2

as
follows:

〈σ1, σ2〉 �Alex
〈β1, β2〉 ≡ σ1 �A1

β1 ∨ (σ1 ∼A1
β1 ∧ σ2 �A2

β2) (2)

As an example use of lexical product composition, consider aBGP policy that
is compliant with Gao-Rexford policy guideline described in the previous section. A

1This bound16 is used as a prevention of count-to-infinity problem
2An additional rewritingC/c → 1, R/r → 2, P/p → 3 is required
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possible metarouting algebra representation can be written asAcompliant = Aguide ⊗
Aother whereAguide = lp(3) denotes the algebra instance for Gao-Rexford guideline,
andAother models the remaining aspects of the BGP policy. ObviouslyAcompliant

models a guideline compliant policy because the first sub-algebraAguide ensures Gao-
Rexford guideline is always enforced.

4.3 Metarouting Convergence Property

By adopting the use of routing algebra as the mathematical model for routing policy,
metarouting reduces policy properties/constraints to algebra proprieties. For example,
the behavior of prohibited path as the least preferred path that is closed under path
concatenation is captured by algebra properties [25]maximalityandabsorption.

Moreover, the difficult convergence analysis is reduced to the examination of alge-
bramonotonicityproperty. Algebra propertymonotonicityimposes the restriction that
a route becomes less preferred when it “grows” (i.e. when route concatenation occurs),
as illustrated in its definition:

Monotonicity : ∀l∈L∀α∈Σ α � l ⊕ α (3)

It is proved in [25] that monotonicity is a sufficient condition for BGP system conver-
gence:

Theorem 1 A BGP system is guaranteed to converge if the BGP policy can bemodeled
by a strict-monotonic algebra

By this theorem, we can conclude that both shortest path policy and Gao-Rexford
guideline ensure convergence because they can be modeled bymonotonic metarout-
ing algebras. This is consistent with the convergence results obtained from manual
proofs where all possible BGP executions are enumerated.

To help user predicate system convergence, the monotonicity of all metarout-
ing base algebras are given. In addition, it is shown that lexical product composi-
tion preserves monotonicity. That is, as long as the first sub-algebra is monotonic,
the resulting lexical product algebra is monotonic regardless of the rest sub-algebras.
Recall the Gao-Rexford guideline compliant BGP policy modeled byAcompliant =
Aguide ⊗ Aother. Because lexical product preserves monotonicity, and thatwe know
Acompliant is also monotonic regardless of the monotonicity properties ofAother. By
theorem 1, we can conclude that any Gao-Rexford guide compliant policyAcompliant

ensures BGP convergence regardless of the rest of the policymodeled byAother. This
is also consistent with the major convergence result in [8].

4.4 Evaluation

According to the proposed taxonomy shown in Figure 3, metarouting is an example
of formal specification technique with added routing protocol convergence property.
As shown in Figure 2, metarouting takes conceptual requirement as input, and allows
the user to construct “convergence guaranteed” routing protocol policies in the form of
metarouting algebras. Metarouting can be potentially usedto derive sound BGP system
implementations with the help of metarouting meta-interpreter. By autoamtically deriv-
ing “convergence guaranteed”, additional verification effort is no longer required. As
a result, metarouting can also be viewed as an example of correctness-by-construction
routing design. We summarize strengths and limitations of metarouting as follows:
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Strengths

• Convergence by Construction: Unlike previous efforts of combinatorial model
and analysis, metarouting is the first BGP system model with convergence guar-
antee.

• High-level modular policy configuration language: Metarouting algebras serve
as a policy configuration language that enables the human user to focus on the
high-level routing policy composition without worrying about the low-level pol-
icy configurations and their convergence properties. The pre-defined metarouting
base algebras and composition operators can also be viewed as a default modular
library that eases algebraic policy construction and encourages code and formal
argument reuse.

Limitations

• Limited expressive power: Metarouting relies onmonotonicity, a sufficient but
not necessary condition to provide convergence guarantee.Therefore, metarout-
ing is not complete with regard to convergence. And metarouting does not
address well-converging routing protocols built from certain non-monotonic at-
tributes such asMED, even though they provide useful semantics in practice.

• Ranking and filtering: Though metarouting is a natural fit forvarious optimal
path vector protocol and BGP policy guideline, it is not clear how metarouting
can be used to model important BGP import/export policies based on router-
specific ranking and filtering. The difficulty arises from thefact that metarouting
algebra is per-AS based, as we will elaborate in the next paragraph.

