48 research outputs found

    Analysis of laminated doubly-curved shells by alayerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations

    No full text
    In this paper, the static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to a sinusoidal shear deformation theory (SSDT). The SSDT theory accounts for through-the-thickness deformation, by considering a sinusoidal evolution of all displacements with the thickness coordinate. The equations of motion and the boundary conditions are obtained by the Carrera's Unified Formulation, and further interpolated by collocation with radial basis functions

    Software for evaluating probability-based integrity of reinforced concrete structures

    Get PDF
    In recent years, much research work has been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environment. In particular, the development of new procedures for probability-based durability design has proved to give a more realistic basis for the analysis. Although there is still a lack of relevant data, this approach has been successfully applied to several new concrete structures, where requirements to a more controlled durability and service life have been specified. A probability-based durability analysis has also become an important and integral part of condition assessment of existing concrete structures in chloride containing environment. In order to facilitate the probability-based durability analysis, a software named DURACON has been developed, where the probabilistic approach is based on a Monte Carlo simulation. In the present paper, the software for the probability-based durability analysis is briefly described and used in order to demonstrate the importance of the various durability parameters affecting the durability of concrete structures in chloride containing environment

    Vibration analysis for anti-symmetric laminated composite plates resting on visco-elastic foundation with temperature effects

    Get PDF
    In this work, a comprehensive vibrational behavior analysis is performed on anti-symmetric laminated composite plates resting on visco-elastic foundations undergoing thermal effects. Here, the governing equations of motion are developed through Hamilton's principle and Reddy's plate theory as higher-order shear deformation theory (HSDT) is employed to capture high accuracy. Also, the generalized differential quadrature method (GDQM) is used to predict the vibration response and the natural frequencies. The effects of temperature change, Winkler-Pasternak and damping coefficients for the elastic foundation, the elastic ratio, the arrangement of different anti-symmetric laminates, and the aspect and slenderness ratios are observed and discussed in detail. The results are extracted for fully clamped boundary conditions and the effects of other boundary conditions are also illustrated

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model

    A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition

    Get PDF
    A drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic-polynomial higher-order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect effect of thickness variations. As a result of compounding the proposed beam model in linear Lagrangian strains and variational of energy, the system of equations is obtained. The Galerkin method is here expanded for several edge conditions to obtain elastic critical buckling values. First, the importance of the higher-order beam theory, as well as stretching effect, is assessed in assorted tabulated comparisons. Next, with validations based on the existing and open literature, the proposed shape function is evaluated to consider the desired accuracy. Some comparative graphs by means of well-known shape functions are plotted. These comparisons reveal a very good compliance. In the final section of the paper, based on an inappropriate mixture of the SUS304 and Si3C4 as the first type of FGM beam (Beam-I) and, Al and Al2O3 as the second type (Beam-II), the results are pictured while the beam is kept in four states, clamped–clamped (C–C), pinned–pinned (S–S), clamped-pinned (C–S) and in particular cantilever (C–F). We found that the defect impresses markedly an FGM beam with boundary conditions with lower degrees of freedom
    corecore