• Global algebra vs local policy configuration: By default, routing algebra is by
natural global. That is, all routes traversing the network (within an AS) are
measured with regard to one single global algebra. The various optimal path
policies are such example global algebras. Another examplealgebra is for policy
guideline which, though allows some flexibility, nevertheless, assumes global
coordination/agreement among all distributed routers. This causes difficulties
in Internet routing (inter-domain routing protocols such as BGP in particular)
practice: (1) For competing reasons etc., Internet routingpolicy is configured
and kept private locally at each AS; (2) Even within one single domain where an
network operator has global access, the operator may want toconfigure routers
in this same domain differently (e.g. different ranking/filtering policies at each
router).

5 Detecting BGP configurations faults withrcc

rcc is a router configuration checker for real BGP systems.rcc detects BGP routing
faults that can potentially cause persistent routing failures by checking BGP configura-
tions against a set of pre-defined high-level correctness constraints.rcc is designed for
before deployment.rcc is intended to be used by network operator within one single
AS.
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Figure 4: Overview of rcc [6]

5.1 Overview

rcc checks real BGP configuration distributed within a single AS. As shown in Figure 4,
rcc functionality can be decomposed into two parts: (1) a pre-processor and parser
that converts input vendor-specific BGP configuration into an intermediary normal-
ized representation, (2) a constraints checker that performs the actual checking on the
normalized configuration according to a set of pre-defined high-level correctness con-
straints derived from a correctness specification. The goalof rcc is to providebefore-
deploymentcorrectness checking ability and helps network operators move away from
the “stimulus-response” reasoning.

5.1.1 Configuration Preprocessing and Parsing

Before constraints checking,rcc pre-processes the vendor specific BGP configurations
distributed within the AS, and produces an intermediary more-checkable normalized
representation. Basically, by de-referencing policy references such as filters,rcc parser
builds the normalized representations as a set of relational database tables. Note that,
rcc keeps track of all normalized policies: the policies with same operations, addressed
by different names, or even when implemented in different configuration languages,
are recognized as the same policy.

5.1.2 Correctness Specification and Violation

rcc detects BGP faults that cause persistent network-wide failures by checking BGP
configuration against correctness specification. Built-inrcc correctness specification
identifies two types of high-level correctness properties:path visibilityandroute valid-
ity.

Path visibility property asserts that for any reachable destination, at least one usable
path will be discovered. A usable path is one that en-route tothe correct destina-
tion node which is also compliant with BGP policies along thepath. Specifically,
in the scope of a single AS, path visibility ensures that the BGP configuration en-
ables the propagation of routes to all reachable external destinations with regard
to the intended BGP policy. Example path visibility violation is caused by iBGP
misconfiguration which, when combined and interacted with IGP, prevents the
dissemination of routes to external destinations.

Route validity property asserts that any computed route corresponds to an actual us-
able path along which packets can be successfully forwardedto the destination.
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Intuitively, these two properties ensure that a router is always capable of finding
a usable route to a destination when there exists one path conforming to the intended
policy; and that each route the router discovers always reflects an usable underlying
physical path. However, for verification purpose, these properties do not automatically
suggest what conditions (constraints) shall be checked in real configuration. And the
derived constraints enabling the actual faults detection is addressed in the next section.

5.1.3 Correctness Constraints and Faults Detection

For each correctness property,rcc identifies a set of constraints (conditions) that the
BGP configuration shall conform to. These constraints (conditions) are then evaluated
on the normalized policy database representation (produced by rcc preprocessor) to
detect potential misconfiguration.

Path visibility ensures BGP policy does not create network partitions in a connected
network (in lower layer). In particular, for iBGP configuration, it implies that
within the AS, each internal router will eventually learns the routes to all reach-
able external destinations through the eBGP router. TheiBGP signaling partition
problems caused by iBGP misconfiguration when interacted with IGP protocols
is the focus ofrcc fault detection with regard to path visibility. Specifically, rcc
checks iBGP configuration with and without route reflector (RR) as follows:

• In the absence of RR, a (sufficient) trivial constraint requires that the iBGP
topology be a “full mesh”.

• In practice, a full mesh topology is seldom adopted, instead, RR is used to
improve scalability. In the presence of RR, the constraint requires only a
full mesh topology among non-RR client BGP routers.

The actualrcc constraints checking of the above conditions is performed by
iBGP signaling graph construction from the normalized policy tables.

Route validity The challenge in route validity checking is the detection ofpolicy-
related violations. Without requiring additional human user’s input on the in-
tended policy,rcc checks against the proposed “policy belief” in compliance of
best common practice. Example constraints imposed by best common policy
belief include:

• Routes learned from a peer are not re-advertised back.

• Configuration anomalies are likely to be mistaken: for a given destination,
when configurations at different routers differ, the few deviations are likely
to be mis-configured.

5.2 Evaluation

According to the proposed taxonomy shown in Figure 3,rcc is a static analysis tool
detecting routing protocol configurations faults. As shownin Figure 2,rcc checks the
unmodified BGP configurations against built-in correctnessconstraints. We summarize
strengths and limitations ofrcc as follows:
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Strengths

• Lightweight static analysis of real-world BGP configuration: rcc reduces the
analysis effort/burden imposed on network operator to the minimal. Unlike most
formal analysis tools,rcc does not require any expertise/experience in formal
methods tools/techniques, nor any human interaction/inputs (not even the spec-
ification of the network operator’s intended policy!) in thereasoning/checking
process; Yet like all static analysis tool applied before deployment,rcc does not
incur any performance overhead, and can detect problems in unmodified real-
world vendor-specific BGP configurations.

• Checking network-wide properties at local AS:rcc enables network-wide faults
detection of routing configuration by performing constraints checking at the local
AS.

Limitations

• Soundness and completeness: Like many practical static analysis tool, rcc is
neither sound nor complete. The proposed constraints derived from path visibil-
ity and router validity properties catch only a sub-set of potential active faults
which, when triggered by certain event sequences, will cause end-to-end per-
sistent route failures. On the hand, constraints checking may also report false
positive violations, which do not correspond to any route failures.

• Best Common policy checking: To reduce user interaction to the minimal,rcc
operates without the intended policy specification, and relies on proposed “policy
beliefs”. Such coarse-grained treatment of “intended policy” introduces false-
positives constraint violations as well as the mask of potential faults in the real
intended policy that is abstracted away.

6 Axiomatic Basis for Communication

A first axiomatic semantics framework [13] for network service is proposed in [15]
within the current layered Internet architecture. The intended usage of this semantics
framework includes: (1) specification framework for the understanding, specification
and reasoning of the increasingly complex Internet architecture and forwarding func-
tionalities; (2) sound design language that facilitates rapid implementation of network
protocols.

The axiomatic semantic framework first provides a metalanguage for the spec-
ification of common network functionality such as addressing, naming, forwarding
schemes, and the expression of architectural invariants such as message delivery. The
semantics of this metalanguage is then rigorously defined inHoare-style logic extended
by “leads-to” relation which denotes the central network functionalities: “store-and-
forward”. This Hoare-style semantics also serves as the foundation for network verifi-
cation.

6.1 Basics: Abstract Switching and Forwarding

A central problem in today’s Internet is the design and implementation of packet switcher
and the associated functionality: package forwarding. Themodeling and reasoning of
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most Internet services at different network layers rely on the notion of forwarding.
Therefore it is desirable to have a proper abstraction of theswitching unit and forward-
ing functionality. In this axiomatic framework, the notionof the “store-and-forward”
switcher is captured by an abstract object calledAbstract Stitching Element(ASE), and
the forwarding principle is modeled by “leads-to” relation.

An abstract switching element (ASE) generalizes the notionof the switcher, which
may be called with different names at different network layers such as switcher, bridge,
gateway, or router etc. Each ASEA is associated with two types of logical ports: in-
put portsxA that receives packets from a predecessor ASEx; and output portsAx

that forwards message to the successor ASEx. Here variablex is used to range over
predecessor ASEs and successor ASEs. For example the logical ports for ASEB
placed betweenA andC are written as:AB,BC . Specifically,0A andA0 denote the
two end ports where a message is created and consumed respectively (recall nodes A
and B in Figure 1). The communication messagem at a portx is denoted bym@x.
And the switching tableSB maintained at ASEB is modeled by a set of mappings:
〈A, p〉 7→ {〈C, p′〉} between〈ASE, header〉 pairs. Switching table lookup at ASEB
for message received fromA with headerp is written asSB [A, p].

On the other hand, “leads-to” relationm@x → n@y models the central forwarding
operation which can be read as a messagem at portx is forwarded to porty as message
n. The communication between directly connected ASEsA,B can be simply written
as (m@AB → m@AB). Obviously, to accommodate message forwarding through
intermediary nodes, “leads-to” must satisfy transitivityproperty:

∀x, y, z,m,m′,m′′ : (m@x → m′@y) ∧ (m′@y → m′′@z) =⇒ m@x → m′′@z

The actual message switching operation at each intermediary nodeB (from predeces-
sor ASEA to successor ASEC) can be formalized as follows:

∀A,B,C,m, p, p′ : ∃AB,BC ∧ 〈C, p′〉 ∈ SB [A, p] =⇒ pm@AB → p′m@BC

HereSB [A, p] denotes the switching table lookup operation at ASEB for message
received from predecessor ASEA with prefix p. After the switching table lookup,
B transforms the prefixp to p′ as specified by the chosen forwarding protocol and
forwards the resulting messagep′m to successor ASEC according toSB [A, p].

By adopting the above abstract notions of ASE and “leads-to”, common commu-
nication concepts can be concisely formalized. For example, communicationaddress
used to identify a network entity can be specified as follows:

Address If ∃ ASEs A,B and prefix p 6= ∅ such that

∀m : pm@xA → pm@yB → m@Bz then p is an address for B at A

Here the intuition is that the address which identifies the destination nodeB is the
prefix that will not be changed along the forwarding path towardsB, and that after
arriving atB, the addressp will be removed from the carrying messagem for further
processing.

6.2 Meta-language for Packet Forwarding

We have shown that based on the notion of ASE and “leads-to”, common communica-
tion concepts can be easily formulated. To further facilitate the development and rea-
soning of real forwarding practice, the axiomatic framework identifies a set of primitive
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operations to serve as a meta specification language. Besides forwarding, axiomatic
framework also includes primitives for control mechanism,which determines the ac-
tual path along which message is forwarded, as described in section 2.

Forwarding Primitives To forward message (i.e. realization of the “leads-to” rela-
tion) among two end-node in today’s Internet, as shown in Figure 1 (end-nodes A and
B), repeated messageencapsulationat message creation node A andde-encapsulation
at message consumption node B are performed. At each node (modeled by ASE) along
the forwarding path, switching lookup and the actualforwarding are performed. Be-
sides packet forwarding, to accommodate virtual circuit networks and recent middle-
boxes extensions such as NAT, firewall, additional operations are also included. The
following primitives capture these necessary functionality:

• Encapsulation and de-encapsulation are performed by primitivespush(message,
string), andstring pop(message).

• The actual store-and-forward is performed by primitives
send(ase,message) , <ase,message> receive(), lookup(ase,string),
andmessage copy(message).

Control Primitives Routing is the control process that decides along which nodes
and paths messages are forwarded. Specifically, switching (forwarding) table is main-
tained by routing protocols. The routing challenges addressed in the axiomatic frame-
work include: (1) naming (address carried by protocol head)in overlay network and
inter-networks connected by gateway; (2) specific path setup mechanism for virtual-
circuit (swap) and Ethernet (bridging). Accordingly, axiomatic framework supplies the
control primitives to implement these functionalities. Intuitively, the control primitives
augment the ASE formalism with switching table update ability and control message
exchange ability operations

• Primitives for switching table updates are:update(ase,string,ase,string)

• Primitives for control message path setup include:string getlabel(message),
setlabel(message, string), message create(opcode), andmessage
response(message, opcode)

Combining the above forwarding/control primitives and theusual control flow
primitives in procedure languages (condition, branch, loop), typical processing pat-
terns for forwarding data, resolution, path setup etc. can be concisely specified. For
example, the regular data message forwarding can be implemented by primitives as
follows:

1 string n = pop(msg);
2 {<ase, string>} S = lookup(prev, n);
3 for each <ase, string> s_i in S {
4 message outmsg = copy (msg);
5 push (outmsg, s_i.string);
6 send(s_i.ase, outmsg);
7 }

Intuitively, the above program specifies that upon receiving a messagemsg at an in-
termediary ASE, forwarding primitivepop is first invoked to get the outermost name
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(destination address), followed by a switching tablelookup operation to decide the
outgoing successor ASEs (denoted byS). Next, for each successor ASEs i, the mes-
sage data is copied and stored atoutmsg, and new prefix is generated bypush primitive
in line 5. Finally,send primitive moves the message to the corresponding successor
ASEs.

6.3 Formal Semantics in Hoare Logic

To facilitate formal reasoning, a rigorous formal semantics of the proposed primitives
are given in Hoare-style logic. Basically, the semantics ofeach primitive operation is
given by a pair of pre/post-condition assertions. And the pre/post-assertion are speci-
fied in the usual first-order logic augmented with “leads-to”relation.

For example, the meaning of primitivesend is captured by the following axiom:

send(C, m)
ϕ1{send(C, m)}ϕ

where ϕ = θ ⊃ m′@x → m′′@y and

ϕ1 = θ ⊃ (m′@x → m′′@y ∨ (m′@x → m@AC ∧m@AC → m′′@y))

Here for the post-conditionϕ to be true, which asserts that messagem′ can be for-
warded from portx to y (i.e. “leads-to” relationm′@x → m′′@y), the pre-condition is
that either the “leads-to” relation isalreadytrue regardless ofsend or that the “leads-
to” relation is established bysend(C,m) operation. In the later case, the intuition is
thatsend(C,m) is performed by an intermediary port (AC) in multi-hop message for-
warding. As a second example, the meaning ofpush is captured by Hoare-style axiom
extended with “leads-to” relation as follows:

push(m, n)
ϕ[nm/m]{push(m, n)}ϕ

Here,push operation that models prefix encapsulation is simply interpreted as prefix
prepending (prependm, the message being carried, with a new prefixn). The formal
semantics of other primitives are given in a similarly way.

An Example Proof Equipped with the formal semantics and the underlying ex-
tended Hoare-style logic, formal verification is enabled: to perform verification for
a given property of a service specified in the axiomatic framework, simply formu-
late the desired property by a proper post-condition, and repeatedly apply predicate-
transformation for each primitive being executed according to Hoare logic in the re-
verse order the primitives are executed. Correctness is established by reducing the
post-condition to a trivially-true pre-condition.

As an example proof, consider the 7-line message-forwarding program in the pre-
vious section. Without loss of generality, assume the program is executed at ASEA,
and the messagemsg= pm0 (p is the prefix, andm0 is the message data being carried)
is received from portBA connecting to some predecessor ASEB. First, the user comes
up with the property of interests, i.e. the desired post-condition as follows:

For each entry for 〈B, p〉 in A′s switching table :
∧

si∈S

⊃ (pm0@
BA → (si.string)m0@Asi.ase)
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This post-condition says the intended effect of the forwarding program is that received
messagemsg= pm0 can be successfully forwarded to all successive ASEssi.ase ac-
cording to the switching table entryS for the received message〈B, p〉. To verify this
post-condition, one tries the Hoare-logic axiom for each executed operation in a back-
ward fashion. First, as shown in the last line,} denotes the outermostfor loop for
each successive ASE in the switching table. By applying the Hoare-Logic axiom for
for loop, the post-condition is reduced to the following form:

si ∈ S ⊃ (pm0@
BA → (si.string)m0@Asi.ase)

Next, primitivesend is executed (line 6), by applying the corresponding axiomsend(C,m)

introduced in the previous section, we can reduce the post-condition to the following
form:

si ∈ S ⊃ ((pm0@
BA → outmsg@Asi.ase ∧ outmsg@Asi.ase →

(si.string)m0@Asi.ase) ∨ · · · )

Note that we only consider the second branch insend(C,m) axiom where the execu-
tion of send is critical to reduce pre-condition. The first irrelevant branch is therefore
denoted by· · · . This proof choice is non-trivial and indeed requires user direction. In
more complicated cases, genuine insights in the proof process are often needed, and
though the formal semantics introduced in the axiomatic framework make the proof
mechanically checkable, the axioms themselves do not suggest how a proof can be
constructed. Following this backward post-condition to pre-condition transformation,
we see primitivepush executed in line 5, accordingly apply axiompush(m,n), and
the new pre-condition is derived:

si ∈ S ⊃ (pm0@
BA → (si.string)outmsg@Asi.ase ∧

(si.string)outmsg@Asi.ase → (si.string)m0@Asi.ase)

Similarly, repeat such predicate transformations according to the Hoare-logic ax-
iom associated with primitives in line4-1 as well, one finally arrives at the following
pre-condition:

s ∈ SA[prev, p] ⊃ (pm0@
BA → (s.string)m0@As.ase ∧

(s.string)m0@As.ase → (s.string)m0@As.ase)

This pre-condition is trivially true from assumption:

prev = B ∧m = pm0 ∧ ∃BA

Which simply saysB is the predecessor ASE andmsg is of the formpmo.

6.4 Evaluation

According to the proposed taxonomy shown in Figure 3, the axiomatic framework
discussed in this section is an example of formal specification technique for network
forwarding. Similar to metarouting, this semantics framework facilitates the under-
standing, reasoning, and design of network protocols, as shown in 2. The major dif-
ference is that metarouting enables “specific soundness property” (i.e. convergence) by
correctness-by-construction, whereas axiomatic formulation, by defining an rigorous
semantics in Hoare-style logic, establishes “a wider rangeof soundness properties” by
formal reasoning. We summarize the strengths and limitation of axiomatic formulation
as follows:
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Strengths

• A general purpose high-level logical specification language: The proposed meta-
language is rich and flexible enough for the expression of network service, pro-
tocol properties, and architectural invariants. In addition, emerging features,
though violating the original Internet design principles,such as middleboxes,
can be easily specified. With the help of a meta-compiler, a preliminary univer-
sal forwarding engine has been implemented in Click.

• Verification foundation: The formal semantics in Hoare logic with “leads-to”
relation serves as a rigorous foundation for formal networkverification.

Limitation Internet today is a huge and complex system. The axiomatic framework
is among the initial efforts towards an integrated environment that provides a precise
model, modular formal development and reasoning support. To outperform or com-
pete with existing network programming framework with pre-implemented network
primitives and various automated formal reasoning tools, areal compiler that helps
synthesize system codes and automated reasoning procedures are desirable.

7 Addressing Analysis withAlloy

Alloy is a lightweight integrated tool for object-oriented styleformal specification and
automatic analysis. In [30], Alloy is used for addressing analysis in incorporating net-
works. The major benefit with Alloy is that: the Alloy specification language eases the
formalization of addressing and interoperation requirement and Alloy analyzer takes
care of the analysis process.

7.1 Overview

Network addressing and interoperation are two enabling mechanisms for global net-
work connectivity. Alloy analysis tool featuring a friendly relation logic language and
model-finding based analyzer is used to better understand the addressing problem in
interoperation networks.

7.1.1 Connection and Interoperation Specification in Alloy

As a first step, an abstract model for network notions such as connection and interop-
eration are constructed in Alloy specification logic. Theseformal specification will be
used as the basis in Alloy analysis described in the next section. Alloy features a spec-
ification language that combines relational logic and fragment of second order logic.
This specification language enables abstract modeling in anobject-oriented style aug-
mented with flexible use of logical quantifiers. We summarizethe Alloy abstraction
(specification) for connection and interoperation as follows:

Connection

• Agents: Alloy specification for agent models network end nodes that are either a
client or aserver.
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• Domain: Alloy specification for domain models the addressing mechanism that
assigns for each participant agent anaddress. Note that an agent can partici-
pant in multiple domains and therefore obtain different addresses for different
domains.

• Hop: Alloy specification for hop models a particular persistent connectionbe-
tween two agents through a common domain both of the agents participate.

• Link: connects adjacent hops to create multi-hop connection.

As an illustrating example, the Alloy specification forDomain is as follows:

sig Domain {space: set Address, map: space -> Agent}
fact{all d: Domain, g: Agent |

g in Address.(d.map) => d in g.attachments}

Here, thesignature statement says eachDomain contains a set of addresses and
maintains a mapping between the addresses to agents. Recallthat in Alloy, an agents
is either a client or server attached to some domain. Next, the fact statement asserts
the constraint as part ofDomain specification that an agent is attached to a domain as
long as its address is maintained by that domain.

Interoperation

• Feature: models abstract service which is deployed in a domain and implemented
by someservers(i.e. agents in the domain that provide the abstract service).

• Interoperation: is a special service, and the server that implements interoperation
service modelsgateway.

As an illustrating example, the Alloy specification forFeature is as follows:

abstract sig Feature {domain: Domain, servers: set Server}
{some servers}

fact {servers: Feature one -> Server}

The intuition insig statement is that afeature is always deployed in a particular
domain, and provided/implemented by a non-empty set of servers. The followingfact
statement asserts that server can be viewed as a function from features to servers.
Interestingly, based on this Alloy specification, a dynamic, single-address NAT can be
viewed as an interoperation service that maps many private IP addresses to a single
public one.

7.1.2 Requirement Analysis in Alloy

Based on the abstract model above, Alloy analyzer is used to facilitate user-level inter-
operation requirement analysis. The two requirement properties considered arereach-
ability requirementandreturnability requirement

• Reachability: reachability property asserts that if a domain assigns an addresses
to a client for reachability service, then the client can be reached by that address.

• Returnability: returnability property of connection saysthat if a client A can be
reached by some source client B, then client A should also be able to request
connection to reach client B that initiates the first connection.
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To analyze these two properties in Alloy, they are first encoded as additional Alloy
constraints. As an illustrating example, the Alloy encoding of reachability is as
follows:

assert Reachability {all c: Connections,
g1, g2: Client, h: Hop, a: Address, d: Domain |

g1 = h.initiator && d = h.domain &&
a = h.target && (a->) in g2.knownAt

=> (some h2: Hop | g2 = h2.acceptor && (h->h2)
in c.connected)}

The intuition here is that if a clientg1 requests a connection to a reachable second
clientg2 by addressa that is ing2’s knownAt set, theng1 is connected tog2 through
some hoph2.

Based on the above Alloy constraints, Alloy analyzer then searches for network
instances that meet the requirement constraints, as well ascounter-examples. For a
moderate sized model consistent with requirement constraints, Alloy returns a model
(satisfying instance) that is very convincing and convenient. In general, Alloy performs
constraints checking by exhaustive model finding up to a fixedbound.

7.2 Evaluation

According to the proposed taxonomy shown in Figure 3, Alloy based addressing anal-
ysis is an example of formal verification of network requirement. As shown in Figure
2, Alloy takes conceptual requirement as input, and requires user effort to construct a
formal model for addressing and interoperation in Alloy specification language. Next,
Alloy takes care of constraints analysis based on the formalspecification. We summa-
rize strength and limitation of Alloy as follows:

Strength Alloy specification language and integrated analyzer significantly help the
understanding of the confusing addressing problems in interoperation networks. In
contrast to a full formal verification, the automatic Alloy analyzer relying on model
finding techniques rather than deductive reasoning has beenproven to be sufficient for
reasoning about addressing.

Limitation Like many formal verification tools, Alloy requires an initial investment
in formal specification before automatic analysis can be performed. The model-finding
(through model enumeration process) analysis, though sufficient for the specific case
study of addressing, when compared with traditional deductive reasoning, may become
less convincing for more complicated analysis tasks. Finally, the analysis is restricted
to an abstract model built-in Alloy specification language that is decoupled from real
world implementation.

8 Discussion

In this section, we conclude our survey with comparisons of the different techniques
proposed for formal network analysis, followed by a discussion of the challenges.
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Metarouting Axiom
formulation rcc Alloy

Application scope Specification
Specification
& verification validation

Specification
& verification

Expressiveness Medium High Low Medium
Automated
reasoning support High Low High High

Soundness Yes Yes No Yes
Completeness No Yes No No
Closeness to
implementation Low Medium High Medium

Initial investment
in system modeling Medium High Low High

Table 2: A Summary of the evaluations for different network analysis systems

8.1 Comparison

In previous sections, we have discussed representative techniques and systems for for-
mal network analysis, including metarouting framework forrouting with convergence
guarantee in section 4, axiom formulation of network forwarding in section 6, BGP
configuration analysis toolrcc in section 5 and Alloy based addressing analysis in sec-
tion 7.

Incorporated with the evaluations of individual systems presented in previous sec-
tions, we now present a comparison and evaluation of the different systems and high-
light the ranking of each technique with respect to the corresponding criteria/dimen-
sion. As summarized in Table 2, the following criterion and dimensions are considered.

• Application scope dimension specifies the scope of the formal analysis system.
For example, metarouting is an example of formal specification system, whereas
axiomatic formulation can be used for both specification andverification, and
rcc is only used for system validation.

• Expressiveness and automated reasoning support are a pair of conflicting prop-
erties that reflect the design choice of the underlying formal analysis system: In
theory, the more expressive a specification language is, theless automated rea-
soning support can be built. In practice, an automatic verification system usually
implies the use of a moderate specification language. For example, metarouting
and axiomatic formulation represent two extremes in the design of specification
language. We will revisit in details the comparison of specification techniques in
metarouting and axiomatic formulation in section 8.1.1.

• Soundness and completeness are a pair of dual properties. Soundness ensures
that the properties derived in the formal analysis system are indeed preserved
in the network specification or system implementation beinganalyzed. On the
other hand, completeness asserts that the analysis of all properties of interests are
supported by the analysis system. Obviously, a useful network analysis system
should be sound but not necessarily complete since the system may be dedicated
to some particular properties. This is observed in the four representative systems
studied in this survey: most of them are sound, but only one iscomplete.

• Closeness to implementation dimension reflects the analysis system’s applica-
bility to real-world network protocols. Systems work on unmodified network
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systems such as rcc are ranked highest, whereas systems withstrong correctness
guarantee such as metarouting are ranked lowest.

• Initial investment dimension reflects the additional efforts required in the de-
ployment of the system. Many design choices affect the additional investment
required. For example, systems work directly on implementation are also likely
to incur only minimal efforts, as in the case of rcc. However,systems that are
very flexible and cover a wide range of network properties (i.e. complete), such
as axiomatic formulation require very high initial system modeling efforts.

In the rest of this section, we discuss in details the comparison between formal
specification, verification, and system validation. We firstcompare in details differ-
ent formal specification techniques. We omit the comparisonof formal verification
techniques, because the full formal verification often restricted to to network standard-
/design is of less interests. And though lightweight formalverification has witnessed
application in networking recently, they suffer similar scalability problem: high-initial
investment in specification and non-incremental verification that are hard to reuse and
scale. Instead, we compare formal verification with system validation techniques.

8.1.1 Comparison of formal specification techniques

We have discussed two types of formal specification formalism: metarouting as an ex-
ample of network meta-theory, and axiomatic formulation asan example of axiomatic
semantics framework. They each represents an extreme in thedesign of specification
language with regard to the expressiveness power and automated reasoning support.

Expressiveness powerAs a specialized meta-model dedicated to BGP routing and
convergence property, metarouting formalism is restricted to a particular type
of routing policy that is expressed along the traversed path. Metarouting spec-
ification language features a set of pre-defined base algebras and composition
operations. The human user is left with little specificationchoice: the user sim-
ply focuses on high-level policy decomposition and figures out a mapping from
the desired conceptual policy composition to an algebraic composition express-
ible in metarouting algebras. In contrast, the axiomatic formulation is flexible by
providing a minimal set of primitive operations. When combined with normal
sequential control statement, the the operations with semantics given in Hoare-
logic serve as a general-purpose programming language. System behaviors and
architectural invariants of the Internet can be formally specified.

Automated reasoning support Correctness properties (convergence) is automatically
enabled in metarouting at the expense of limited specification expressiveness
power. Metarouting completely removes the verification efforts required to es-
tablish correctness. That is, metarouting is an example of “correctness by con-
struction” specification language. In the other extreme, axiomatic formulation
framework comes with no proof strategy. The only verification support is the
rigorous defined primitive operation semantics in Hoare-style logic that serves
as a network-specific proof system according to which deductive reasoning can
be performed.
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8.1.2 Comparison of system validation and formal verification

Practical network system validation systems today are based on either static constraints
checking or model checking. Compared with the traditional general-purpose full-
formal verification approach, system validation systems suffer the following problems:
(1) the checkable properties are limited to specific constraints or temporal properties;
(2) as best-effort verification system built-upon “common belief” in practice, the ver-
ification results are often neither sound nor complete. Bothfalse positive (correctness
property violations that will not cause problem in real system) and false negative (error
miss) are present.

On the other hand, system validation requires significantlyless human investment.
For example, validation systems of both types [22, 16, 6] areperformed over unmod-
ified real-world implementation.rcc in particular, even takes care of vendor-specific
configuration language. At the same time, the difficult full-formal deductive reasoning
process is also removed and replaced by fully-automatic logical evaluation or algorith-
mic proof search.

8.2 Challenges

Despite the long-history of formal methods application in both hardware and software
verification, serious formal network analysis is just beginning to emerge. The revival
of formal analysis application in the pragmatic networkingdomain is encouraged by
the growing network complexity that has becoming less manageable with the present
performance-centered bottom-up engineering approach. However, the various prob-
lems the systems discussed in this survey suffer also reflectthe difficulty in the ap-
plication of formal methods in real-world distributed systems. Regarding the scale
and heterogeneity of today’s Internet, the emerging formalnetwork analysis is facing
enormous challenges. We discuss only a few network-specificchallenges here.

Performance analysis and network dynamicsMost formal analysis techniques are
restricted to logical correctness. This is largely due to the difficulty in formal-
izing any performance related issues. However, performance related properties
play a key role in network correctness. For example, performance properties are
often part of the network service specification. One of the obstacles in formaliz-
ing network performance is the lack of formal model for network dynamics and
distributed time (state): (1) classical logic-based reasoning does not have a built-
in notion for time or state; (2) state-aware techniques suchas model checking
suffers state-explosion problem, and easily blows up with respect to the inherent
huge searching space in networking.

Distributed/Local analysis of global network-wide properties Many interesting cor-
rectness properties are global and network-wide. However,it is likely that formal
analysis can only be applied locally at a restricted sub-network even if the prop-
erties of interests concerns external network nodes. This is because the global
Internet today is partitioned into a set of administrative domains where each net-
work operator is only granted access to his/her own domain.

A second difficulty has its root in the distributed nature of almost all interesting
network application. Distributed algorithm analysis is much harder compared
with a centralized one, let alone the formal distributed system verification.
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Unified framework for heterogeneous verification systemThe global Internet is built
upon heterogeneous sub-networks, and is multiplexed for many different types
of services. As a result, each end node implements a stack of protocols to handle
some particular aspects of Internet service. Similarly, most formal analysis sys-
tems are specialized for a particular type of correctness properties, and are good
for specific application domains. Internet utilizes layering as the abstraction and
modularization mechanism to build an integrated service out of a set of proto-
cols. However, the construction of correctness proof of a network service from
the correctness proofs of the constituent component protocols is still an open
problem. A related issue is the formal argument reuse problem that hinders the
scalability of formal analysis.
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